

HERSTEIN'S THEOREM FOR PAIR OF GENERALIZED DERIVATIONS ON PRIME RINGS WITH INVOLUTION

MOHAMMAD SALAHUDDIN KHAN

Received 18 January, 2021

Abstract. The aim of this paper is to study the *-identities with a pair of generalized derivations on *-ideals of prime rings with involution. In particular, we prove that if a noncommutative prime *-ring admit two generalized derivations \mathcal{F} and G such that $[\mathcal{F}(x), \mathcal{G}(x^*)] = 0$ for all $x \in I$, where I is a nonzero *-ideal of \mathcal{R} , then there exists $\lambda \in C$ such that $\mathcal{F} = \lambda \mathcal{G}$. Finally, we provide an example which shows that the primeness of \mathcal{R} is crucial in our results.

2010 *Mathematics Subject Classification:* 16N60; 16W10; 16W25 *Keywords:* prime ring, *-ideal, involution, generalized derivation

1. NOTATIONS AND INTRODUCTION

This research has been motivated by the work of Ali et al. [2]. In all that follows, unless specially stated, \mathcal{R} always denotes an associative ring with center $\mathcal{Z}(\mathcal{R})$. As usual the symbols $s \circ t$ and [s,t] will denote the anti-commutator st + ts and commutator st - ts, respectively. Given an integer $n \ge 2$, a ring \mathcal{R} is said to be *n*-torsion free if nx = 0 (where $x \in \mathcal{R}$) implies that x = 0. A ring \mathcal{R} is called prime if $a\mathcal{R}b = (0)$ (where $a, b \in \mathcal{R}$) implies a = 0 or b = 0. We denote by Q_r , Q_l , Q_s and C right, left, symmetric Martindale ring of quotients and extended centroid of a semiprime ring \mathcal{R} , respectively (see [5, Chapter 2]). An additive map $x \mapsto x^*$ of \mathcal{R} into itself is called an involution if (i) $(xy)^* = y^*x^*$ and (ii) $(x^*)^* = x$ hold for all $x, y \in \mathcal{R}$. A ring equipped with an involution is called ring with involution or *-ring. An ideal I of \mathcal{R} is called *-ideal if $I^* = I$. An element x in a ring with involution is said to be hermitian if $x^* = x$ and skew-hermitian if $x^* = -x$. The sets of all hermitian and skew-hermitian elements of \mathcal{R} will be denoted by $\mathcal{H}(\mathcal{R})$ and $\mathcal{S}(\mathcal{R})$, respectively. The involution is called the first kind if $\mathcal{Z}(\mathcal{R}) \subseteq \mathcal{H}(\mathcal{R})$, otherwise it is said to be of the second kind. In the later case $\mathcal{S}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) \neq (0)$.

An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a derivation of \mathcal{R} if d(st) = d(s)t + sd(t) for all $s, t \in \mathcal{R}$. An additive mapping $\mathcal{F} : \mathcal{R} \to \mathcal{R}$ is called a generalized derivation of \mathcal{R} if there exists a derivation d of \mathcal{R} such that $\mathcal{F}(st) = \mathcal{F}(s)t + sd(t)$ for all $s, t \in \mathcal{R}$. Obviously, any derivation is a generalized derivation, but the converse is not

© 2023 Miskolc University Press

true in general. A significative example is a map of the form $\mathcal{F}(s) = as + sb$ for some $a, b \in \mathcal{R}$; such generalized derivations are called inner. Over the last few decades, several authors have studied on rings with involution involving additive mappings like derivations, centralizers, generalized derivations etc. (viz.; [1–4] and references therein).

In [8], Herstein proved the following result: If \mathcal{R} is a prime ring of characteristic not two admitting a nonzero derivation d such that [d(x), d(y)] = 0 for all $x, y \in \mathcal{R}$, then \mathcal{R} is commutative. In [10], Lanski prove that if L is a noncommutative Lie ideal of a 2-torsion free prime ring \mathcal{R} and d, h are nonzero derivations of \mathcal{R} such that $[d(x), h(x)] \in C$ for all $x \in L$, then $h = \lambda d$, where $\lambda \in C$. Very recently, Ali et al. [2] prove the following result: Let \mathcal{R} be a noncommutative prime ring with involution of the second kind such that $char(\mathcal{R}) \neq 2$. If \mathcal{R} admits a nonzero generalized derivation \mathcal{F} such that $[\mathcal{F}(x), \mathcal{F}(x^*)] = 0$ for all $x \in \mathcal{R}$, then \mathcal{R} is an order in a central simple algebra of dimension at most 4 over its center and $\mathcal{F}(x) = ax + xb$ for all $x \in \mathcal{R}$ and fixed $a, b \in Q$ such that $a - b \in C$. In the same paper, they also proved that: Let \mathcal{R} be a prime ring with involution of the second kind such that $char(\mathcal{R}) \neq 2$. If \mathcal{R} admits a generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}(x^*) = 0$ for all $x \in \mathcal{R}$, then $\mathcal{F} = 0$.

The main objective of this paper is to study the above mentioned results for a pair of generalized derivations in prime rings with involution. Throughout the paper we assume that $S(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) \neq (0)$.

2. The Results

We shall do a great deal of calculations with commutators and anti-commutators, routinely using the following basic identities. For all $x, y, z \in \mathcal{R}$;

$$[xy,z] = x[y,z] + [x,z]y,$$

$$[x,yz] = [x,y]z + y[x,z],$$

$$x \circ (yz) = (x \circ y)z - y[x,z] = y(x \circ z) + [x,y]z,$$

$$(xy) \circ z = x(y \circ z) - [x,z]y = (x \circ z)y + x[y,z].$$

We start our investigation with some well known facts in rings which will be used frequently throughout the text.

Fact 1. If \mathcal{R} is a prime ring and $0 \neq b \in Z(\mathcal{R})$ and $ab \in Z(\mathcal{R})$, then $a \in Z(\mathcal{R})$.

Fact 2. Let \mathcal{R} be a prime ring with involution '*' of second kind such that $\operatorname{char}(\mathcal{R}) \neq 2$. Let d be a nonzero derivation of \mathcal{R} such that d(h) = 0 for all $h \in \mathcal{H}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R})$. Then d(x) = 0 for all $x \in \mathbb{Z}$.

Theorem 1. Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $[\mathcal{F}(x), \mathcal{G}(x^*)] = 0$ for all $x \in I$, then $\mathcal{F} = \lambda \mathcal{G}$ for some $\lambda \in C$.

228

Proof. By the assumption, we have

$$[\mathcal{F}(x), \mathcal{G}(x^*)] = 0$$
 for all $x \in I$.

Taking x = x + y, we get

$$[\mathcal{F}(x), \mathcal{G}(y^*)] + [\mathcal{F}(y), \mathcal{G}(x^*)] = 0 \text{ for all } x, y \in I.$$
(2.1)

Replacing *y* by *yh* (where $h \in \mathbb{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$) in (2.1), we obtain

 $[\mathcal{F}(x), y^*]g(h) + [y, \mathcal{G}(x^*)]d(h) = 0 \text{ for all } x, y \in I \text{ and } h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R}).$ (2.2) Replacing *y* by *yk* (where $k \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{S}(\mathcal{R})$) in (2.2), we get

$$(-[\mathcal{F}(x), y^*]g(h) + [y, \mathcal{G}(x^*)]d(h))k = 0$$
 for all $x, y \in I$.

Since $Z(\mathcal{R}) \cap S(\mathcal{R}) \neq \{0\}$, so application of Fact 1 yields that

$$-\left[\mathcal{F}(x), y^*\right]g(h) + \left[y, \mathcal{G}(x^*)\right]d(h) = 0 \text{ for all } x, y \in I \text{ and } h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R}).$$
(2.3)

Combining (2.2) and (2.3), we obtain that $2[\mathcal{F}(x), y^*]g(h) = 0$. Since \mathcal{R} is a 2-torsion free prime ring, the last relation gives that either $[\mathcal{F}(x), y^*] = 0$ or g(h) = 0.

Consider the first case $[\mathcal{F}(x), y^*] = 0$ for all $x, y \in I$. This implies that $[\mathcal{F}(x), t] = 0$ for all $x, t \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), hence $[\mathcal{F}(x), t] = 0$ for all $x, t \in \mathcal{R}$. Therefore, in view of Lemma 3 in [9], $\mathcal{F} = 0$. This leads a contradiction.

Now, consider the second case g(h) = 0, then (2.2) gives that $[y, \mathcal{G}(x^*)]d(h) = 0$. Using the same arguments as we have used above, we get d(h) = 0. Thus, the conclusion of both cases are d(h) = g(h) = 0 for all $h \in \mathbb{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$. By Fact 2, d(z) = g(z) = 0 for all $z \in \mathbb{Z}(\mathcal{R})$. Substitute y = yk in (2.1), we get

$$(-[\mathcal{F}(x),\mathcal{G}(y^*)]+[\mathcal{F}(y),\mathcal{G}(x^*)])k=0$$
 for all $x,y\in I$.

This gives

$$-\left[\mathcal{F}(x),\mathcal{G}(y^*)\right] + \left[\mathcal{F}(y),\mathcal{G}(x^*)\right] = 0 \text{ for all } x, y \in I.$$
(2.4)

Combining (2.1) and (2.4), we obtain $2[\mathcal{F}(y), \mathcal{G}(x^*)] = 0$ for all $x, y \in I$. Taking $x^* = t$ and using the fact that \mathcal{R} is 2-torsion free, we conclude that $[\mathcal{F}(y), \mathcal{G}(t)] = 0$ for all $y, t \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so we have $[\mathcal{F}(y), \mathcal{G}(t)] = 0$ for all $y, t \in \mathcal{R}$. By [9, Theorem 2] there exists $\lambda \in C$ such that $\mathcal{F} = \lambda \mathcal{G}$. This completes the proof of the theorem.

The immediate consequences of the above theorem are the following results:

Corollary 1. Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $[\mathcal{F}(x), \mathcal{G}(x^*)] = 0$ for all $x \in \mathcal{R}$, then $\mathcal{F} = \lambda \mathcal{G}$ for some $\lambda \in C$.

Corollary 2. Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $[\mathcal{F}(x), \mathcal{G}(y^*)] = 0$ for all $x, y \in \mathcal{R}$, then $\mathcal{F} = \lambda \mathcal{G}$ for some $\lambda \in C$.

Corollary 3. [3, Main Theorem] Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring. If \mathcal{R} admit nonzero derivations \mathcal{D}_1 and \mathcal{D}_2 such that $[\mathcal{D}_1(x), \mathcal{D}_2(x^*)] = 0$ for all $x \in \mathcal{R}$, then $\mathcal{D}_1 = \lambda \mathcal{D}_2$ for some $\lambda \in C$.

Theorem 2. Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $[\mathcal{F}(x), \mathcal{G}(x^*)] = \mathcal{G}([x, x^*])$ for all $x \in I$, then there exists $\lambda \in C$ such that $\mathcal{F} = \lambda \mathcal{G}$.

Proof. Linearize the given condition, we have

 $[\mathcal{F}(x), \mathcal{G}(y^*)] + [\mathcal{F}(y), \mathcal{G}(x^*)] = \mathcal{G}([x, y^*]) + \mathcal{G}([y, x^*]) \text{ for all } x, y \in I.$ (2.5)

Substitute *yh* in place of *y*, we reach at

$$\mathcal{F}(x), y^*]g(h) + [y, \mathcal{G}(x^*)]d(h) = 0 \text{ for all } x, y \in I.$$

This is same as (2.2) and thus following the same technique, we get d(z) = g(z) = 0 for all $z \in \mathbb{Z}(\mathcal{R})$. Now replacing y by yk in (2.5), we get

$$(-[\mathcal{F}(x),\mathcal{G}(y^*)]+[\mathcal{F}(y),\mathcal{G}(x^*)])k = (-\mathcal{G}([x,y^*])+\mathcal{G}([y,x^*]))k \text{ for all } x,y \in I.$$

Since $\mathcal{Z}(\mathcal{R}) \cap \mathcal{S}(\mathcal{R}) \neq \{0\}$ and \mathcal{R} is prime, we have

 $-[\mathcal{F}(x), \mathcal{G}(y^*)] + [\mathcal{F}(y), \mathcal{G}(x^*)] = -\mathcal{G}([x, y^*]) + \mathcal{G}([y, x^*]) \text{ for all } x, y \in I. \quad (2.6)$ Combining (2.5) and (2.6), we obtain that $[\mathcal{F}(x), \mathcal{G}(y^*)] = \mathcal{G}([x, y^*])$ for all $x, y \in I.$ In particular, for $y^* = x$, we get $[\mathcal{F}(x), \mathcal{G}(x)] = 0$ for all $x, y \in I$. Thus, in view of [9, Theorem 2] there exists $\lambda \in C$ such that $\mathcal{F} = \lambda \mathcal{G}$. This completes the proof of the theorem. \Box

Corollary 4. Let \mathcal{R} be a 2-torsion free noncommutative prime *-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $[\mathcal{F}(x), \mathcal{G}(x^*)] = \mathcal{G}([x, x^*])$ for all $x \in \mathcal{R}$, then there exists $\lambda \in C$ such that $\mathcal{F} = \lambda \mathcal{G}$.

Theorem 3. Let \mathcal{R} be a 2-torsion free prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admit generalized derivations \mathcal{F} and \mathcal{G} such that $\mathcal{F}(x) \circ \mathcal{G}(x^*) = 0$ or $\mathcal{F}(x^*) \circ \mathcal{G}(x) = 0$ for all $x \in I$, then in both cases either $\mathcal{F} = 0$ or $\mathcal{G} = 0$.

Proof. Suppose d and g are associated derivations of \mathcal{F} and \mathcal{G} respectively. Assume the relation

$$\mathcal{F}(x) \circ \mathcal{G}(x^*) = 0$$
 for all $x \in I$.

Linearize the above equation, we get

$$\mathcal{F}(x) \circ \mathcal{G}(y^*) + \mathcal{F}(y) \circ \mathcal{G}(x^*) = 0 \text{ for all } x, y \in I.$$
(2.7)

Putting *yh* (where $h \in \mathbb{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$) in place of *y* and we obtain

$$(\mathcal{F}(x) \circ y^*)g(h) + (y \circ \mathcal{G}(x^*))d(h) = 0 \text{ for all } x, y \in I.$$
(2.8)

Taking y = yk, we get

$$(-(\mathcal{F}(x)\circ y^*)g(h)+(y\circ \mathcal{G}(x^*))d(h))k=0 \text{ for all } x,y\in I.$$

230

This implies that

$$-\left(\mathcal{F}(x)\circ y^*\right)g(h) + \left(y\circ \mathcal{G}(x^*)\right)d(h) = 0 \text{ for all } x, y \in I.$$
(2.9)

Combining (2.8) and (2.9), we find that $(\mathcal{F}(x) \circ y^*)g(h) = 0$ for all $x, y \in I$. By the primeness of \mathcal{R} , we have $\mathcal{F}(x) \circ y^* = 0$ or g(h) = 0. Firstly, if $\mathcal{F}(x) \circ y^* = 0$, then $\mathcal{F}(x) \circ x = 0$ for all $x \in I$. Therefore, in view of [6, Theorem 1], $\mathcal{F}(x) = 0$ for all $x \in I$. For any $r \in \mathcal{R}$, $0 = \mathcal{F}(xr) = \mathcal{F}(x)r + xd(r) = xd(r)$. This implies d = 0 on \mathcal{R} . In the other way, for any $r \in \mathcal{R}$, $0 = \mathcal{F}(rx) = \mathcal{F}(r)x + rd(x) = \mathcal{F}(r)x$ and hence $\mathcal{F} = 0$ on \mathcal{R} . Now, consider the second case g(h) = 0. From (2.8), we have $(y \circ \mathcal{G}(x^*))d(h) = 0$ for all $x, y \in I$. Primeness of \mathcal{R} yields that $y \circ \mathcal{G}(x^*) = 0$ or d(h) = 0. If $y \circ \mathcal{G}(x^*) = 0$, then $\mathcal{G} = 0$ on \mathcal{R} . If d(h) = 0, then by Fact 2, we have d(z) = g(z) = 0 for all $z \in \mathcal{Z}(\mathcal{R})$. Substituting y = yk in (2.7), we obtain

$$-\mathcal{F}(x) \circ \mathcal{G}(y^*) + \mathcal{F}(y) \circ \mathcal{G}(x^*) = 0 \text{ for all } x, y \in I.$$
(2.10)

Subtracting (2.10) from (2.7), we get

$$2(\mathcal{F}(x) \circ \mathcal{G}(y^*)) = 0 \text{ for all } x, y \in I.$$

Since \mathcal{R} is 2-torsion free and taking $y = y^*$, we obtain that

$$\mathcal{F}(x) \circ \mathcal{G}(y) = 0$$
 for all $x, y \in I$.

Since *I* and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so $\mathcal{F}(x) \circ \mathcal{G}(y) = 0$ for all $x, y \in \mathcal{R}$. Thus in view of [7, Theorem 2.7], we conclude that either $\mathcal{F} = 0$ or $\mathcal{G} = 0$ on \mathcal{R} . The proof in case we have the relation $\mathcal{F}(x^*) \circ \mathcal{G}(x) = 0$ for all $x \in I$ goes through similarly.

Following corollaries are the immediate consequences of the above theorem.

Corollary 5. Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admit generalized derivations \mathcal{F} and \mathcal{G} such that $\mathcal{F}(x) \circ \mathcal{G}(x^*) = 0$ or $\mathcal{F}(x^*) \circ \mathcal{G}(x) = 0$ for all $x \in \mathcal{R}$, then in both cases either $\mathcal{F} = 0$ or $\mathcal{G} = 0$.

Corollary 6. Let \mathcal{R} be a 2-torsion free prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admit a derivation \mathcal{D} and a generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{D}(x^*) = 0$ or $\mathcal{F}(x^*) \circ \mathcal{D}(x) = 0$ for all $x \in I$, then in both cases either $\mathcal{F} = 0$ or $\mathcal{D} = 0$.

Corollary 7. Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admit derivations \mathcal{D}_1 and \mathcal{D}_2 such that $\mathcal{D}_1(x) \circ \mathcal{D}_2(x^*) = 0$ or $\mathcal{D}_1(x^*) \circ \mathcal{D}_2(x) = 0$ for all $x \in \mathcal{R}$, then in both cases either $\mathcal{D}_1 = 0$ or $\mathcal{D}_2 = 0$.

Corollary 8. Let \mathcal{R} be a 2-torsion free prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admits generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}(x^*) = 0$ for all $x \in I$, then $\mathcal{F} = 0$.

Corollary 9. [2, Theorem 1.2.] Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admits generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}(x^*) = 0$ for all $x \in \mathcal{R}$, then $\mathcal{F} = 0$.

Theorem 4. Let \mathcal{R} be a 2-torsion free prime *-ring and I be a nonzero *-ideal of \mathcal{R} . If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $\mathcal{F}(x)\mathcal{G}(x^*) = 0$ or $\mathcal{F}(x^*)\mathcal{G}(x) = 0$ for all $x \in I$, then in both cases \mathcal{F} and \mathcal{G} are of the form $\mathcal{F}(x) = xp$ and $\mathcal{G}(x) = qx$ for all $x \in \mathcal{R}$, where $p \in Q_l$, $q \in Q_r$ are fixed elements such that pq = 0.

Proof. Firstly, we suppose that

$$\mathcal{F}(x)\mathcal{G}(x^*) = 0$$
 for all $x \in I$.

Linearization of the above condition gives that

$$\mathcal{F}(x)\mathcal{G}(y^*) + \mathcal{F}(y)\mathcal{G}(x^*) = 0 \text{ for all } x, y \in I.$$
(2.11)

Replacing y by yh, we obtain

$$\mathcal{F}(x)y^*g(h) + y\mathcal{G}(x^*)d(h) = 0 \text{ for all } x, y \in I.$$
(2.12)

Write *yk* in place of *y*, we get

$$(-\mathcal{F}(x)y^*g(h)+y\mathcal{G}(x^*)d(h))k=0$$
 for all $x, y \in I$.

Primeness of \mathcal{R} yields that

$$-\mathcal{F}(x)y^*g(h) + y\mathcal{G}(x^*)d(h) = 0 \text{ for all } x, y \in I.$$

Combining the last relation with (2.12), we can find that $\mathcal{F}(x)y^*g(h) = 0$ and hence primeness of \mathcal{R} yields that $\mathcal{F}(x)y^* = 0$ or g(h) = 0. Firstly, consider the case $\mathcal{F}(x)y^* = 0$ for all $x, y \in I$. This implies that $\mathcal{F}(x) = 0$ for all $x \in I$, which contradicts the fact that $\mathcal{F} \neq 0$. Now, consider the second case g(h) = 0 for all $h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$. From (2.12), we have $y\mathcal{G}(x^*)d(h) = 0$. This further implies that $y\mathcal{G}(x^*) = 0$ or d(h) = 0. If $y\mathcal{G}(x^*) = 0$ for all $x, y \in I$, then again we get a contradiction. Thus, there is the only possible case d(h) = 0 and g(h) = 0 for all $h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$ and hence d(k) = g(k) = 0 for all $k \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{S}(\mathcal{R})$. Now, replacing y by yk in (2.11), we arrive at

$$(-\mathcal{F}(x)\mathcal{G}(y^*) + \mathcal{F}(y)\mathcal{G}(x^*))k = 0$$
 for all $x, y \in I$.

This implies that

$$-\mathcal{F}(x)\mathcal{G}(y^*) + \mathcal{F}(y)\mathcal{G}(x^*) = 0 \text{ for all } x, y \in I.$$

Subtracting the last relation from (2.11) and using the fact that \mathcal{R} is 2-torsion free, we get that $\mathcal{F}(x)\mathcal{G}(y^*) = 0$ for all $x, y \in I$. In particular, for $y^* = x$ this gives that $\mathcal{F}(x)\mathcal{G}(x) = 0$ for all $x \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so $\mathcal{F}(x)\mathcal{G}(x) = 0$ for all $x \in \mathcal{R}$. Therefore, by the Theorem 2.2 in [7], we get the required result. Similarly, we can prove the result for the case $\mathcal{F}(x^*)\mathcal{G}(x) = 0$ for all $x \in I$. Therefore the proof of the theorem is completed. \Box

Corollary 10. Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admit a derivation \mathcal{D} and a generalized derivation \mathcal{F} such that $\mathcal{D}(x)\mathcal{F}(x^*) = 0$ or $\mathcal{F}(x^*)\mathcal{D}(x) = 0$ for all $x \in \mathcal{R}$, then $\mathcal{F} = 0$ or $\mathcal{D} = 0$.

Proof. For the first case $\mathcal{D}(x)\mathcal{F}(x^*) = 0$ for all $x \in \mathcal{R}$. On the contrary, suppose that $\mathcal{D} \neq 0$ and $\mathcal{F} \neq 0$. Then by the Theorem 4, there exists $p \in Q_l$ such that $\mathcal{D}(x) = xp$ for all $x \in \mathcal{R}$. Therefore $\mathcal{D}(xy) = xyp = \mathcal{D}(x)y + x\mathcal{D}(y)$. This gives that $\mathcal{D}(x)y = 0$ for all $x, y \in \mathcal{R}$. This implies that $\mathcal{D} = 0$, which leads a contradiction to our supposition. Similar proof for the case $\mathcal{F}(x^*)\mathcal{D}(x) = 0$ for all $x \in \mathcal{R}$. \Box

Corollary 11. Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admit derivations \mathcal{D}_1 and \mathcal{D}_2 such that $\mathcal{D}_1(x)\mathcal{D}_2(x^*) = 0$ or $\mathcal{D}_1(x^*)\mathcal{D}_2(x) = 0$ for all $x \in \mathcal{R}$, then $\mathcal{D}_1 = 0$ or $\mathcal{D}_2 = 0$.

The following example justifies the fact that Theorems 1, 3 & 4 are not true for semiprime rings.

Example 1. Let $\mathcal{R} = \left\{ \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \mid c_1, c_2, c_3, c_4 \in \mathbb{C} \right\}$, where \mathbb{C} is a ring of complex numbers. Of course, \mathcal{R} with matrix addition and matrix multiplication is a non-commutative prime ring. Define mappings $*_1, d_1, \mathcal{F}_1 : \mathcal{R} \longrightarrow \mathcal{R}$ such that

$$\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}^{*_1} = \begin{pmatrix} c_4 & c_2 \\ c_3 & c_1 \end{pmatrix}, \quad d_1 \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} 0 & -c_2 \\ c_3 & 0 \end{pmatrix},$$

and
$$\mathcal{F}_1 \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} c_1 & 2c_2 \\ -c_3 & 0 \end{pmatrix}.$$

It can be easily checked that $*_1$ is an involution of the second kind and \mathcal{F}_1 is a generalized derivation of \mathcal{R} associated with the derivation d_1 . Let \mathbb{H} be a ring of real quaternions. Clearly, a mapping $*_2$ such that $q^{*_2} = \alpha - i\beta - j\gamma - k\delta$ is an involution on \mathbb{H} . Next, define a mapping \mathcal{G}_1 on \mathbb{H} such that $\mathcal{G}_1(q) = 2iq - qi$. Then \mathcal{G}_1 is a generalized derivation of \mathbb{H} associated with the derivation $g_1 = g_i$ (where g_i is an inner derivation on \mathbb{H} determined by $i \in \mathbb{H}$).

Let $\mathcal{L} = \mathcal{R} \times \mathbb{H}$. Then \mathcal{L} is a 2-torsion free noncommutative semiprime ring. Now define an involution * on \mathcal{L} , as $(x, y)^* = (x^{*_1}, y_{*_2})$. Clearly, * is an involution of the second kind. Further, we define the mappings \mathcal{F} and \mathcal{G} from \mathcal{L} to \mathcal{L} such that $\mathcal{F}(x, y) = (\mathcal{F}_1(x), 0)$ and $\mathcal{G}(x, y) = (0, \mathcal{G}_2(x))$ for all $(x, y) \in \mathcal{L}$. It can be easily checked that \mathcal{F} and \mathcal{G} are nonzero generalized derivations on \mathcal{L} and satisfying $[\mathcal{F}(X), \mathcal{G}(X^*)] = 0, \mathcal{F}(X) \circ \mathcal{G}(X^*) = 0$ and $\mathcal{F}(X) \mathcal{G}(X^*) = 0$ for all $X \in \mathcal{L}$, but the conclusions of Theorems 1, 3 & 4 are not held. Hence, in these results the hypothesis of primeness is essential.

REFERENCES

- S. Ali and N. A. Dar, "On *-centralizing mappings in rings with involution." *Georgian Math. J.*, vol. 21, no. 1, pp. 25–28, 2014, doi: 10.1515/gmj-2014-0006.
- [2] S. Ali, A. N. Khan, and N. A. Dar, "Herstein's theorem for generalized derivations in rings with involution." *Hacet. J. Math. Stat.*, vol. 46, no. 6, pp. 1029–1034, 2017, doi: 10.15672/HJMS.2017.432.

MOHAMMAD SALAHUDDIN KHAN

- [3] S. Ali, M. R. Mozumder, A. Abbasi, and M. S. Khan, "A characterization of derivations in prime rings with involution." *Eur. J. Pure Appl. Math.*, vol. 12, no. 3, pp. 1138–1148, 2019, doi: 10.29020/nybg.ejpam.v12i3.3496.
- [4] M. Ashraf and M. A. Siddeeque, "Posner's first theorem for *-ideals in prime rings with involution." *Kyungpook Math. J.*, vol. 56, no. 2, pp. 343–347, 2016, doi: 10.5666/KMJ.2016.56.2.343.
- [5] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, *Rings with generalized identities*. New York: Marcel Dekker, Inc., 1996.
- [6] M. Brešar, "On skew-commuting mappings of rings." Bull. Austral. Math. Soc., vol. 47, no. 2, pp. 291–296, 1993, doi: 10.1017/S0004972700012521.
- [7] M. Fošner and J. Vukman, "Identities with generalized derivations in prime rings." *Mediterr. J. Math.*, vol. 9, no. 4, pp. 847–863, 2012, doi: 10.1007/s00009-011-0158-0.
- [8] I. N. Herstein, "A note on derivations." Canad. Math. Bull., vol. 21, no. 3, pp. 369–370, 1978, doi: 10.4153/CMB-1978-065-x.
- [9] B. Hvala, "Generalized derivations in rings," *Canad. Math. Bull.*, vol. 26, no. 4, pp. 1147–1166, 1998, doi: 10.1080/00927879808826190.
- [10] C. Lanski, "Differential identities of prime rings, Kharchenko's theorem and application," *Contemp. Math.*, vol. 124, pp. 111–128, 1992, doi: 10.1090/conm/124.
- [11] T.-K. Lee, "Semiprime rings with differential identities," *Bull. Inst. Math. Acad. Sinica*, vol. 20, no. 1, pp. 27–38, 1992.

Author's address

Mohammad Salahuddin Khan

Department of Applied Mathematics, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh-202002, India

E-mail address: salahuddinkhan50@gmail.com