HERSTEIN'S THEOREM FOR PAIR OF GENERALIZED DERIVATIONS ON PRIME RINGS WITH INVOLUTION

MOHAMMAD SALAHUDDIN KHAN
Received 18 January, 2021

Abstract

The aim of this paper is to study the $*$-identities with a pair of generalized derivations on $*$-ideals of prime rings with involution. In particular, we prove that if a noncommutative prime $*$-ring admit two generalized derivations \mathcal{F} and G such that $\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=0$ for all $x \in I$, where I is a nonzero $*$-ideal of \mathcal{R}, then there exists $\lambda \in C$ such that $\mathcal{F}=\lambda \mathcal{G}$. Finally, we provide an example which shows that the primeness of \mathcal{R} is crucial in our results.

2010 Mathematics Subject Classification: 16N60; 16W10; 16W25
Keywords: prime ring, *-ideal, involution, generalized derivation

1. Notations and introduction

This research has been motivated by the work of Ali et al. [2]. In all that follows, unless specially stated, \mathcal{R} always denotes an associative ring with center $Z(\mathcal{R})$. As usual the symbols $s \circ t$ and $[s, t]$ will denote the anti-commutator $s t+t s$ and commutator $s t-t s$, respectively. Given an integer $n \geq 2$, a ring \mathcal{R} is said to be n-torsion free if $n x=0$ (where $x \in \mathcal{R}$) implies that $x=0$. A ring \mathcal{R} is called prime if $a \mathcal{R} b=(0)$ (where $a, b \in \mathcal{R}$) implies $a=0$ or $b=0$. We denote by Q_{r}, Q_{l}, Q_{s} and C right, left, symmetric Martindale ring of quotients and extended centroid of a semiprime ring \mathcal{R}, respectively (see [5, Chapter 2]). An additive map $x \mapsto x^{*}$ of \mathcal{R} into itself is called an involution if (i) $(x y)^{*}=y^{*} x^{*}$ and (ii) $\left(x^{*}\right)^{*}=x$ hold for all $x, y \in \mathcal{R}$. A ring equipped with an involution is called ring with involution or $*$-ring. An ideal I of \mathcal{R} is called $*$-ideal if $I^{*}=I$. An element x in a ring with involution is said to be hermitian if $x^{*}=x$ and skew-hermitian if $x^{*}=-x$. The sets of all hermitian and skew-hermitian elements of \mathcal{R} will be denoted by $\mathcal{H}(\mathcal{R})$ and $\mathcal{S}(\mathcal{R})$, respectively. The involution is called the first kind if $\mathcal{Z}(\mathcal{R}) \subseteq \mathcal{H}(\mathcal{R})$, otherwise it is said to be of the second kind. In the later case $\mathcal{S}(\mathcal{R}) \cap Z(\mathcal{R}) \neq(0)$.

An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a derivation of \mathcal{R} if $d(s t)=d(s) t+$ $s d(t)$ for all $s, t \in \mathcal{R}$. An additive mapping $\mathcal{F}: \mathcal{R} \rightarrow \mathcal{R}$ is called a generalized derivation of \mathcal{R} if there exists a derivation d of \mathcal{R} such that $\mathcal{F}(s t)=\mathcal{F}(s) t+s d(t)$ for all $s, t \in \mathcal{R}$. Obviously, any derivation is a generalized derivation, but the converse is not
true in general. A significative example is a map of the form $\mathcal{F}(s)=a s+s b$ for some $a, b \in \mathcal{R}$; such generalized derivations are called inner. Over the last few decades, several authors have studied on rings with involution involving additive mappings like derivations, cenralizers, generalized derivations etc. (viz.; [1-4] and references therein).

In [8], Herstein proved the following result: If \mathcal{R} is a prime ring of characteristic not two admitting a nonzero derivation d such that $[d(x), d(y)]=0$ for all $x, y \in \mathcal{R}$, then \mathcal{R} is commutative. In [10], Lanski prove that if L is a noncommutative Lie ideal of a 2 -torsion free prime ring \mathcal{R} and d, h are nonzero derivations of \mathcal{R} such that $[d(x), h(x)] \in C$ for all $x \in L$, then $h=\lambda d$, where $\lambda \in C$. Very recently, Ali et al. [2] prove the following result: Let \mathcal{R} be a noncommutative prime ring with involution of the second kind such that $\operatorname{char}(\mathcal{R}) \neq 2$. If \mathcal{R} admits a nonzero generalized derivation \mathcal{F} such that $\left[\mathcal{F}(x), \mathcal{F}\left(x^{*}\right)\right]=0$ for all $x \in \mathcal{R}$, then \mathcal{R} is an order in a central simple algebra of dimension at most 4 over its center and $\mathcal{F}(x)=a x+x b$ for all $x \in \mathcal{R}$ and fixed $a, b \in Q$ such that $a-b \in C$. In the same paper, they also proved that: Let \mathcal{R} be a prime ring with involution of the second kind such that $\operatorname{char}(\mathcal{R}) \neq 2$. If \mathcal{R} admits a generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}\left(x^{*}\right)=0$ for all $x \in \mathcal{R}$, then $\mathcal{F}=0$.

The main objective of this paper is to study the above mentioned results for a pair of generalized derivations in prime rings with involution. Throughout the paper we assume that $\mathcal{S}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) \neq(0)$.

2. The Results

We shall do a great deal of calculations with commutators and anti-commutators, routinely using the following basic identities. For all $x, y, z \in \mathcal{R}$;

$$
\begin{aligned}
{[x y, z] } & =x[y, z]+[x, z] y, \\
{[x, y z] } & =[x, y] z+y[x, z], \\
x \circ(y z) & =(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z, \\
(x y) \circ z & =x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z] .
\end{aligned}
$$

We start our investigation with some well known facts in rings which will be used frequently throughout the text.

Fact 1. If \mathcal{R} is a prime ring and $0 \neq b \in Z(\mathcal{R})$ and $a b \in Z(\mathcal{R})$, then $a \in Z(\mathcal{R})$.
Fact 2. Let \mathcal{R} be a prime ring with involution' $*^{\prime}$ of second kind such that char (\mathcal{R}) $\neq 2$. Let d be a nonzero derivation of \mathcal{R} such that $d(h)=0$ for all $h \in \mathcal{H}(\mathcal{R}) \cap Z(\mathcal{R})$. Then $d(x)=0$ for all $x \in \mathcal{Z}$.

Theorem 1. Let \mathcal{R} be a 2-torsion free noncommutative prime $*$-ring and I be a nonzero *-ideal of \mathcal{R}. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=0$ for all $x \in I$, then $\mathcal{F}=\lambda \mathcal{G}$ for some $\lambda \in C$.

Proof. By the assumption, we have

$$
\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=0 \text { for all } x \in I
$$

Taking $x=x+y$, we get

$$
\begin{equation*}
\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]=0 \text { for all } x, y \in I \tag{2.1}
\end{equation*}
$$

Replacing y by $y h($ where $h \in Z(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$) in (2.1), we obtain

$$
\begin{equation*}
\left[\mathcal{F}(x), y^{*}\right] g(h)+\left[y, \mathcal{G}\left(x^{*}\right)\right] d(h)=0 \text { for all } x, y \in I \text { and } h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R}) . \tag{2.2}
\end{equation*}
$$

Replacing y by $y k$ (where $k \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{S}(\mathcal{R})$) in (2.2), we get

$$
\left(-\left[\mathcal{F}(x), y^{*}\right] g(h)+\left[y, \mathcal{G}\left(x^{*}\right)\right] d(h)\right) k=0 \text { for all } x, y \in I
$$

Since $Z(\mathcal{R}) \cap \mathcal{S}(\mathcal{R}) \neq\{0\}$, so application of Fact 1 yields that

$$
\begin{equation*}
-\left[\mathcal{F}(x), y^{*}\right] g(h)+\left[y, \mathcal{G}\left(x^{*}\right)\right] d(h)=0 \text { for all } x, y \in I \text { and } h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R}) \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), we obtain that $2\left[\mathcal{F}(x), y^{*}\right] g(h)=0$. Since \mathcal{R} is a 2-torsion free prime ring, the last relation gives that either $\left[\mathcal{F}(x), y^{*}\right]=0$ or $g(h)=0$.

Consider the first case $\left[\mathcal{F}(x), y^{*}\right]=0$ for all $x, y \in I$. This implies that $[\mathcal{F}(x), t]=$ 0 for all $x, t \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), hence $[\mathcal{F}(x), t]=0$ for all $x, t \in \mathcal{R}$. Therefore, in view of Lemma 3 in [9], $\mathcal{F}=0$. This leads a contradiction.

Now, consider the second case $g(h)=0$, then (2.2) gives that $\left[y, \mathcal{G}\left(x^{*}\right)\right] d(h)=$ 0 . Using the same arguments as we have used above, we get $d(h)=0$. Thus, the conclusion of both cases are $d(h)=g(h)=0$ for all $h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$. By Fact 2, $d(z)=g(z)=0$ for all $z \in Z(\mathcal{R})$. Substitute $y=y k$ in (2.1), we get

$$
\left(-\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]\right) k=0 \text { for all } x, y \in I .
$$

This gives

$$
\begin{equation*}
-\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]=0 \text { for all } x, y \in I \tag{2.4}
\end{equation*}
$$

Combining (2.1) and (2.4), we obtain $2\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]=0$ for all $x, y \in I$. Taking $x^{*}=t$ and using the fact that \mathcal{R} is 2 -torsion free, we conclude that $[\mathcal{F}(y), \mathcal{G}(t)]=$ 0 for all $y, t \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so we have $[\mathcal{F}(y), \mathcal{G}(t)]=0$ for all $y, t \in \mathcal{R}$. By [9, Theorem 2] there exists $\lambda \in C$ such that $\mathcal{F}=\lambda \mathcal{G}$. This completes the proof of the theorem.

The immediate consequences of the above theorem are the following results:
Corollary 1. Let \mathcal{R} be a 2-torsion free noncommutative prime $*$-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=0$ for all $x \in \mathcal{R}$, then $\mathcal{F}=\lambda \mathcal{G}$ for some $\lambda \in C$.

Corollary 2. Let \mathcal{R} be a 2-torsion free noncommutative prime $*$-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]=0$ for all $x, y \in \mathcal{R}$, then $\mathcal{F}=\lambda \mathcal{G}$ for some $\lambda \in C$.

Corollary 3. [3, Main Theorem] Let \mathcal{R} be a 2 -torsion free noncommutative prime *-ring. If \mathcal{R} admit nonzero derivations \mathcal{D}_{1} and \mathcal{D}_{2} such that $\left[\mathcal{D}_{1}(x), \mathcal{D}_{2}\left(x^{*}\right)\right]=0$ for all $x \in \mathcal{R}$, then $\mathcal{D}_{1}=\lambda \mathcal{D}_{2}$ for some $\lambda \in C$.

Theorem 2. Let \mathcal{R} be a 2-torsion free noncommutative prime $*$-ring and I be a nonzero $*$-ideal of \mathcal{R}. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=\mathcal{G}\left(\left[x, x^{*}\right]\right)$ for all $x \in I$, then there exists $\lambda \in C$ such that $\mathcal{F}=\lambda \mathcal{G}$.

Proof. Linearize the given condition, we have

$$
\begin{equation*}
\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]=\mathcal{G}\left(\left[x, y^{*}\right]\right)+\mathcal{G}\left(\left[y, x^{*}\right]\right) \text { for all } x, y \in I \tag{2.5}
\end{equation*}
$$

Substitute $y h$ in place of y, we reach at

$$
\left[\mathcal{F}(x), y^{*}\right] g(h)+\left[y, \mathcal{G}\left(x^{*}\right)\right] d(h)=0 \text { for all } x, y \in I .
$$

This is same as (2.2) and thus following the same technique, we get $d(z)=g(z)=0$ for all $z \in \mathcal{Z}(\mathcal{R})$. Now replacing y by $y k$ in (2.5), we get

$$
\left(-\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]\right) k=\left(-\mathcal{G}\left(\left[x, y^{*}\right]\right)+\mathcal{G}\left(\left[y, x^{*}\right]\right)\right) k \text { for all } x, y \in I .
$$

Since $\mathcal{Z}(\mathcal{R}) \cap \mathcal{S}(\mathcal{R}) \neq\{0\}$ and \mathcal{R} is prime, we have

$$
\begin{equation*}
-\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]+\left[\mathcal{F}(y), \mathcal{G}\left(x^{*}\right)\right]=-\mathcal{G}\left(\left[x, y^{*}\right]\right)+\mathcal{G}\left(\left[y, x^{*}\right]\right) \text { for all } x, y \in I \tag{2.6}
\end{equation*}
$$

Combining (2.5) and (2.6), we obtain that $\left[\mathcal{F}(x), \mathcal{G}\left(y^{*}\right)\right]=\mathcal{G}\left(\left[x, y^{*}\right]\right)$ for all $x, y \in I$. In particular, for $y^{*}=x$, we get $[\mathcal{F}(x), \mathcal{G}(x)]=0$ for all $x, y \in I$. Thus, in view of [9, Theorem 2] there exists $\lambda \in C$ such that $\mathcal{F}=\lambda \mathcal{G}$. This completes the proof of the theorem.

Corollary 4. Let \mathcal{R} be a 2 -torsion free noncommutative prime $*$-ring. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} such that $\left[\mathcal{F}(x), \mathcal{G}\left(x^{*}\right)\right]=\mathcal{G}\left(\left[x, x^{*}\right]\right)$ for all $x \in \mathcal{R}$, then there exists $\lambda \in C$ such that $\mathcal{F}=\lambda \mathcal{G}$.

Theorem 3. Let \mathcal{R} be a 2-torsion free prime $*$-ring and I be a nonzero $*$-ideal of \mathcal{R}. If \mathcal{R} admit generalized derivations \mathcal{F} and \mathcal{G} such that $\mathcal{F}(x) \circ \mathcal{G}\left(x^{*}\right)=0$ or $\mathcal{F}\left(x^{*}\right) \circ \mathcal{G}(x)=0$ for all $x \in I$, then in both cases either $\mathcal{F}=0$ or $\mathcal{G}=0$.

Proof. Suppose d and g are associated derivations of \mathcal{F} and \mathcal{G} respectively. Assume the relation

$$
\mathcal{F}(x) \circ \mathcal{G}\left(x^{*}\right)=0 \text { for all } x \in I
$$

Linearize the above equation, we get

$$
\begin{equation*}
\mathcal{F}(x) \circ \mathcal{G}\left(y^{*}\right)+\mathcal{F}(y) \circ \mathcal{G}\left(x^{*}\right)=0 \text { for all } x, y \in I . \tag{2.7}
\end{equation*}
$$

Putting $y h$ (where $h \in Z(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$) in place of y and we obtain

$$
\begin{equation*}
\left(\mathcal{F}(x) \circ y^{*}\right) g(h)+\left(y \circ \mathcal{G}\left(x^{*}\right)\right) d(h)=0 \text { for all } x, y \in I . \tag{2.8}
\end{equation*}
$$

Taking $y=y k$, we get

$$
\left(-\left(\mathcal{F}(x) \circ y^{*}\right) g(h)+\left(y \circ \mathcal{G}\left(x^{*}\right)\right) d(h)\right) k=0 \text { for all } x, y \in I .
$$

This implies that

$$
\begin{equation*}
-\left(\mathcal{F}(x) \circ y^{*}\right) g(h)+\left(y \circ \mathcal{G}\left(x^{*}\right)\right) d(h)=0 \text { for all } x, y \in I . \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9), we find that $\left(\mathcal{F}(x) \circ y^{*}\right) g(h)=0$ for all $x, y \in I$. By the primeness of \mathcal{R}, we have $\mathcal{F}(x) \circ y^{*}=0$ or $g(h)=0$. Firstly, if $\mathcal{F}(x) \circ y^{*}=0$, then $\mathcal{F}(x) \circ x=0$ for all $x \in I$. Therefore, in view of [6, Theorem 1], $\mathcal{F}(x)=0$ for all $x \in I$. For any $r \in \mathcal{R}, 0=\mathcal{F}(x r)=\mathcal{F}(x) r+x d(r)=x d(r)$. This implies $d=0$ on \mathcal{R}. In the other way, for any $r \in \mathcal{R}, 0=\mathcal{F}(r x)=\mathcal{F}(r) x+r d(x)=\mathcal{F}(r) x$ and hence $\mathcal{F}=0$ on \mathcal{R}. Now, consider the second case $g(h)=0$. From (2.8), we have $\left(y \circ \mathcal{G}\left(x^{*}\right)\right) d(h)=0$ for all $x, y \in I$. Primeness of \mathcal{R} yields that $y \circ \mathcal{G}\left(x^{*}\right)=0$ or $d(h)=0$. If $y \circ \mathcal{G}\left(x^{*}\right)=0$, then $\mathcal{G}=0$ on \mathcal{R}. If $d(h)=0$, then by Fact 2 , we have $d(z)=g(z)=0$ for all $z \in \mathcal{Z}(\mathcal{R})$. Substituting $y=y k$ in (2.7), we obtain

$$
\begin{equation*}
-\mathcal{F}(x) \circ \mathcal{G}\left(y^{*}\right)+\mathcal{F}(y) \circ \mathcal{G}\left(x^{*}\right)=0 \text { for all } x, y \in I . \tag{2.10}
\end{equation*}
$$

Subtracting (2.10) from (2.7), we get

$$
2\left(\mathcal{F}(x) \circ \mathcal{G}\left(y^{*}\right)\right)=0 \text { for all } x, y \in I .
$$

Since \mathcal{R} is 2 -torsion free and taking $y=y^{*}$, we obtain that

$$
\mathcal{F}(x) \circ \mathcal{G}(y)=0 \text { for all } x, y \in I .
$$

Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so $\mathcal{F}(x) \circ$ $\mathcal{G}(y)=0$ for all $x, y \in \mathcal{R}$. Thus in view of [7, Theorem 2.7], we conclude that either $\mathcal{F}=0$ or $\mathcal{G}=0$ on \mathcal{R}. The proof in case we have the relation $\mathcal{F}\left(x^{*}\right) \circ \mathcal{G}(x)=0$ for all $x \in I$ goes through similarly.

Following corollaries are the immediate consequences of the above theorem.
Corollary 5. Let \mathcal{R} be a 2 -torsion free prime $*$-ring. If \mathcal{R} admit generalized derivations \mathcal{F} and \mathcal{G} such that $\mathcal{F}(x) \circ \mathcal{G}\left(x^{*}\right)=0$ or $\mathcal{F}\left(x^{*}\right) \circ \mathcal{G}(x)=0$ for all $x \in \mathcal{R}$, then in both cases either $\mathcal{F}=0$ or $\mathcal{G}=0$.

Corollary 6. Let \mathcal{R} be a 2 -torsion free prime $*$-ring and I be a nonzero $*$-ideal of \mathcal{R}. If \mathbb{R} admit a derivation \mathcal{D} and a generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ$ $\mathcal{D}\left(x^{*}\right)=0$ or $\mathcal{F}\left(x^{*}\right) \circ \mathcal{D}(x)=0$ for all $x \in I$, then in both cases either $\mathcal{F}=0$ or $\mathcal{D}=0$.

Corollary 7. Let \mathbb{R} be a 2 -torsion free prime $*$-ring. If \mathbb{R} admit derivations \mathcal{D}_{1} and \mathcal{D}_{2} such that $\mathcal{D}_{1}(x) \circ \mathcal{D}_{2}\left(x^{*}\right)=0$ or $\mathcal{D}_{1}\left(x^{*}\right) \circ \mathcal{D}_{2}(x)=0$ for all $x \in \mathcal{R}$, then in both cases either $\mathcal{D}_{1}=0$ or $\mathcal{D}_{2}=0$.

Corollary 8. Let \mathcal{R} be a 2-torsion free prime $*$-ring and I be a nonzero $*$-ideal of \mathcal{R}. If \mathcal{R} admits generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}\left(x^{*}\right)=0$ for all $x \in I$, then $\mathcal{F}=0$.

Corollary 9. [2, Theorem 1.2.] Let \mathcal{R} be a 2-torsion free prime *-ring. If \mathcal{R} admits generalized derivation \mathcal{F} such that $\mathcal{F}(x) \circ \mathcal{F}\left(x^{*}\right)=0$ for all $x \in \mathcal{R}$, then $\mathcal{F}=0$.

Theorem 4. Let \mathcal{R} be a 2-torsion free prime $*$-ring and I be a nonzero $*$-ideal of \mathcal{R}. If \mathcal{R} admit nonzero generalized derivations \mathcal{F} and \mathcal{G} associated with derivations d and g respectively such that $\mathcal{F}(x) \mathcal{G}\left(x^{*}\right)=0$ or $\mathcal{F}\left(x^{*}\right) \mathcal{G}(x)=0$ for all $x \in I$, then in both cases \mathcal{F} and \mathcal{G} are of the form $\mathcal{F}(x)=x p$ and $\mathcal{G}(x)=q x$ for all $x \in \mathcal{R}$, where $p \in Q_{l}, q \in Q_{r}$ are fixed elements such that $p q=0$.

Proof. Firstly, we suppose that

$$
\mathcal{F}(x) \mathcal{G}\left(x^{*}\right)=0 \text { for all } x \in I .
$$

Linearization of the above condition gives that

$$
\begin{equation*}
\mathcal{F}(x) \mathcal{G}\left(y^{*}\right)+\mathcal{F}(y) \mathcal{G}\left(x^{*}\right)=0 \text { for all } x, y \in I . \tag{2.11}
\end{equation*}
$$

Replacing y by $y h$, we obtain

$$
\begin{equation*}
\mathcal{F}(x) y^{*} g(h)+y \mathcal{G}\left(x^{*}\right) d(h)=0 \text { for all } x, y \in I . \tag{2.12}
\end{equation*}
$$

Write $y k$ in place of y, we get

$$
\left(-\mathcal{F}(x) y^{*} g(h)+y \mathcal{G}\left(x^{*}\right) d(h)\right) k=0 \text { for all } x, y \in I .
$$

Primeness of \mathcal{R} yields that

$$
-\mathcal{F}(x) y^{*} g(h)+y \mathcal{G}\left(x^{*}\right) d(h)=0 \text { for all } x, y \in I
$$

Combining the last relation with (2.12), we can find that $\mathcal{F}(x) y^{*} g(h)=0$ and hence primeness of \mathcal{R} yields that $\mathcal{F}(x) y^{*}=0$ or $g(h)=0$. Firstly, consider the case $\mathcal{F}(x) y^{*}=0$ for all $x, y \in I$. This implies that $\mathcal{F}(x)=0$ for all $x \in I$, which contradicts the fact that $\mathcal{F} \neq 0$. Now, consider the second case $g(h)=0$ for all $h \in$ $Z(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$. From (2.12), we have $y \mathcal{G}\left(x^{*}\right) d(h)=0$. This further implies that $y \mathcal{G}\left(x^{*}\right)=0$ or $d(h)=0$. If $y \mathcal{G}\left(x^{*}\right)=0$ for all $x, y \in I$, then again we get a contradiction. Thus, there is the only possible case $d(h)=0$ and $g(h)=0$ for all $h \in \mathcal{Z}(\mathcal{R}) \cap \mathcal{H}(\mathcal{R})$ and hence $d(k)=g(k)=0$ for all $k \in Z(\mathcal{R}) \cap \mathcal{S}(\mathcal{R})$. Now, replacing y by $y k$ in (2.11), we arrive at

$$
\left(-\mathcal{F}(x) \mathcal{G}\left(y^{*}\right)+\mathcal{F}(y) \mathcal{G}\left(x^{*}\right)\right) k=0 \text { for all } x, y \in I .
$$

This implies that

$$
-\mathcal{F}(x) \mathcal{G}\left(y^{*}\right)+\mathcal{F}(y) \mathcal{G}\left(x^{*}\right)=0 \text { for all } x, y \in I .
$$

Subtracting the last relation from (2.11) and using the fact that \mathcal{R} is 2-torsion free, we get that $\mathcal{F}(x) \mathcal{G}\left(y^{*}\right)=0$ for all $x, y \in I$. In particular, for $y^{*}=x$ this gives that $\mathcal{F}(x) \mathcal{G}(x)=0$ for all $x \in I$. Since I and \mathcal{R} satisfy the same differential identities (see [11, Theorem 2]), so $\mathcal{F}(x) \mathcal{G}(x)=0$ for all $x \in \mathcal{R}$. Therefore, by the Theorem 2.2 in [7], we get the required result. Similarly, we can prove the result for the case $\mathcal{F}\left(x^{*}\right) \mathcal{G}(x)=0$ for all $x \in I$. Therefore the proof of the theorem is completed.

Corollary 10. Let \mathcal{R} be a 2 -torsion free prime $*$-ring. If \mathcal{R} admit a derivation \mathcal{D} and a generalized derivation \mathcal{F} such that $\mathcal{D}(x) \mathcal{F}\left(x^{*}\right)=0$ or $\mathcal{F}\left(x^{*}\right) \mathcal{D}(x)=0$ for all $x \in \mathcal{R}$, then $\mathcal{F}=0$ or $\mathcal{D}=0$.

Proof. For the first case $\mathcal{D}(x) \mathcal{F}\left(x^{*}\right)=0$ for all $x \in \mathcal{R}$. On the contrary, suppose that $\mathcal{D} \neq 0$ and $\mathcal{F} \neq 0$. Then by the Theorem 4, there exists $p \in Q_{l}$ such that $\mathcal{D}(x)=x p$ for all $x \in \mathcal{R}$. Therefore $\mathcal{D}(x y)=x y p=\mathcal{D}(x) y+x \mathcal{D}(y)$. This gives that $\mathcal{D}(x) y=0$ for all $x, y \in \mathcal{R}$. This implies that $\mathcal{D}=0$, which leads a contradiction to our supposition. Similar proof for the case $\mathcal{F}\left(x^{*}\right) \mathcal{D}(x)=0$ for all $x \in \mathcal{R}$.

Corollary 11. Let \mathcal{R} be a 2 -torsion free prime $*$-ring. If \mathcal{R} admit derivations \mathcal{D}_{1} and \mathcal{D}_{2} such that $\mathcal{D}_{1}(x) \mathcal{D}_{2}\left(x^{*}\right)=0$ or $\mathcal{D}_{1}\left(x^{*}\right) \mathcal{D}_{2}(x)=0$ for all $x \in \mathcal{R}$, then $\mathcal{D}_{1}=0$ or $\mathcal{D}_{2}=0$.

The following example justifies the fact that Theorems $1,3 \& 4$ are not true for semiprime rings.

Example 1. Let $\mathcal{R}=\left\{\left.\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right) \right\rvert\, c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{C}\right\}$, where \mathbb{C} is a ring of complex numbers. Of course, \mathcal{R} with matrix addition and matrix multiplication is a noncommutative prime ring. Define mappings $*_{1}, d_{1}, \mathcal{F}_{1}: \mathcal{R} \longrightarrow \mathcal{R}$ such that

$$
\begin{gathered}
\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)^{*_{1}}=\left(\begin{array}{ll}
\overline{c_{4}} & \overline{c_{2}} \\
\overline{c_{3}} & \overline{c_{1}}
\end{array}\right), \quad d_{1}\left(\begin{array}{cc}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{cc}
0 & -c_{2} \\
c_{3} & 0
\end{array}\right) \\
\text { and } \mathcal{F}_{1}\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{cc}
c_{1} & 2 c_{2} \\
-c_{3} & 0
\end{array}\right) .
\end{gathered}
$$

It can be easily checked that $*_{1}$ is an involution of the second kind and \mathcal{F}_{1} is a generalized derivation of \mathcal{R} associated with the derivation d_{1}. Let \mathbb{H} be a ring of real quaternions. Clearly, a mapping $*_{2}$ such that $q^{*_{2}}=\alpha-i \beta-j \gamma-k \delta$ is an involution on \mathbb{H}. Next, define a mapping \mathcal{G}_{1} on \mathbb{H} such that $\mathcal{G}_{1}(q)=2 i q-q i$. Then \mathcal{G}_{1} is a generalized derivation of \mathbb{H} associated with the derivation $g_{1}=g_{i}$ (where g_{i} is an inner derivation on \mathbb{H} determined by $i \in \mathbb{H}$).

Let $\mathcal{L}=\mathcal{R} \times \mathbb{H}$. Then \mathcal{L} is a 2 -torsion free noncommutative semiprime ring. Now define an involution $*$ on \mathcal{L}, as $(x, y)^{*}=\left(x^{* 1}, y *_{2}\right)$. Clearly, $*$ is an involution of the second kind. Further, we define the mappings \mathcal{F} and \mathcal{G} from \mathcal{L} to \mathcal{L} such that $\mathcal{F}(x, y)=\left(\mathcal{F}_{1}(x), 0\right)$ and $\mathcal{G}(x, y)=\left(0, \mathcal{G}_{2}(x)\right)$ for all $(x, y) \in \mathcal{L}$. It can be easily checked that \mathcal{F} and \mathcal{G} are nonzero generalized derivations on \mathcal{L} and satisfying $\left[\mathcal{F}(X), \mathcal{G}\left(X^{*}\right)\right]=0, \mathcal{F}(X) \circ \mathcal{G}\left(X^{*}\right)=0$ and $\mathcal{F}(X) \mathcal{G}\left(X^{*}\right)=0$ for all $X \in \mathcal{L}$, but the conclusions of Theorems $1,3 \& 4$ are not held. Hence, in these results the hypothesis of primeness is essential.

References

[1] S. Ali and N. A. Dar, "On *-centralizing mappings in rings with involution." Georgian Math. J., vol. 21, no. 1, pp. 25-28, 2014, doi: 10.1515/gmj-2014-0006.
[2] S. Ali, A. N. Khan, and N. A. Dar, "Herstein's theorem for generalized derivations in rings with involution." Hacet. J. Math. Stat., vol. 46, no. 6, pp. 1029-1034, 2017, doi: 10.15672/HJMS.2017.432.
[3] S. Ali, M. R. Mozumder, A. Abbasi, and M. S. Khan, "A characterization of derivations in prime rings with involution." Eur. J. Pure Appl. Math., vol. 12, no. 3, pp. 1138-1148, 2019, doi: 10.29020/nybg.ejpam.v12i3.3496.
[4] M. Ashraf and M. A. Siddeeque, "Posner's first theorem for $*$-ideals in prime rings with involution." Kyungpook Math. J., vol. 56, no. 2, pp. 343-347, 2016, doi: 10.5666/KMJ.2016.56.2.343.
[5] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities. New York: Marcel Dekker, Inc., 1996.
[6] M. Brešar, "On skew-commuting mappings of rings." Bull. Austral. Math. Soc., vol. 47, no. 2, pp. 291-296, 1993, doi: 10.1017/S0004972700012521.
[7] M. Fošner and J. Vukman, "Identities with generalized derivations in prime rings." Mediterr. J. Math., vol. 9, no. 4, pp. 847-863, 2012, doi: 10.1007/s00009-011-0158-0.
[8] I. N. Herstein, "A note on derivations." Canad. Math. Bull., vol. 21, no. 3, pp. 369-370, 1978, doi: 10.4153/CMB-1978-065-x.
[9] B. Hvala, "Generalized derivations in rings," Canad. Math. Bull., vol. 26, no. 4, pp. 1147-1166, 1998, doi: 10.1080/00927879808826190.
[10] C. Lanski, "Differential identities of prime rings, Kharchenko's theorem and application," Contemp. Math., vol. 124, pp. 111-128, 1992, doi: 10.1090/conm/124.
[11] T.-K. Lee, "Semiprime rings with differential identities," Bull. Inst. Math. Acad. Sinica, vol. 20, no. 1, pp. 27-38, 1992.

Author's address

Mohammad Salahuddin Khan

Department of Applied Mathematics, Z. H. College of Engineering \& Technology, Aligarh Muslim University, Aligarh-202002, India

E-mail address: salahuddinkhan50@gmail.com

