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Abstract. The aim of this paper is to study the ∗-identities with a pair of generalized derivations
on ∗-ideals of prime rings with involution. In particular, we prove that if a noncommutative prime
∗-ring admit two generalized derivations F and G such that [F (x),G(x∗)] = 0 for all x∈ I , where
I is a nonzero ∗-ideal of R , then there exists λ ∈ C such that F = λG . Finally, we provide an
example which shows that the primeness of R is crucial in our results.
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1. NOTATIONS AND INTRODUCTION

This research has been motivated by the work of Ali et al. [2]. In all that follows,
unless specially stated, R always denotes an associative ring with center Z(R ). As
usual the symbols s◦ t and [s, t] will denote the anti-commutator st + ts and commut-
ator st − ts, respectively. Given an integer n ≥ 2, a ring R is said to be n-torsion free
if nx = 0 (where x ∈ R ) implies that x = 0. A ring R is called prime if aR b = (0)
(where a,b ∈ R ) implies a = 0 or b = 0. We denote by Qr ,Ql ,Qs and C right, left,
symmetric Martindale ring of quotients and extended centroid of a semiprime ring R ,
respectively (see [5, Chapter 2]). An additive map x 7→ x∗ of R into itself is called an
involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all x,y ∈ R . A ring equipped
with an involution is called ring with involution or ∗-ring. An ideal I of R is called
∗-ideal if I ∗ = I . An element x in a ring with involution is said to be hermitian if
x∗ = x and skew-hermitian if x∗ =−x. The sets of all hermitian and skew-hermitian
elements of R will be denoted by H (R ) and S(R ), respectively. The involution is
called the first kind if Z(R ) ⊆ H (R ), otherwise it is said to be of the second kind.
In the later case S(R )∩Z(R ) ̸= (0).

An additive mapping d : R → R is said to be a derivation of R if d(st) = d(s)t +
sd(t) for all s, t ∈ R . An additive mapping F : R → R is called a generalized deriv-
ation of R if there exists a derivation d of R such that F (st) = F (s)t + sd(t) for all
s, t ∈ R . Obviously, any derivation is a generalized derivation, but the converse is not
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true in general. A significative example is a map of the form F (s) = as+sb for some
a,b ∈ R ; such generalized derivations are called inner. Over the last few decades,
several authors have studied on rings with involution involving additive mappings
like derivations, cenralizers, generalized derivations etc. (viz.; [1–4] and references
therein).

In [8], Herstein proved the following result: If R is a prime ring of characteristic
not two admitting a nonzero derivation d such that [d(x),d(y)] = 0 for all x,y ∈ R ,
then R is commutative. In [10], Lanski prove that if L is a noncommutative Lie ideal
of a 2-torsion free prime ring R and d, h are nonzero derivations of R such that
[d(x),h(x)] ∈ C for all x ∈ L, then h = λd, where λ ∈ C. Very recently, Ali et al. [2]
prove the following result: Let R be a noncommutative prime ring with involution of
the second kind such that char(R ) ̸= 2. If R admits a nonzero generalized derivation
F such that [F (x),F (x∗)] = 0 for all x ∈ R , then R is an order in a central simple
algebra of dimension at most 4 over its center and F (x) = ax+ xb for all x ∈ R and
fixed a,b ∈ Q such that a−b ∈C. In the same paper, they also proved that: Let R be
a prime ring with involution of the second kind such that char(R ) ̸= 2. If R admits
a generalized derivation F such that F (x)◦F (x∗) = 0 for all x ∈ R , then F = 0.

The main objective of this paper is to study the above mentioned results for a pair
of generalized derivations in prime rings with involution. Throughout the paper we
assume that S(R )∩Z(R ) ̸= (0).

2. THE RESULTS

We shall do a great deal of calculations with commutators and anti-commutators,
routinely using the following basic identities. For all x,y,z ∈ R ;

[xy,z] = x[y,z]+ [x,z]y,

[x,yz] = [x,y]z+ y[x,z],

x◦ (yz) = (x◦ y)z− y[x,z] = y(x◦ z)+ [x,y]z,

(xy)◦ z = x(y◦ z)− [x,z]y = (x◦ z)y+ x[y,z].

We start our investigation with some well known facts in rings which will be used
frequently throughout the text.

Fact 1. If R is a prime ring and 0 ̸= b ∈ Z(R ) and ab ∈ Z(R ), then a ∈ Z(R ).

Fact 2. Let R be a prime ring with involution ′∗′ of second kind such that char(R )
̸= 2. Let d be a nonzero derivation of R such that d(h) = 0 for all h∈H (R )∩Z(R ).
Then d(x) = 0 for all x ∈ Z.

Theorem 1. Let R be a 2-torsion free noncommutative prime ∗-ring and I be a
nonzero ∗-ideal of R . If R admit nonzero generalized derivations F and G associ-
ated with derivations d and g respectively such that [F (x),G(x∗)] = 0 for all x ∈ I ,
then F = λG for some λ ∈C.
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Proof. By the assumption, we have

[F (x),G(x∗)] = 0 for all x ∈ I .
Taking x = x+ y, we get

[F (x),G(y∗)]+ [F (y),G(x∗)] = 0 for all x,y ∈ I . (2.1)

Replacing y by yh (where h ∈ Z(R )∩H (R )) in (2.1), we obtain

[F (x),y∗]g(h)+ [y,G(x∗)]d(h) = 0 for all x,y ∈ I and h ∈ Z(R )∩H (R ). (2.2)

Replacing y by yk (where k ∈ Z(R )∩S(R )) in (2.2), we get

(−[F (x),y∗]g(h)+ [y,G(x∗)]d(h))k = 0 for all x,y ∈ I .
Since Z(R )∩S(R ) ̸= {0}, so application of Fact 1 yields that

− [F (x),y∗]g(h)+ [y,G(x∗)]d(h) = 0 for all x,y ∈ I and h ∈ Z(R )∩H (R ). (2.3)

Combining (2.2) and (2.3), we obtain that 2[F (x),y∗]g(h) = 0. Since R is a 2-torsion
free prime ring, the last relation gives that either [F (x),y∗] = 0 or g(h) = 0.

Consider the first case [F (x),y∗] = 0 for all x,y ∈ I . This implies that [F (x), t] =
0 for all x, t ∈ I . Since I and R satisfy the same differential identities (see [11,
Theorem 2]), hence [F (x), t] = 0 for all x, t ∈ R . Therefore, in view of Lemma 3 in
[9], F = 0. This leads a contradiction.

Now, consider the second case g(h) = 0, then (2.2) gives that [y,G(x∗)]d(h) =
0. Using the same arguments as we have used above, we get d(h) = 0. Thus, the
conclusion of both cases are d(h) = g(h) = 0 for all h ∈ Z(R )∩H (R ). By Fact 2,
d(z) = g(z) = 0 for all z ∈ Z(R ). Substitute y = yk in (2.1), we get

(−[F (x),G(y∗)]+ [F (y),G(x∗)])k = 0 for all x,y ∈ I .
This gives

− [F (x),G(y∗)]+ [F (y),G(x∗)] = 0 for all x,y ∈ I . (2.4)
Combining (2.1) and (2.4), we obtain 2[F (y),G(x∗)] = 0 for all x,y ∈ I . Taking
x∗ = t and using the fact that R is 2-torsion free, we conclude that [F (y),G(t)] =
0 for all y, t ∈ I . Since I and R satisfy the same differential identities (see [11, The-
orem 2]), so we have [F (y),G(t)] = 0 for all y, t ∈ R . By [9, Theorem 2] there exists
λ ∈C such that F = λG . This completes the proof of the theorem. □

The immediate consequences of the above theorem are the following results:

Corollary 1. Let R be a 2-torsion free noncommutative prime ∗-ring. If R admit
nonzero generalized derivations F and G such that [F (x),G(x∗)] = 0 for all x ∈ R ,
then F = λG for some λ ∈C.

Corollary 2. Let R be a 2-torsion free noncommutative prime ∗-ring. If R admit
nonzero generalized derivations F and G such that [F (x),G(y∗)] = 0 for all x,y∈R ,
then F = λG for some λ ∈C.
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Corollary 3. [3, Main Theorem] Let R be a 2-torsion free noncommutative prime
∗-ring. If R admit nonzero derivations D1 and D2 such that [D1(x),D2(x∗)] = 0 for
all x ∈ R , then D1 = λD2 for some λ ∈C.

Theorem 2. Let R be a 2-torsion free noncommutative prime ∗-ring and I be a
nonzero ∗-ideal of R . If R admit nonzero generalized derivations F and G associ-
ated with derivations d and g respectively such that [F (x),G(x∗)] = G([x,x∗]) for all
x ∈ I , then there exists λ ∈C such that F = λG .

Proof. Linearize the given condition, we have

[F (x),G(y∗)]+ [F (y),G(x∗)] = G([x,y∗])+G([y,x∗]) for all x,y ∈ I . (2.5)

Substitute yh in place of y, we reach at

[F (x),y∗]g(h)+ [y,G(x∗)]d(h) = 0 for all x,y ∈ I .
This is same as (2.2) and thus following the same technique, we get d(z) = g(z) = 0
for all z ∈ Z(R ). Now replacing y by yk in (2.5), we get

(−[F (x),G(y∗)]+ [F (y),G(x∗)])k = (−G([x,y∗])+G([y,x∗]))k for all x,y ∈ I .
Since Z(R )∩S(R ) ̸= {0} and R is prime, we have

− [F (x),G(y∗)]+ [F (y),G(x∗)] =−G([x,y∗])+G([y,x∗]) for all x,y ∈ I . (2.6)

Combining (2.5) and (2.6), we obtain that [F (x),G(y∗)] = G([x,y∗]) for all x,y ∈ I .
In particular, for y∗ = x, we get [F (x),G(x)] = 0 for all x,y ∈ I . Thus, in view of
[9, Theorem 2] there exists λ ∈C such that F = λG . This completes the proof of the
theorem. □

Corollary 4. Let R be a 2-torsion free noncommutative prime ∗-ring. If R admit
nonzero generalized derivations F and G such that [F (x),G(x∗)] = G([x,x∗]) for all
x ∈ R , then there exists λ ∈C such that F = λG .

Theorem 3. Let R be a 2-torsion free prime ∗-ring and I be a nonzero ∗-ideal
of R . If R admit generalized derivations F and G such that F (x) ◦G(x∗) = 0 or
F (x∗)◦G(x) = 0 for all x ∈ I , then in both cases either F = 0 or G = 0.

Proof. Suppose d and g are associated derivations of F and G respectively. As-
sume the relation

F (x)◦G(x∗) = 0 for all x ∈ I .
Linearize the above equation, we get

F (x)◦G(y∗)+F (y)◦G(x∗) = 0 for all x,y ∈ I . (2.7)

Putting yh (where h ∈ Z(R )∩H (R )) in place of y and we obtain

(F (x)◦ y∗)g(h)+(y◦G(x∗))d(h) = 0 for all x,y ∈ I . (2.8)

Taking y = yk, we get

(−(F (x)◦ y∗)g(h)+(y◦G(x∗))d(h))k = 0 for all x,y ∈ I .
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This implies that

− (F (x)◦ y∗)g(h)+(y◦G(x∗))d(h) = 0 for all x,y ∈ I . (2.9)

Combining (2.8) and (2.9), we find that (F (x) ◦ y∗)g(h) = 0 for all x,y ∈ I . By the
primeness of R , we have F (x) ◦ y∗ = 0 or g(h) = 0. Firstly, if F (x) ◦ y∗ = 0, then
F (x) ◦ x = 0 for all x ∈ I . Therefore, in view of [6, Theorem 1], F (x) = 0 for all
x ∈ I . For any r ∈ R , 0 = F (xr) = F (x)r + xd(r) = xd(r). This implies d = 0
on R . In the other way, for any r ∈ R , 0 = F (rx) = F (r)x+ rd(x) = F (r)x and
hence F = 0 on R . Now, consider the second case g(h) = 0. From (2.8), we have
(y ◦ G(x∗))d(h) = 0 for all x,y ∈ I . Primeness of R yields that y ◦ G(x∗) = 0 or
d(h) = 0. If y ◦G(x∗) = 0, then G = 0 on R . If d(h) = 0, then by Fact 2, we have
d(z) = g(z) = 0 for all z ∈ Z(R ). Substituting y = yk in (2.7), we obtain

−F (x)◦G(y∗)+F (y)◦G(x∗) = 0 for all x,y ∈ I . (2.10)

Subtracting (2.10) from (2.7), we get

2(F (x)◦G(y∗)) = 0 for all x,y ∈ I .
Since R is 2-torsion free and taking y = y∗, we obtain that

F (x)◦G(y) = 0 for all x,y ∈ I .
Since I and R satisfy the same differential identities (see [11, Theorem 2]), so F (x)◦
G(y) = 0 for all x,y ∈ R . Thus in view of [7, Theorem 2.7], we conclude that either
F = 0 or G = 0 on R . The proof in case we have the relation F (x∗)◦G(x) = 0 for
all x ∈ I goes through similarly. □

Following corollaries are the immediate consequences of the above theorem.

Corollary 5. Let R be a 2-torsion free prime ∗-ring. If R admit generalized
derivations F and G such that F (x)◦G(x∗) = 0 or F (x∗)◦G(x) = 0 for all x ∈ R ,
then in both cases either F = 0 or G = 0.

Corollary 6. Let R be a 2-torsion free prime ∗-ring and I be a nonzero ∗-ideal
of R . If R admit a derivation D and a generalized derivation F such that F (x) ◦
D(x∗) = 0 or F (x∗) ◦D(x) = 0 for all x ∈ I , then in both cases either F = 0 or
D = 0.

Corollary 7. Let R be a 2-torsion free prime ∗-ring. If R admit derivations D1
and D2 such that D1(x) ◦D2(x∗) = 0 or D1(x∗) ◦D2(x) = 0 for all x ∈ R , then in
both cases either D1 = 0 or D2 = 0.

Corollary 8. Let R be a 2-torsion free prime ∗-ring and I be a nonzero ∗-ideal of
R . If R admits generalized derivation F such that F (x) ◦F (x∗) = 0 for all x ∈ I ,
then F = 0.

Corollary 9. [2, Theorem 1.2.] Let R be a 2-torsion free prime ∗-ring. If R admits
generalized derivation F such that F (x)◦F (x∗) = 0 for all x ∈ R , then F = 0.
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Theorem 4. Let R be a 2-torsion free prime ∗-ring and I be a nonzero ∗-ideal of
R . If R admit nonzero generalized derivations F and G associated with derivations
d and g respectively such that F (x)G(x∗) = 0 or F (x∗)G(x) = 0 for all x ∈ I , then
in both cases F and G are of the form F (x) = xp and G(x) = qx for all x ∈ R , where
p ∈ Ql, q ∈ Qr are fixed elements such that pq = 0.

Proof. Firstly, we suppose that

F (x)G(x∗) = 0 for all x ∈ I .
Linearization of the above condition gives that

F (x)G(y∗)+F (y)G(x∗) = 0 for all x,y ∈ I . (2.11)

Replacing y by yh, we obtain

F (x)y∗g(h)+ yG(x∗)d(h) = 0 for all x,y ∈ I . (2.12)

Write yk in place of y, we get

(−F (x)y∗g(h)+ yG(x∗)d(h))k = 0 for all x,y ∈ I .
Primeness of R yields that

−F (x)y∗g(h)+ yG(x∗)d(h) = 0 for all x,y ∈ I .
Combining the last relation with (2.12), we can find that F (x)y∗g(h) = 0 and hence
primeness of R yields that F (x)y∗ = 0 or g(h) = 0. Firstly, consider the case
F (x)y∗ = 0 for all x,y ∈ I . This implies that F (x) = 0 for all x ∈ I , which con-
tradicts the fact that F ̸= 0. Now, consider the second case g(h) = 0 for all h ∈
Z(R )∩H (R ). From (2.12), we have yG(x∗)d(h) = 0. This further implies that
yG(x∗) = 0 or d(h) = 0. If yG(x∗) = 0 for all x,y ∈ I , then again we get a con-
tradiction. Thus, there is the only possible case d(h) = 0 and g(h) = 0 for all
h ∈ Z(R )∩H (R ) and hence d(k) = g(k) = 0 for all k ∈ Z(R )∩S(R ). Now, repla-
cing y by yk in (2.11), we arrive at

(−F (x)G(y∗)+F (y)G(x∗))k = 0 for all x,y ∈ I .
This implies that

−F (x)G(y∗)+F (y)G(x∗) = 0 for all x,y ∈ I .
Subtracting the last relation from (2.11) and using the fact that R is 2-torsion free,
we get that F (x)G(y∗) = 0 for all x,y ∈ I . In particular, for y∗ = x this gives that
F (x)G(x) = 0 for all x ∈ I . Since I and R satisfy the same differential identities
(see [11, Theorem 2]), so F (x)G(x) = 0 for all x ∈ R . Therefore, by the Theorem
2.2 in [7], we get the required result. Similarly, we can prove the result for the case
F (x∗)G(x) = 0 for all x ∈ I . Therefore the proof of the theorem is completed. □

Corollary 10. Let R be a 2-torsion free prime ∗-ring. If R admit a derivation D
and a generalized derivation F such that D(x)F (x∗) = 0 or F (x∗)D(x) = 0 for all
x ∈ R , then F = 0 or D = 0.
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Proof. For the first case D(x)F (x∗) = 0 for all x ∈ R . On the contrary, sup-
pose that D ̸= 0 and F ̸= 0. Then by the Theorem 4, there exists p ∈ Ql such that
D(x) = xp for all x ∈ R . Therefore D(xy) = xyp = D(x)y+ xD(y). This gives that
D(x)y = 0 for all x,y ∈ R . This implies that D = 0, which leads a contradiction to
our supposition. Similar proof for the case F (x∗)D(x) = 0 for all x ∈ R . □

Corollary 11. Let R be a 2-torsion free prime ∗-ring. If R admit derivations D1
and D2 such that D1(x)D2(x∗) = 0 or D1(x∗)D2(x) = 0 for all x ∈ R , then D1 = 0
or D2 = 0.

The following example justifies the fact that Theorems 1, 3 & 4 are not true for
semiprime rings.

Example 1. Let R =

{(
c1 c2
c3 c4

)∣∣∣ c1,c2,c3,c4 ∈ C
}
, where C is a ring of com-

plex numbers. Of course, R with matrix addition and matrix multiplication is a non-
commutative prime ring. Define mappings ∗1,d1,F1 : R −→ R such that(

c1 c2
c3 c4

)∗1

=

(
c̄4 c̄2
c̄3 c̄1

)
, d1

(
c1 c2
c3 c4

)
=

(
0 −c2
c3 0

)
and F1

(
c1 c2
c3 c4

)
=

(
c1 2c2
−c3 0

)
.

It can be easily checked that ∗1 is an involution of the second kind and F1 is a gen-
eralized derivation of R associated with the derivation d1. Let H be a ring of real
quaternions. Clearly, a mapping ∗2 such that q∗2 = α− iβ− jγ− kδ is an involution
on H. Next, define a mapping G1 on H such that G1(q) = 2iq−qi. Then G1 is a gen-
eralized derivation of H associated with the derivation g1 = gi (where gi is an inner
derivation on H determined by i ∈H).

Let L = R ×H. Then L is a 2-torsion free noncommutative semiprime ring.
Now define an involution ∗ on L , as (x,y)∗ = (x∗1 ,y∗2). Clearly, ∗ is an involution
of the second kind. Further, we define the mappings F and G from L to L such
that F (x,y) = (F1(x),0) and G(x,y) = (0,G2(x)) for all (x,y) ∈ L . It can be eas-
ily checked that F and G are nonzero generalized derivations on L and satisfying
[F (X),G(X∗)] = 0,F (X) ◦G(X∗) = 0 and F (X)G(X∗) = 0 for all X ∈ L , but the
conclusions of Theorems 1, 3 & 4 are not held. Hence, in these results the hypothesis
of primeness is essential.
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