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Abstract. In this paper, we consider the Diophantine equation Pn −3a = ν and find all ν having
at least two representations. In the proof of the main theorem, we use a version of the Baker-
Davenport reduction method.
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1. INTRODUCTION

Let us consider the Diophantine equation

ax −by = ν (1.1)

where a,b are given fixed positive integers, ν ≥ 1 and min{x,y} ≥ 2. This equation
is also known as Pillai’s equation. The ν = 1 case, known also as the Catalan’s
conjecture, was proved by Mihăilescu [24]. In 1936 and 1937 (see [25, 26]), Pillai
conjectured that only integers ν with at least two representations of the form 2x −3y

are as follows:

23 −32 =−1 = 21 −31, 25 −33 = 5 = 23 −31, 28 −35 = 13 = 24 −31.

This conjecture is a continuation of the work of Herschfeld [20, 21] in 1935 and
verified by Stroeker and Tijdeman in 1982 [28]. The problem that Pillai deals with
in the general case has recently begun to be studied in integer sequences thanks to
Baker’s theory. For example in [13], authors shows that the set of integers admitting
at least two representations of the form Fn − 2a is {−30,−11,−3,−1,0,1,5,85}.
Since then, many studies including integer sequences were handled by the authors
(see [3, 6–12, 15–19]).

We consider Pell sequence which is defined by P0 = 0, P1 = 1 and
Pn = 2Pn−1 +Pn−2. Some of the terms of the Pell sequence are given by

0,1,2,5,12,29,70, . . .
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Its characteristic polynomial is of the form x2−2x−1= 0 whose roots are α= 1+
√

2
and β = 1−

√
2. Binet’s formula enables us to rewrite the Pell sequence by using the

roots α and β as

Pn =
αn −βn

2
√

2
. (1.2)

Also, it is known that
α

n−2 ≤ Pn ≤ α
n−1. (1.3)

More detailed information on Pell sequences can be found in [22].
In this article, we aimed to prove the following result.

Theorem 1. The only integers ν having at least two representations of the form

Pn −3a = ν (1.4)

are {−1,2}. Furthermore, all the representations of these integers as Pn − 3a with
integers n ≥ 0 and a ≥ 0 are given by

P2 −31 =−1 = P0 −30

P5 −33 = 2 = P3 −31.

2. PRELIMINARIES

2.1. Linear forms in logarithms.

Let us give the concept of logarithmic height of an algebraic number and its some
properties, which is a component of an important theorem that we will use for proof.

Definition 1. Let ξ be an algebraic number of degree d with minimal polynomial

a0xd +a1xd−1 + · · ·+ad = a0 ·
d

∏
i=1

(x−ξi)

where ai’s are relatively prime integers with a0 > 0 and ξi’s are conjugates of ξ. Then

h(ξ) =
1
d

(
loga0 +

d

∑
i=1

log(max{|ξi| ,1})

)
is called the logarithmic height of ξ. The following proposition gives some properties
of logarithmic height that can be found in [27].

Proposition 1. Let ξ,ξ1,ξ2, . . . ,ξt be elements of an algebraic closure of Q and
m ∈ Z. Then

(1) h(ξ1 · · ·ξt)≤ ∑
t
i=1 h(ξi)

(2) h(ξ1 + · · ·+ξt)≤ log t +∑
t
i=1 h(ξi)

(3) h(ξm)=|m|h(ξ) .
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We use a Baker-type lower bound (see in [2]) for a nonzero linear form in logar-
ithms of algebraic numbers several times to prove our main result Theorem 1. In the
literature, there are many such bounds but we will use the result of Matveev stated in
the following theorem (see [23] or Theorem 9.4 in [5]).

Theorem 2. Let γ1,γ2, . . . ,γs be nonzero elements of a real algebraic number field
F of degree D, b1,b2, . . . ,bs rational integers. Set

Λ := γ
b1
1 . . .γbs

s −1

and
B := max{|b1| , . . . , |bs|}.

If Λ is nonzero, then

log |Λ|>−3 ·30s+4 · (s+1)5.5 ·D2 · (1+ logD) · (1+ log(sB)) ·A1 · · ·As

where
Ai ≥ max{D ·h(γi), |logγi| ,0.16}

for all 1 ≤ i ≤ s. If F= R, then

log |Λ|>−1.4 ·30s+3 · t4.5 ·D2 · (1+ logD) · (1+ logB) ·A1 · · ·As.

2.2. Baker-Davenport reduction lemma.

We use some of the results of the continued fractions theory to reduce the upper
bounds on variables, which are quite large, that we have obtained throughout the
calculations. The following lemma we specifically use, and taken from [4], is a
variation of the result due to [14] which is a generalization of a result of [1].

Lemma 1. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ

be an irrational number and M be a positive integer. Take p/q as a convergent of
the continued fraction of γ such that q > 6M. Set ε := ∥µq∥−M ∥γq∥ > 0 where
∥·∥ denotes the distance from the nearest integer. Then there is no solution to the
inequality

0 < |uγ− v+µ|< AB−w

in positive integers u, v and w with

u ≤ M and w ≥
log Aq

ε

logB
.

3. PROOF OF THEOREM 1

Let us assume that there exist nonnegative integers n,a,n1,a1 such that
(n,a) ̸= (n1,a1) and

Pn −3a = Pn1 −3a1 . (3.1)
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If we take a = a1 then we obtain Pn = Pn1 and so (n,a) = (n1,a1) which contadicts
our assumption. Thus, without loss of the generality, we can assume that a > a1. By
rewriting the equation (3.1) as

Pn −Pn1 = 3a −3a1

we get n > n1 from the positivity of left hand side of the equality. Using the equality
above and the inequality (1.3), we obtain

α
n−4 ≤ Pn−2 ≤ Pn −Pn1 = 3a −3a1 < 3a, (3.2)

α
n−1 ≥ Pn > Pn −Pn1 = 3a −3a1 ≥ 3a−1. (3.3)

These two inequalities yield immediately that

1+
(

log3
logα

)
(a−1)< n <

(
log3
logα

)
a+4. (3.4)

If n ≤ 200 then we have a ≤ 158 from the above inequality. When we examine the
solutions of the equation (1.4) in the Mathematica program for these bounds, we see
that there is no other solution than the solutions stated in the Theorem 1. Therefore,
we assume that n > 200 from now on and from (3.4) we have that a > 158. So, to
solve the equation (1.4), it suffices to find an upper bound for n.

3.1. Upper bound for n

If we substitute the formula (1.2) in equation (3.1), we get∣∣∣∣ αn

2
√

2
−3a

∣∣∣∣= ∣∣∣∣ βn

2
√

2
+

αn1 −βn1

2
√

2
−3a1

∣∣∣∣= 1
2

(
αn1

√
2
+
√

2
)
+3a1 < 3max{α

n1 ,3a1} .

Multiplying both sides by 3−a, using the relation (3.2) and the fact that α < 3, we
obtain∣∣∣∣(2

√
2
)−1

α
n3−a −1

∣∣∣∣< 3max
{

αn1

3a ,3a1−a
}

¡ max
{

α
n1−n+6,3a1−a+1} . (3.5)

Let us apply the Theorem 2 to the above inequality. Set ∆1 :=
(

2
√

2
)−1

αn3−a −1.

∆1 is not zero. If it were zero, it would be α2n ∈ Z, which is impossible. Let us take
s := 3, (γ1,γ2,γ3) :=

(
2
√

2,α,3
)

and (b1,b2,b3) := (−1,n,−a). We have D := 2

since each γi belongs to Q
(√

2
)

and we can choose A1,A2, A3 and B as follows:

A1 := 2.1 > 2.079 ≃ 2 · log
(

2
√

2
)
= 2 ·h(γ1)

A2 := 0.9 > 0.8813 ≃ logα = 2 ·h(γ2)

A3 := 2.2 > 2.1972 ≃ 2 · log3 = 2 ·h(γ3)

B := 2n
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since max{1,n,a} ≤ 2n. Then from Theorem 2, we get

log|∆1|>−1.4 ·306 ·34.5 ·22 · (1+ log2) · (1+ log(2n)) ·2.1 ·0.9 ·2.2.
By comparing with (3.5), we obtain

min{(n−n1 −6) logα,(a−a1 −1) log3}< 4.04 ·1012 · (1+ log(2n))

which gives

min{(n−n1) logα,(a−a1) log3}< 4.1 ·1012 · (1+ log(2n)) . (3.6)

Now, let us consider the above result as two cases.

Case 1. min{(n−n1) logα,(a−a1) log3}= (n−n1) logα.
In this case, we rewrite the equation (3.1) as∣∣∣∣(αn−n1 −1

2
√

2

)
α

n1 −3a
∣∣∣∣= ∣∣∣∣βn −βn1

2
√

2
−3a1

∣∣∣∣< 1+3a1 < 31+a1 ,

which implies ∣∣∣∣(αn−n1 −1
2
√

2

)
α

n13−a −1
∣∣∣∣< 3a1−a+1. (3.7)

Set ∆2 :=
(

αn−n1−1
2
√

2

)
αn13−a −1. If ∆2 = 0, then we get

α
n −α

n1 = 2
√

2 ·3a.

Conjugating this equation in Q
(√

2
)

yields that

β
n −β

n1 =−2
√

2 ·3a. (3.8)

From the triangle inequality, absolute value of the left hand side of the equation (3.8)
is less than 2, but that of the right hand side is greater than 2 for a > 158. This is a
contradiciton and hence ∆2 ̸= 0. So, we can apply Theorem 2 to the equation (3.7)
with the parameters

s = 3, (γ1,γ2,γ3) :=
(

αn−n1 −1
2
√

2
,α,3

)
and (b1,b2,b3) := (1,n1,−a) .

Since the minimal polynomial of γ1 divides

8x2 −8Pn−n1x−
(
(−1)n−n1 +1−Qn−n1

)
where {Qt}t≥0 is the Pell-Lucas sequence, we get

h(γ1)≤
1
2

(
log8+ log

(
αn−n1 +1

2
√

2

))
<

1
2

log
(

4
√

2α
n−n1

)
<

1
2
(n−n1 +2) logα < 4.2 ·1011 · (1+ log2n) .

So, we can choose A1,A2, A3 and B as follows:

A1 := 8.4 ·1011 · (1+ log2n)> 2 ·h(γ1)
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A2 := 0.9 > 2 ·h(γ2)

A3 := 2.2 > 2 ·h(γ3)

B := 2n

since max{1,n1,a} ≤ 2n. Thus, we obtain that

log|∆2|>−C ·8.4 ·1011 · (1+ log2n) ·0.9 ·2.2
where

C := 1.4 ·306 ·34.5 ·22 · (1+ log2) · (1+ log(2n))
and this inequality implies that

log |∆2|>−1.61 ·1024 · (1+ log2n)2 .

Comparing the last inequality with the ineqıality (3.7), we get that

(a−a1) log3 < 1.62 ·1024 · (1+ log2n)2 .

Case 2. min{(n−n1) logα,(a−a1) log3}= (a−a1) log3.
In this case, we rewrite the equation (3.1) as∣∣∣∣ αn

2
√

2
−3a1

(
3a−a1 −1

)∣∣∣∣= ∣∣∣∣βn +αn1 −βn1

2
√

2

∣∣∣∣< αn1 +2
2
√

2
< α

n1

which implies∣∣∣∣(2
√

2
(
3a−a1 −1

))−1
α

n3−a1 −1
∣∣∣∣< αn1

3a −3a1

<
3αn1

3a < 3α
n1−n+4 < α

n1−n+6.

(3.9)

from (3.2). Let

∆3 :=
(

2
√

2
(
3a−a1 −1

))−1
α

n3−a1 −1.

Clearly, ∆3 ̸= 0. If the opposite were true, that is, if ∆3 = 0, then α2n ∈ Z, which is a
contradiction. In this aplication of Theorem 2, we take

s = 3, (γ1,γ2,γ3) :=
(

2
√

2
(
3a−a1 −1

)
,α,3

)
and (b1,b2,b3) := (−1,n,−a1) .

Since the minimal polynomial of γ1 is x2 −8(3a−a1 −1)2 we get,

h(γ1) = log
(

2
√

2
(
3a−a1 −1

))
< (a−a1 +1) log3 < 4.2 ·1012 · (1+ log(2n))

from (3.6). So, we can take

A1 := 8.4 ·1012 · (1+ log2n) A3 := 2.2
A2 := 0.9 B := 2n
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since max{1,n,a1} ≤ 2n. Then, we obtain

log |∆3|>−C ·8.4 ·1012 · (1+ log(2n)) ·0.9 ·2.2,
where

C := 1.4 ·306 ·34.5 ·22 · (1+ log2) · (1+ log(2n)) .
Hence,

log |∆3|>−1.61 ·1025 · (1+ log(2n))2 .

Comparing the above result with the inequality (3.9), we get

(n−n1) logα < 1.7 ·1025 · (1+ log(2n))2 .

So, from Case 1 and Case 2, we have

min{(n−n1) logα,(a−a1) log3}< 4.1 ·1012 · (1+ log(2n)) ,

max{(n−n1) logα,(a−a1) log3}< 1.7 ·1025 · (1+ log(2n))2 .
(3.10)

Finally, we rewrite the equation (3.1) as∣∣∣∣(αn−n1 −1
2
√

2

)
α

n1 − (3a −3a1)

∣∣∣∣= ∣∣∣∣βn −βn1

2
√

2

∣∣∣∣< |βn1 |< 1.

Dividing the leftmost and rightmost sides by (3a −3a1) in the above inequality, we
get∣∣∣∣( αn−n1 −1

2
√

2(3a−a1 −1)
α

n13−a1 −1
)∣∣∣∣< ∣∣∣∣ 1

(3a −3a1)

∣∣∣∣≤ 3
3a ≤ 3α

−(n−4) ≤ α
6−n (3.11)

from (3.2). Now, we can apply Theorem 2 to the above inequality with

s = 3, (γ1,γ2,γ3) :=
(

αn−n1 −1
2
√

2(3a−a1 −1)
,α,3

)
and (b1,b2,b3) := (1,n1,−a1) .

Let us compute h(γ1) for A1.

h(γ1) = h
(

αn−n1 −1
2
√

2(3a−a1 −1)

)
≤ h

(
αn−n1 −1

2
√

2

)
+h
(
3a−a1 −1

)
<

1
2
(n−n1 +2) logα+(a−a1) log3 < 2.1 ·1025 · (1+ log(2n))2 .

So, we can take

A1 := 4.2 ·1025 · (1+ log(2n))2 A3 := 2.2
A2 := 0.9 B := 2n

since max{1,n1,a1} ≤ 2n. If we take

∆4 :=
αn−n1 −1

2
√

2(3a−a1 −1)
α

n13−a1 −1
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one can easily see that ∆4 ̸= 0 as in the previous ones. So, from the Theorem 2, we
obtain

log |∆4|>−C ·4.2 ·1025 · (1+ log(2n))2 ·0.9 ·2.2
where C := 1.4 ·306 ·34.5 ·22 · (1+ log2) · (1+ log(2n)). This bound and (3.11) gives

n−6 < 8.06 ·1037 ·4.2 ·1025 · (1+ log(2n))3

which can be simplified as
n < 8.52 ·1043. (3.12)

Now, let us try to reduce the bound on n.

3.2. Reducing the bound on n

We want to improve the bound on n we find in (3.12) until it is small enough. We
will use Lemma 1 several times for this. Let us go back to the inequality (3.5). Set

Γ := nlogα−alog3− log
(

2
√

2
)
.

Assume that min{n−n1,a−a1} ≥ 20. If we consider ∆1,∆2 and ∆3 again then since
we assume that min{n−n1,a−a1} ≥ 20 we obtain∣∣eΓ −1

∣∣= |∆1|<
1
4

which implies

|Γ|< 1
2
.

Since the inequality |ξ|< 2
∣∣∣eξ −1

∣∣∣ holds for all ξ ∈
(
−1

2 ,
1
2

)
, we get

|Γ|< 2max
{

α
n1−n+6,3a1−a+1}≤ max

{
α

n1−n+7,3a1−a+2} .
Let us assume that Γ > 0. Then we have

0 < n
(

logα

log3

)
−a−

log
(

2
√

2
)

log3
< max

{
α

n1−n+7,3a1−a+2}
< max

{
α7

(log3) ·αn−n1
,

9
(log3) ·3a−a1

}
< max

{
436 ·α−(n−n1),9 ·3−(a−a1)

}
.

Now, we apply Lemma 1 with

γ :=
logα

log3
, µ :=

log
(

1/
(

2
√

2
))

log3
, (A,B) := (436,α) or (A,B) := (9,3) .

We can choose M := 8.52 · 1043 > n from the inequality (3.12). Computing 86th
convergent of γ with the help of the Mathematica gives

q := 525422721605994540683823357818903486740995467
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where q > 6M. For this value of q, it can be seen that ε > 0.35. So, we have either

n−n1 < 125 or a−a1 < 97. (3.13)

In case of Γ < 0, variables change as

γ :=
log3
logα

, µ :=
log
(

2
√

2
)

logα
, (A,B) := (543,α) or (A,B) := (11,3) .

So, we get ε > 0.42 but this does not affect the result stated in (3.13).
Let us consider separately the results obtained in the inequality (3.13).
Firstly, let n−n1 < 125. Assumed that a−a1 ≥ 20 and consider the inequality (3.7).
Set

Γ1 := n1logα−alog3+ log
(

αn−n1 −1
2
√

2

)
.

Then, we get

|Γ1|<
6

3a−a1

from the inequality (3.7). Let us assume that Γ1 > 0. In this case, we have

0 < n1

(
logα

log3

)
−a+

log
(
(αn−n1 −1)/

(
2
√

2
))

log3
<

6
(log3) ·3a−a1

<
6

3a−a1

Let we again apply the Lemma 1 with the parameters

γ :=
logα

log3
, µ :=

log
(
(αn−n1 −1)/

(
2
√

2
))

log3
, (A,B) := (6,3)

for n− n1 ∈ {1,2, · · ·124}. All values of ε are greater than 0.00046 for the 88th
convergent of γ which also satisfies the condition q > 6M. So, we get

a−a1 <
log(6q/0.00046)

log3
< 106.

Thus, n− n1 < 125 implies that a− a1 < 106 . In case Γ1 < 0, the same results are
obtained.
Secondly, now, let us assumed that a−a1 < 97. Set

Γ2 := nlogα−a1log3+ log
(

1/
(

2
√

2
(
3a−a1 −1

)))
from the inequality (3.9) for ∆3 and assume that n−n1 ≥ 20. Hence, we get

|Γ2|<
3α6

αn−n1
.

Assume that Γ2 > 0. Then, we obtain

0 < n
(

logα

log3

)
−a1 +

log
(

1/
(

2
√

2(3a−a1 −1)
))

log3
<

3α6

log3 ·αn−n1
<

541
αn−n1

.
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If we again apply Lemma 1 with the parameters

γ :=
logα

log3
, µ :=

log
(

1/
(

2
√

2(3a−a1 −1)
))

log3
, (A,B) := (541,α)

for a−a1 ∈ {1,2, · · · ,96} we get ε > 0.005 and

n−n1 < 134.

The same result is obtained for Γ2 < 0. Hence, if n− n1 < 125, then a− a1 < 106,
and if a− a1 < 97, then n− n1 < 134. Consequently, the results n− n1 ≤ 134 and
a−a1 ≤ 105 are always valid.
Finally, set

Γ3 := n1logα−a1log3+ log
(

αn−n1 −1
2
√

2(3a−a1 −1)

)
using the inequality (3.11). Since n > 200, inequality (3.11) implies that

|Γ3|<
3

αn−6 =
3α6

αn .

Assume that Γ3 > 0. Then, we have

0 < n1

(
logα

log3

)
−a1 +

log
(
(αn−n1 −1)/

(
2
√

2(3a−a1 −1)
))

log3
<

3α6

log3 ·αn <
541
αn .

If we again apply Lemma 1 to the above inequality for n− n1 ∈ {1, · · · ,134} and
a−a1 ∈ {1, · · · ,105} except for (n−n1,a−a1) = (4,1)we get ε > 6.70754×10−6

and
n < 146. (3.14)

A similar result is obtained for Γ3 < 0. Now, let (n−n1,a−a1) = (4,1). Since

α4 −1
4
√

2
= α

2

we have
Γ3 := (n1 +2) logα−a1log3.

Hence, we get ∣∣∣∣γ− a1

n1 +2

∣∣∣∣< 541
(n1 +2)αn .

Since n > 200, αn > 2× 541×
(
9×1043

)
> 2× 541× (n1 +2)which implies that

right hand side of above inequality is at most 2/(n1 +2)2. Let [s0,s1,s2, · · · ] =
[0,1,4, · · · ] be the continued fraction expression of the above γ and let pt/qt be its
tth convergent. By Legendre’s criterion, we obtain that a1/(n1 +2) = pt/qt for
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some t ∈ {1,2, · · · ,85}. Here we use that n1 + 2 < 9× 1043 < q85. Then putting
s(M) := max{si : i = 1, · · · ,85}= 181 we get∣∣∣∣γ− pt

qt

∣∣∣∣> 1
(s(M)+2)q2

t
=

1
183q2

t
.

Therefore, we obtain
1

183q2
t
<

541
αnqt

which implies that
α

n < 541×183×9×1043.

So, we get
n < 128. (3.15)

Bounds for n in (3.14) and (3.15) are all contradicts our assumption that n > 200.
This completes the proof of Theorem 1.
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