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Abstract. We generalize integral Jensen’s inequality and its converse for real Stieltjes measure
utilizing the theory of n−convex function by employing Fink’s identity. We also give several ver-
sions of discrete Jensen’s inequality along with its reverses and its converse for real weights. As
an application we give generalized variants of Hermite-Hadamard’s inequality. Also we give ap-
plications in information theory by giving new estimations of generalized divergence functional,
Shannon and relative entropies. Finally we give connections to Zipf-Mandelbrot and hybrid
Zipf-Mandelbrot entropies.
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1. Introduction

Jensen’s inequality for differentiable convex functions plays a significant role in
the field of inequalities as several other inequalities can be seen as special cases of it.
It is used in order to make claims regarding the function while just a little is known
or is needed to be known about the distribution. It is also used in defining the lower
bound on the probability of a random variable. Some key applications covers de-
rivation of AM-GM inequality, estimation of Shannon and non-Shannon entropies,
convergence of maximization algorithm and non-negativity of divergence function-
als. Taking into consideration the very numerous applications of Jensen’s inequality
in various fields of mathematics and other applied sciences, the generalizations and
improvements of Jensen’s inequality has been a topic of supreme interest for the re-
searchers during the last few decades as evident from a large number of publications
on the topic see [6, 14, 15, 21, 22] and the references therein.
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The well-known Jensen’s inequality asserts that for the function Γ holds

Γ

( 1
Pr

r∑
ȷ=1

p ȷ x ȷ
)
≤

1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ), (1.1)

if Γ is a convex function on interval I ⊂ R, where p ȷ be positive real numbers and

x ȷ ∈ I ( ȷ = 1, . . . , r), while Pr =
r∑
ȷ=1

p ȷ .

However the well known integral analogue of Jensen’s inequality is:

Theorem 1. Let ℏ : [ν1, ν2]→ [ϱ1,ϱ2] be a continuous function and λ : [ν1, ν2]→R
is an increasing and bounded function with λ(ν1) , λ(ν2). Then for every continuous
convex function Γ : [ϱ1,ϱ2]→ R, the following inequality holds

Γ(̃ℏ) ≤

ν2∫
ν1

Γ(ℏ(ζ))dλ(ζ)

ν2∫
ν1

dλ(ζ)
, (1.2)

where

ℏ̃ =

ν2∫
ν1

ℏ(ζ)dλ(ζ)

ν2∫
ν1

dλ(ζ)
∈ [ϱ1,ϱ2]. (1.3)

There are several inequalities coming from Jensen’s inequality both in integral
and discrete cases which can be obtained by varying conditions on the function ℏ and
measure λ defined in Theorem 1.

Jensen Steffensen’s Conditions. If ℏ is continuous monotonic and λ is a continu-
ous or a function of bounded variation such that

λ(ν1) ≤ λ(x) ≤ λ(ν2), ∀ x ∈ [ν1, ν2], λ(ν2) > λ(ν1), (1.4)

then (1.2) holds and is called Jensen Steffensen’s inequality given by Boas [4]. Boas
[4] also gave a generalization of the above inequality [19, p. 59].

Jensen Boas Conditions. Let λ be a continuous or a function of bounded variation
such that

λ(ν1) ≤ λ(x1) ≤ λ(y1) ≤ λ(x2) ≤ λ(y2) ≤ . . . ≤ λ(yr−1) ≤ λ(xr) ≤ λ(ν2) (1.5)

∀ xk ∈ (yk−1,yk) (y0 = ν1,yr = ν2) and λ(ν2) > λ(ν1). If ℏ is continuous and monotonic
on the r intervals (yk−1,yk) then again (1.2) holds and called Jensen-Boas inequality.

In 1992, Fink introduced a novel representation of real n−times differentiable func-
tion whose n−th derivative (n ≥ 1) is absolutely continuous by connecting Taylor
series and Peano kernel approach together in an identity given as:
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Theorem 2 ([10]). Let ϱ1,ϱ2 ∈ R, Γ :
[
ϱ1,ϱ2

]
→ R, n ≥ 1 and Γ(n−1) is absolutely

continuous on
[
ϱ1,ϱ2

]
. Then

Γ (x) =
n

ϱ2−ϱ1

ϱ2∫
ϱ1

Γ (s)ds−
n−1∑
z=1

(
n− z

z!

)(
Γ(z−1) (ϱ1) (x−ϱ1)z−Γ(z−1) (ϱ2) (x−ϱ2)z

ϱ2−ϱ1

)

+
1

(n−1)! (ϱ2−ϱ1)

ϱ2∫
ϱ1

(x− s)n−1 Fϱ2
ϱ1 (s, x)Γ(n) (s)ds (1.6)

where

Fϱ2
ϱ1 (s, x) =

{
s−ϱ1, ϱ1 ≤ s ≤ x ≤ ϱ2,
s−ϱ2, ϱ1 ≤ x < s ≤ ϱ2.

(1.7)

Fink’s identity helps to give more insight of bounds on the deviation of a function
from its averages [10]. One can get Ostrowski’s inequality and formulate its new
variants with improve and optimal quadrature formulas using Fink’s identity [9]. It
is used to generalize renowned Guessab-Schmeisser and Popoviciu’s inequalities for
n−times differentiable function, for instance see [1, 7].

2. Generalization of integral Jensen’s inequality by Fink’s identity

Before giving our main results, we consider the following assumptions that we use
throughout our paper:

M1: ℏ : [ν1, ν2]→ R be continuous function such that ℏ([ν1, ν2]) ⊂ [ϱ1,ϱ2].
M2: λ : [ν1, ν2]→ R be a continuous function or the functions of bounded vari-

ation such that λ(ν1) , λ(ν2).
In our first main result we employ Fink’s identity to obtain the following real Stieltjes
measure theoretic representations of Jensen’s inequality.

Theorem 3. Let ℏ,λ be as defined in M1,M2 and Γ :
[
ϱ1,ϱ2

]
→ R be such that

Γ(n−1) is absolutely continuous for n ≥ 1. Suppose, that Γ is n−convex such that

(̃
ℏ− s

)n−1
Fϱ2
ϱ1

(
s, ℏ̃

)
≤

ν2∫
ν1

(ℏ(ζ)− s)n−1 Fϱ2
ϱ1 (s,ℏ(ζ))dλ(ζ)

b∫
a

dλ(ζ)

, s ∈ [ϱ1,ϱ2] (2.1)

with ℏ̃ and Fϱ2
ϱ1 (s, ·) be as defined in (1.3) and (1.7), respectively. Then we have

Γ(̃ℏ)−

ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(2.2)
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×

{
Γ(z−1)(ϱ2)

( (̃
ℏ−ϱ2

)z
−

ν2∫
ν1

(
ℏ(ζ)−ϱ2

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)
−Γ(z−1)(ϱ1)

( (̃
ℏ−ϱ1

)z
−

ν2∫
ν1

(
ℏ(ζ)−ϱ1

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)}
.

Proof. As Γ(n−1) is absolutely continuous for (n≥ 1), we can use the representation
of Γ using Fink’s identity (1.6) and can calculate

Γ(̃ℏ) =
n

ϱ2−ϱ1

ϱ2∫
ϱ1

Γ (s)ds

+

n−1∑
z=1

(
n− z

z!(ϱ2−ϱ1)

){
Γ(z−1)(ϱ2)

( (̃
ℏ−ϱ2

)z
)
−Γ(z−1)(ϱ1)

( (̃
ℏ−ϱ1

)z
)}

+
1

(n−1)!(ϱ2−ϱ1)

ϱ2∫
ϱ1

( (̃
ℏ− s

)n−1
Fϱ2
ϱ1

(
s, ℏ̃

) )
Γ(n) (s)ds.

The integration of the composition of functions Γ◦ℏ for the real measure λ on [ν1, ν2]
gives

ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
=

n

ϱ2−ϱ1

ϱ2∫
ϱ1

Γ (s)ds +

n−1∑
z=1

(
n− z

z!(ϱ2−ϱ1)

)

×

{
Γ(z−1)(ϱ2)

( ν2∫
ν1

(
ℏ(ζ)−ϱ2

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)
−Γ(z−1)(ϱ1)

( ν2∫
ν1

(
ℏ(ζ)−ϱ1

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)}

+
1

(n−1)!(ϱ2−ϱ1)

ϱ2∫
ϱ1

( ν2∫
ν1

(ℏ(ζ)− s)n−1 Fϱ2
ϱ1 (s,ℏ(ζ))dλ(ζ)

ν2∫
ν1

dλ(ζ)

)
Γ(n) (s)ds.

Now computing the difference Γ(̃ℏ)−

ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
, we get the following generalized

identity involving real Stieltjes measure:
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Γ(̃ℏ)−

ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
=

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(GI.1)

×

{
Γ(z−1)(ϱ2)

( (̃
ℏ−ϱ2

)z
−

ν2∫
ν1

(
ℏ(ζ)−ϱ2

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)
−Γ(z−1)(ϱ1)

( (̃
ℏ−ϱ1

)z
−

ν2∫
ν1

(
ℏ(ζ)−ϱ1

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)}

+
1

(n−1)!(ϱ2−ϱ1)

ϱ2∫
ϱ1

( (̃
ℏ− s

)n−1
Fϱ2ϱ1

(
s, ℏ̃

)
−

ν2∫
ν1

(ℏ(ζ)− s)n−1 Fϱ2ϱ1 (s,ℏ(ζ))dλ(ζ)

ν2∫
ν1

dλ(ζ)

)
Γ(n) (s)ds.

Finally by our assumption Γ(n−1) is absolutely-continuous on [ϱ1,ϱ2], as a result Γ(n)

exists almost everywhere. Moreover, Γ is supposed to be n−convex, so we have
Γ(n)(x) ≥ 0 almost everywhere on [ϱ1,ϱ2] . Therefore by taking into account the last
term in generalized identity (GI.1) and inequality (2.1), we get (2.2). □

In the later part of this section, we will employ convexity properties and The-
orem 3 by alternating conditions on functions ℏ and Stieltjes measure dλ to obtain
generalized variants of Jensen–Steffensen’s, Jensen–Boas, Jensen–Brunk and Jensen
type inequalities. We start with the following generalization of Jensen–Steffensen’s
inequality for n−convex functions.

Theorem 4. Let Γ be as defined in Theorem 3 is n−convex and ℏ be as defined in
M1 is monotonic. Then the following results hold.

(i) Let λ be as defined in M2 satisfying

λ(ν1) ≤ λ(x) ≤ λ(ν2), ∀ x ∈ [ν1, ν2], λ(ν2) > λ(ν1).

Then for even n ≥ 3, (2.1) is valid.
(ii) Moreover if (2.1) is valid and the function

H(x) :=
n−1∑
z=2

(
n− z

z!ϱ2−ϱ1

) (
Γ(z−1) (ϱ1) (x−ϱ1)z−Γ(z−1) (ϱ2) (x−ϱ2)z

)
(2.3)

is convex, then we get inequality (1.2) and it is called the generalized Jensen–
Steffensen’s inequality for n−convex functions.
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Proof. (i) We consider the following function in the remainder term of Fink’s iden-
tity as:

℘ (x) := (x− ξ)n−1Fϱ2
ϱ1 (ξ, x) =

{
(x− ξ)n−1 (ξ−ϱ1) , ξ ≤ x ≤ ϱ2,

(x− ξ)n−1 (ξ−ϱ2) , x < ξ ≤ ϱ2.

Now taking derivative twice, we have

℘
′′

(x) :=
{

(n−1)(n−2)(x− ξ)n−3 (ξ−ϱ1) , ξ ≤ x ≤ ϱ2,

(n−1)(n−2)(x− ξ)n−3 (ξ−ϱ2) , x < ξ ≤ ϱ2.

By applying the second derivative test, the function ℘ is convex for even n > 3. Now
using the assumed conditions one can employ Jensen Steffensen’s inequality given
by Boas (see [4] or [19, p. 59]) for the convex function ℘ (x) to obtain (2.1).

(ii) We can rewrite the r.h.s. of (2.2) in the difference

H(̃ℏ)−

ν2∫
ν1

H
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
.

For the convex function H and by our assumed conditions on functions ℏ and λ,
this difference is non-positive by using Jensen–Steffensen’s inequality difference [4].
As a result, the r.h.s. of inequality (2.2) is non-positive and we get the generalized
Jensen–Steffensen’s inequality (1.2) for n−convex functions. □

Now we give a similar result related to Jensen-Boas inequality [19, p. 59], that is
a generalization of the Jensen–Steffensen’s inequality:

Corollary 1. Let Γ be as defined in Theorem 3 is n−convex function. Also let ℏ be
as defined in M1 with ν1 = y0 < y1 < . . . < yk < . . . < yr−1 < yr = ν2 and ℏ is monotonic
in each of the r intervals ((yk−1,yk)). Then the following results hold.

(i) Let λ be as defined in M2 satisfying

λ(ν1) ≤ λ(x1) ≤ λ(y1) ≤ λ(x2) ≤ λ(y2) ≤ . . . ≤ λ(yr−1) ≤ λ(xr) ≤ λ(ν2)

∀ xk ∈ (yk−1,yk) and λ(ν2) > λ(ν1). Then for even n ≥ 3, (2.1) is valid.
(ii) Moreover if (2.1) is valid and the function H(·) defined in (2.3) is convex,

then again inequality (1.2) holds and is called Jensen–Boas inequality for
n−convex functions.

Proof. We follow the similar idea as in the proof of Theorem 4 but under the
conditions of this corollary, we utilize Jensen–Boas inequality (see [4] or [19, p. 59])
instead of Jensen-Steffensen’s inequality. □

Next we give results for Jensen–Brunk inequality.
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Corollary 2. Let Γ be as defined in Theorem 3 is n−convex and ℏ be as defined in
M1 is an increasing function. Then the following results hold.

(i) Let λ be as defined in M2 with λ(ν2) > λ(ν1),
x∫
ν1

(
ℏ(x)−ℏ(ζ)

)
dλ(ζ) ≥ 0 and

ν2∫
x

(
ℏ(x)−ℏ(ζ)

)
dλ(ζ) ≤ 0

∀ x ∈ [ν1, ν2] hold. Then for even n ≥ 3, (2.1) is valid.
(ii) Moreover if (2.1) is valid and the function H(·) defined in (2.3) is convex,

then again inequality (1.2) holds and is called Jensen–Brunk inequality for
n−convex functions.

Proof. We follow the similar idea as in the proof of Theorem 4 but under the
conditions of this corollary, we employ Jensen–Brunk inequality (see [5] or [19, p.
59]) instead of Jensen-Steffensen’s inequality. □

Remark 1. The similar result in Corollary 2 is also valid provided that the function
ℏ is decreasing. Also assuming that the function ℏ is monotonic one can replace the
conditions in Corollary 2(i) by

0 ≤

x∫
ν1

∣∣∣∣ℏ(x)−ℏ(ζ)
∣∣∣∣dλ(ζ) ≤ ν2∫

x

∣∣∣∣ℏ(x)−ℏ(ζ)
∣∣∣∣dλ(ζ).

Remark 2. It is interesting to see that by employing a similar method as in The-
orem 4, we can also get the generalization of classical Jensen’s inequality (1.2) for
n−convex functions by assuming the functions ℏ and λ along with there respective
conditions in Theorem 1.

Another important application of Theorem 3 is by setting the function ℏ as
ℏ(ζ) = ζ gives the generalized version of the r. h. s. inequality of the Hermite-
Hadamard inequality:

Corollary 3. Let λ : [ν1, ν2]→ R be a function of bounded variation such that

λ(ν1), λ(ν2) with [ν1, ν2]⊂ [ϱ1,ϱ2] and ζ̃ =

ν2∫
ν1

ζ dλ(ζ)

ν2∫
ν1

dλ(ζ)
∈ [ϱ1,ϱ2]. Under the assumptions

of Theorem 3, if Γ is n−convex such that

(̃
ζ − s

)n−1
Fϱ2
ϱ1

(
s, ζ̃

)
≤

ν2∫
ν1

(ζ − s)n−1 Fϱ2
ϱ1 (s, ζ)dλ(ζ)

ν2∫
ν1

dλ(ζ)
, s ∈ [ϱ1,ϱ2], (2.4)
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then we have

Γ( ζ̃ ) ≤

ν2∫
ν1

Γ
(
ζ
)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
+

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(2.5)

×

{
Γ(z−1)(ϱ2)

( (̃
ζ −ϱ2

)z
−

ν2∫
ν1

(
ζ −ϱ2

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)
−Γ(z−1)(ϱ1)

( (̃
ζ −ϱ1

)z
−

ν2∫
ν1

(
t−ϱ1

)zdλ(ζ)

ν2∫
ν1

dλ(ζ)

)}
.

If inequality (2.4) holds in the reverse direction, then (2.5) also holds reversely.

The special case of the above corollary can be given in the form of the following
remark:

Remark 3. It is interesting to see that substituting λ(ζ) = ζ gives
ν2∫
ν1

dλ(ζ) = ν2− ν1

and ζ̃ =
ν1+ν2

2 . Using these substitutions in (1.2) and by following Remark 2 we get
the l.h.s. inequality of the renowned Hermite Hadamard inequality for n−convex
functions.

3. Generalization of discrete Jensen’s inequality by Fink’s identity

In this section, we give generalizations for the discrete case by using Fink’s iden-
tity. The proofs are similar to that of continuous case were given in the previous
section, therefore we give results directly. In discrete case we have that p ȷ > 0 for all
ȷ = 1,2, . . . , r. Here we give generalizations of results allowing p ȷ to be negative real
numbers. Also with usual notations for p ȷ x ȷ ( ȷ = 1,2, . . . , r), we notate the r−tuples

x = (x1, x2, . . . , xr) and p = (p1, p2, . . . , pr),

Pl =

l∑
ȷ=1

p ȷ , Pl = Pr−Pl−1 (l = 1,2, . . . , r)

and

x =
1
Pr

r∑
ȷ=1

p ȷ x ȷ .

Using Fink’s identity (1.6), we obtain the following representations of discrete
Jensen’s inequality.

Theorem 5. Let Γ :
[
ϱ1,ϱ2

]
→ R be such that for n ≥ 1, Γ(n−1) is absolutely con-

tinuous. Also let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2], p ȷ ∈ R( ȷ = 1, ..., r), be such that Pr , 0 and
x ∈ [ϱ1,ϱ2].



MEASURE THEORETIC GENERALIZATIONS OF JENSEN’S INEQUALITY 139

(i) Then the following generalized identity holds

Γ(x)−
1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ) =

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(DGI.1)

×

{
Γ(z−1)(ϱ2)

(
(x−ϱ2)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ2)z
)
−Γ(z−1)(ϱ1)

(
(x−ϱ1)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ1)z
)}

+
1

(n−1)!(ϱ2−ϱ1)

ϱ2∫
ϱ1

((x− s)n−1 Fϱ2ϱ1 (s, x)
)
−

1
Pr

r∑
ȷ=1

p ȷ
((

x ȷ − s
)n−1

Fϱ2ϱ1
(
s, x ȷ

))Γ(n) (s)ds,

where Fϱ2
ϱ1 (s, ·) is defined in (1.7).

(ii) Moreover, if Γ is n−convex and the inequality

(x− s)n−1 Fϱ2
ϱ1 (s, x) ≤

1
Pr

r∑
ȷ=1

p ȷ
((

x ȷ − s
)n−1

Fϱ2
ϱ1

(
s, x ȷ

))
(3.1)

holds, then we have the following generalized inequality

Γ(x)−
1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ) ≤
n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(3.2)

×

{
Γ(z−1)(ϱ2)

(
(x−ϱ2)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ2)z
)
−Γ(z−1)(ϱ1)

(
(x−ϱ1)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ1)z
)}
.

If inequality (3.1) holds in the reverse direction, then (3.2) also holds reversely.

Proof. Similar to that of Theorem 3. □

In the later part of this section, we will vary our conditions on p ȷ x ȷ ( ȷ = 1,2, . . . , r)
to obtain generalized discrete variants of Jensen–Steffensen’s, Jensen’s and Jensen-
Petrović type inequalities. We start with the following generalization of discrete
Jensen–Steffensen’s inequality for n−convex functions:

Theorem 6. Let Γ be as defined in Theorem 5. Also let x be monotonic r−tuple,
x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] and p be a real r−tuple such that

0 ≤ Pl ≤ Pr, (l = 1,2, . . . , r−1), Pr > 0

is satisfied.
(i) If Γ is n−convex, then for even n ≥ 3, (3.1) is valid.

(ii) Moreover if (3.1) is valid and the function H(·) defined in (2.3) is convex,
then we get the following generalized discrete Jensen–Steffensen’s inequality

Γ(x) ≤
1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ). (3.3)
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Proof. It is interesting to see that under the assumed conditions on tuples x and p,
we have that x ∈ [ν1, ν2]. Since for x1 ≥ x2 ≥ . . . ≥ xr,

Pr(x1− x) =

r∑
ȷ=2

p ȷ (x1− x ȷ ) =

r∑
l=2

(xl−1− xl)(Pr−Pl−1) ≥ 0.

This shows that x1 ≥ x. Also x ≥ xr, since we have

Pr(x− xr) =

r−1∑
ȷ=1

p ȷ (x ȷ − xr) =

r−1∑
l=1

(xl− xl−1)Pl ≥ 0.

For further details see the proof of discrete Jensen–Steffensen’s inequality [19, p. 57].
The idea of the rest of the proof is similar to that of Theorem 3, but here we employ
Theorem 5 and discrete Jensen–Steffensen’s inequality. □

Corollary 4. Let Γ be as defined in Theorem 5 and let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] with
a positive r−tuple p.

(i) If Γ is n−convex, then for even n ≥ 3, (3.1) is valid.
(ii) Moreover if (3.1) is valid and the function H(·) defined in (2.3) is convex, then

again we get (3.3) and is called Jensen’s inequality for n−convex functions.

Proof. For p ȷ > 0, x ȷ ∈ [ν1, ν2] ( ȷ = 1,2,3, . . . , r) ensures that x ∈ [ν1, ν2]. So by
applying classical discrete Jensen inequality (1.1) and the idea of Theorem 6 we will
get the required results. □

Remark 4. Under the assumptions of Corollary 4, if we choose Pr = 1, then Co-
rollary 4(ii) gives the following inequality for n−convex functions:

Γ

 r∑
ȷ=1

p ȷ x ȷ

 ≤ r∑
ȷ=1

p ȷΓ(x ȷ ). (3.4)

Now we give the following reverses of Jensen–Steffensen’s and Jensen type in-
equalities:

Corollary 5. Let Γ be as defined in Theorem 5. Also let x be a monotonic r−tuple,
x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] and p be a real r−tuple such that there exist m ∈ {1,2, . . . , r}
with

0 ≥ Pl, for l < m and 0 ≥ Pl, for l > m,
where Pr > 0 and x ∈ [ϱ1,ϱ2].

(i) If Γ is n−convex, then for even n ≥ 3, the reverse of inequality (3.1) holds.
(ii) Moreover if (3.1) holds reversely and the function H(·) defined in (2.3) is

convex, then we get the reverse of generalized Jensen–Steffensen inequality
(3.3) for n−convex functions.

Proof. We follow the idea of Theorem 6 but according to our assumed conditions
we employ the reverse of Jensen-Steffensen inequality to obtain results. □



MEASURE THEORETIC GENERALIZATIONS OF JENSEN’S INEQUALITY 141

In the next corollary we give explicit conditions on real tuple p such that we get
the reverse of classical Jensen inequality:

Corollary 6. Let Γ be as defined in Theorem 5 and let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] such
that x ∈ [ϱ1,ϱ2]. Let p be a real r−tuple such that

0 < p1, 0 ≥ p2, p3, . . . , pr, 0 < Pr
is satisfied.

(i) If Γ is n−convex, then for even n ≥ 3, the reverse of inequality (3.1) is valid.
(ii) Also if reverse of (3.1) is valid and the function H(·) defined in (2.3) is convex,

then we get the reverse of (3.3).

Proof. We follow the idea of Theorem 6 but according to our assumed conditions
we employ the reverse of Jensen inequality to obtain results. □

In [2] (see also [19]) one can find the result which is equivalent to the Jensen–
Steffensen and the reverse Jensen–Steffensen inequality together. It is the so-called
Jensen-Petrović inequality. Here, without the proof, we give the adequate corollary
which uses that result. The proof goes the same way as in the previous corollaries.

Corollary 7. Let Γ be as defined in Theorem 5 and let xi ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] be
such that xr ≥ xr−1, . . . , x2 ≥ x1. Let p be a real r−tuple with Pr = 1 such that

0 ≤ Pl, for 1 ≤ l < r−1 and 0 ≤ Pl, for 2 ≤ l < r

is satisfied. Then we get the equivalent results given in Theorem 6 (i) and (ii) respect-
ively.

Remark 5. Under the assumptions of Corollary 7, if there exist m ∈ {1,2, . . . , r}
such that

0 ≥ Pl, for l < m and 0 ≥ Pl, for l > m
and x ∈ [ϱ1,ϱ2], then we get equivalent results for the reverse Jensen–Steffensen’s
inequality given in Corollary 5(i) and (ii) respectively.

Remark 6. It is interesting to see that the conditions on p ȷ , ȷ = 1,2, . . . , r given
in Corollary 7 and Remark 5 are coming from Jensen-Petrović inequality which be-
comes equivalent to conditions for p ȷ , ȷ = 1,2, . . . , r for Jensen–Steffensen’s results
given in Theorem 6 and Corollary 5 respectively when Pr = 1.

Now we give results for Jensen and its reverses for r−tuples x and p when r is an
odd number.

Corollary 8. Let Γ be as defined in Theorem 5 and let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] for
ȷ = 1,2, . . . , r be such that x, p be real r−tuples, r = 2m + 1, m ∈ N and

x̂ = 1
2k+1∑
ȷ=1

p ȷ

2k+1∑
ȷ=1

p ȷ x ȷ ∈ [ϱ1,ϱ2] for all k = 1,2, . . . ,m. If for every k = 1,2, . . . ,m, we

have
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(i∗) p1 > 0, p2k ≤ 0, p2k + p2k+1 ≤ 0,
2k∑
ȷ=1

p ȷ ≥ 0,
2k+1∑
ȷ=1

p ȷ > 0

and

(ii∗) x2k ≤ x2k+1,
2k∑
ȷ=1

p ȷ (x ȷ − x2k+1) ≥ 0,

then we have the following statements to be valid:

(i) If Γ is n−convex, then for even n ≥ 3,

(x̂− s)n−1 Fϱ2
ϱ1 (s, x̂) ≥

1
P2m+1

2m+1∑
ȷ=1

p ȷ
((

x ȷ − s
)n−1

Fϱ2
ϱ1

(
s, x ȷ

))
. (3.5)

(ii) Also if (3.5) is valid and the function H(·) defined in (2.3) is convex, then we
get the following generalized inequality

Γ(x̂) ≥
1

P2m+1

2m+1∑
ȷ=1

p ȷΓ(x ȷ ). (3.6)

Proof. We employ the idea of the proofs of Theorem 5 and Theorem 6 for r = odd
along with inequality of P. M. Vasić and J. R. Janic [18]. □

Remark 7. We can also obtain inequalities (3.5) and (3.6) along with their reverses
respectively given in Corollary 8 by employing the important cases and correspond-
ing explicit conditions given in [18].

4. Generalization of converse of integral Jensen’s inequality by Fink’s identity

In this section, we give results for the converse of the Jensen’s inequality to hold,
giving the conditions on the real Stieltjes measure dλ, such that λ(ν1) , λ(ν2), allow-
ing that the measure can also be negative, but employing Fink’s identity.

To start we need the following assumption for the results of this section:
M3: Let m,M ∈ [ϱ1,ϱ2] (m , M) be such that m ≤ ℏ(ζ) ≤ M for all ζ ∈ [ν1, ν2]

where ℏ is defined in M1.
For a given function Γ : [ϱ1,ϱ2]→ R, we consider the difference

CJ
(
Γ,ℏ{m,M};λ

)
=

ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
−

M− ℏ̃
M−m

Γ(m)−
ℏ̃−m
M−m

Γ(M), (4.1)

where ℏ̃ is defined in (1.3).
Using Fink’s identity, we obtain the following representation of the converse of

Jensen’s inequality.



MEASURE THEORETIC GENERALIZATIONS OF JENSEN’S INEQUALITY 143

Theorem 7. Let ℏ,λ be as defined in M1,M2 and let Γ :
[
ϱ1,ϱ2

]
→ R be such that

Γ(n−1) is absolutely continuous for n ≥ 1. If Γ is n−convex such that

CJ
(
(x− s)n−1 Fϱ2

ϱ1 (s, x) ,ℏ{m,M};λ
)
≤ 0, s ∈ [ϱ1,ϱ2], (4.2)

or
ν2∫
ν1

(ℏ(ζ)− s)n−1 Fϱ2
ϱ1 (s,ℏ(ζ))dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤

M− ℏ̃
M−m

(
Fϱ2
ϱ1 (s,m) (m− s)n−1

)
(4.3)

+
ℏ̃−m
M−m

(
Fϱ2
ϱ1 (s,M) (M− s)n−1

)
, s ∈ [ϱ1,ϱ2],

then we get the following extension of the converse of the Jensen’s difference
ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤

M− ℏ̃
M−m

Γ(m) +
ℏ̃−m
M−m

Γ(M) +

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(4.4)

×

(
Γ(z−1) (ϱ2)CJ

(
(x−ϱ2)z ,ℏ{m,M};λ

)
−Γ(z−1) (ϱ1)CJ

(
(x−ϱ1)z ,ℏ{m,M};λ

))
.

where Fϱ2
ϱ1 (s, ·) is defined in (1.7).

Proof. As Γ(n−1) is absolutely continuous for n ≥ 1 we can use the representation
of Γ using Fink’s identity (1.6) in the difference CJ

(
Γ,ℏ{m,M};λ

)
:

CJ
(
Γ,ℏ{m,M};λ

)
= CJ

(
n

ϱ2−ϱ1

∫ ϱ2

ϱ1

Γ(ζ)dζ,ℏ{m,M};λ
)

(4.5)

+

n−1∑
z=1

(
n− z

z!(ϱ2−ϱ1)

)
Γ(z−1) (ϱ2)CJ

(
(x−ϱ2)z ,ℏ{m,M};λ

)
−

n−1∑
z=1

(
n− z

z!(ϱ2−ϱ1)

)
Γ(z−1) (ϱ1)CJ

(
(x−ϱ1)z ,ℏ{m,M};λ

)
+

1
(n−1)! (ϱ2−ϱ1)

∫ ϱ2

ϱ1

CJ
(
(x− s)n−1 Fϱ2

ϱ1 (s, x) ,ℏ{m,M};λ
)
Γ(n)(s)ds.

After simplification and following the fact that CJ
(
Γ,ℏ{m,M};λ

)
is zero for Γ to be

constant or linear we get the following generalized identity

CJ
(
Γ,ℏ{m,M};λ

)
=

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(CGI.1)



144 S. I. BUTT, T. RASHEED, D. PEČARIĆ, AND J. PEČARIĆ

×

(
Γ(z−1) (ϱ2)CJ

(
(x−ϱ2)z ,ℏ{m,M};λ

)
−Γ(z−1) (ϱ1)CJ

(
(x−ϱ1)z ,ℏ{m,M};λ

))
+

1
(n−1)! (ϱ2−ϱ1)

∫ ϱ2

ϱ1

CJ
(
(x− s)n−1 Fϱ2

ϱ1 (s, x) ,ℏ{m,M};λ
)
Γ(n)(s)ds.

Now using characterizations of n−convex functions like in the proof of Theorem 3,
we get (4.4). □

The next result gives the converse of Jensen’s inequality for higher order convex
functions.

Theorem 8. Let Γ be as defined in Theorem 7 is n−convex and ℏ be as defined in
M3. Then the following results hold.

(i) If λ is a non-negative measure on [ν1, ν2], then for even n ≥ 3, (4.3) is valid.
(ii) Moreover if (4.3) is valid and the function H(·) defined in (2.3) is convex,

then we get the following inequality for n−convex functions to be valid
ν2∫
ν1

Γ
(
ℏ(ζ)

)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤

M− ℏ̃
M−m

Γ(m)−
ℏ̃−m
M−m

Γ(M). (4.6)

Proof. The idea of the proof is similar to that of Theorem (3), but we use the
converse of Jensen’s inequality (see [3] or [19, p. 98]). □

Another important consequence of Theorem 7 is by setting the function ℏ as
ℏ(ζ) = ζ gives the generalized version of the l. h. s. inequality of the Hermite-
Hadamard inequality:

Corollary 9. Let λ : [ν1, ν2]→ R be a function of bounded variation such that

λ(ν1), λ(ν2) with [ν1, ν2]⊂ [ϱ1,ϱ2] and ζ̃ =

ν2∫
ν1

ζ dλ(ζ)

ν2∫
ν1

dλ(ζ)
∈ [ϱ1,ϱ2]. Under the assumptions

of Theorem 7, if Γ is n−convex such that
ν2∫
ν1

(ζ − s)n−1 Fϱ2
ϱ1 (s, ζ)dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤
ν2− ζ̃

ν2− ν1

(
Fϱ2
ϱ1 (s, ν1) (ν1− s)n−1

)
(4.7)

+
ζ̃ − ν1
ν2− ν1

(
Fϱ2
ϱ1 (s, ν2) (ν2− s)n−1

)
, s ∈ [ϱ1,ϱ2],
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then we have
ν2∫
ν1

Γ
(
ζ
)
dλ(ζ)

ν2∫
ν1

dλ(ζ)
≤
ν2− ζ̃

ν2− ν1
Γ(ν1) +

ζ̃ − ν1
ν2− ν1

Γ(ν2) +

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(4.8)

×

(
Γ(z−1) (ϱ2)CJ

(
(x−ϱ2)z , id{ν1,ν2};λ

)
−Γ(z−1) (ϱ1)CJ

(
(x−ϱ1)z , id{ν1,ν2};λ

))
.

If the inequality (4.7) holds in the reverse direction, then (4.8) also holds reversely.

The special case of the above corollary can be given in the form of the following
remark:

Remark 8. It is interesting to see that substituting λ(ζ) = ζ and by following The-
orem 8 we get the r.h.s. inequality of the renowned Hermite-Hadamard inequality for
n−convex functions.

5. Generalization of converse of discrete Jensen’s inequality by Fink’s identity

In this section, we give the results for the converse of Jensen’s inequality in discrete
case by using the Fink’s identity.

Let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2], ν1 , ν2, p ȷ ∈ R( ȷ = 1, ..., r) be such that Pr , 0. Then we
have the following difference of the converse of Jensen’s inequality for Γ : [ϱ1,ϱ2]→
R:

CJdis(Γ) =
1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ )−
ν2− x
ν2− ν1

Γ(ν1)−
x− ν1
ν2− ν1

Γ(ν2) (5.1)

Similarly, we assume the Giaccardi difference given as:

Gcardi(Γ) =

r∑
ȷ=1

p ȷΓ(x ȷ )−AΓ

 r∑
ȷ=1

p ȷ x ȷ

−B

 r∑
ȷ=1

p ȷ −1

Γ(x0), (5.2)

where

A =

(
r∑
ȷ=1

p ȷ (x ȷ − x0)
)

(
r∑
ȷ=1

p ȷ x ȷ − x0

) , B =

r∑
ȷ=1

p ȷ x ȷ(
r∑
ȷ=1

p ȷ x ȷ − x0

) and
r∑
ȷ=1

p ȷ x ȷ , x0.

Theorem 9. Let Γ :
[
ϱ1,ϱ2

]
→R be such that for n≥ 1, Γ(n−1) is absolutely continu-

ous. Also let x0, x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2], p ȷ ∈ R( ȷ = 1, ..., r), be such that
r∑
ȷ=1

p ȷ x ȷ , x0.
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(i) Then the following generalized identity hold

CJdis(Γ) =

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)(
Γ(z−1) (ϱ2)CJdis

( (
x ȷ −ϱ2

)z )
−Γ(z−1) (ϱ1)CJdis

( (
x ȷ −ϱ1

)z ))
+

1
(n−1)! (ϱ2−ϱ1)

∫ ϱ2

ϱ1

CJdis
( (

x ȷ − s
)n−1

Fϱ2ϱ1
(
s, x ȷ

) )
Γ(n)(s)ds, (DC.GI)

where Fϱ2
ϱ1 (s, ·) is defined in (1.7).

(ii) Moreover, if Γ is n−convex and the inequality

CJdis
( (

x ȷ − s
)n−1

Fϱ2
ϱ1

(
s, x ȷ

) )
≤ 0 (5.3)

holds, then we have the following generalized inequality

CJdis(Γ) ≤
n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)(
Γ(z−1) (ϱ2)CJdis

( (
x ȷ −ϱ2

)z )
−Γ(z−1) (ϱ1)CJdis

( (
x ȷ −ϱ1

)z ))
.

(5.4)

If inequality (5.3) holds in the reverse direction, then (5.4) also holds reversely.

Proof. Similar to that of Theorem 5. □

Theorem 10. Let Γ :
[
ϱ1,ϱ2

]
→ R be such that for n ≥ 1, Γ(n−1) is absolutely con-

tinuous. Also let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2], p ȷ ∈ R( ȷ = 1, ..., r), be such that Pr , 0 and
x ∈ [ϱ1,ϱ2].

(i) Then the following generalized Giaccardi identity hold

Gcardi(Γ) =

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(GIA.GI)

·

(
Γ(z−1) (ϱ2)Gcardi

( (
x ȷ −ϱ2

)z )
−Γ(z−1) (ϱ1)Gcardi

( (
x ȷ −ϱ1

)z ))
+

1
(n−1)! (ϱ2−ϱ1)

∫ ϱ2

ϱ1

Gcardi
( (

x ȷ − s
)n−1

Fϱ2
ϱ1

(
s, x ȷ

) )
Γ(n)(s)ds

where Fϱ2
ϱ1 (s, ·) is defined in (1.7).

(ii) Moreover, if Γ is n−convex and the inequality

Gcardi
( (

x ȷ − s
)n−1

Fϱ2
ϱ1

(
s, x ȷ

) )
≤ 0 (5.5)

holds, then we have the following generalized Giaccardi inequality

Gcardi(Γ)≤
n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)(
Γ(z−1) (ϱ2)Gcardi

( (
x ȷ −ϱ2

)z )
−Γ(z−1) (ϱ1)Gcardi

( (
x ȷ −ϱ1

)z ))
.

(5.6)

If inequality (5.5) holds in the reverse direction, then (5.6) also holds reversely.
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Proof. Similar to that of Theorem 5. □

In the later part of this section, we will vary our conditions on p ȷ x ȷ ( ȷ = 1,2, . . . , r)
to obtain generalized converse discrete variants of Jensen’s inequality and Giaccardi
inequality for n−convex functions.

Theorem 11. Let Γ be as defined in Theorem 9. Also let x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2] and
p be a positive r−tuple.

(i) If Γ is n−convex, then for even n ≥ 3, (5.3) is valid.
(ii) Moreover if (5.3) is valid and the function H(·) defined in (2.3) is convex,

then we get the following generalized converse of Jensen’s inequality

1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ) ≤
ν2− x
ν2− ν1

Γ(ν1) +
x− ν1
ν2− ν1

Γ(ν2). (5.7)

Proof. We follow the idea of Theorem 6 but according to our assumed conditions
we employ the converse of Jensen’s inequality (see [3] or [19, p. 98]) to obtain
results. □

Finally in this section we give Giaccardi inequality for higher order convex func-
tions.

Theorem 12. Let Γ be as defined in Theorem 9. Also let x0, x ȷ ∈ [ν1, ν2] ⊆ [ϱ1,ϱ2]
and p be a positive r−tuple such that

r∑
ȷ=1

p ȷ x ȷ , x0 and (xl− x0)

 r∑
ȷ=1

p ȷ x ȷ − xl

 ≥ 0, (l = 1, . . . , r).

.
(i) If Γ is n−convex, then for even n ≥ 3, (5.5) is valid.

(ii) Moreover if (5.5) is valid and the function H(·) defined in (2.3) is convex,
then we get the following generalized Giaccardi inequality

r∑
ȷ=1

p ȷΓ(x ȷ ) ≤ AΓ

 r∑
ȷ=1

p ȷ x ȷ

+ B

 r∑
ȷ=1

p ȷ −1

Γ(x0), (5.8)

where A and B are defined in (5.2).

Proof. We follow the idea of Theorem 6 but according to our assumed conditions
we employ Giaccardi inequality (see [17, p. 11]) to obtain results. □

6. Application in information theory for discrete Jensen’s inequality

Jensen’s inequality plays a key role in information theory to construct lower bounds
for some notable inequalities, but here we will use it to make connections between
inequalities in information theory.
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Consider a convex function Γ : R+ → R+, let p := (p1, ..., pr) and q := (q1, ...,qr)
be positive probability distributions and Γ-divergence functional is defined in [8] as
follows:

IΓ(p,q) =

r∑
ȷ=1

q ȷΓ
(

p ȷ
q ȷ

)
.

L. Horváth et al. in [11] defined the generalized Csiszár divergence functional in the
following way:

Definition 1. Consider I is an interval in R and let Γ : I→ R be a function. Also
let p := (p1, . . . , pr) ∈ Rr and q := (q1, . . . ,qr) ∈ (0,∞)r such that

p ȷ
q ȷ
∈ I, ȷ = 1, . . . , r.

Then let

ĨΓ(p,q) =

r∑
ȷ=1

q ȷΓ
(

p ȷ
q ȷ

)
. (6.1)

We need the following representation for the results of this section:

F
(
p, x ȷ ,Γ

)
=

n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

){
Γ(z−1)(ϱ1)

(
(x−ϱ1)z

−
1
Pr

r∑
ȷ=1

p ȷ
(
x ȷ −ϱ1

)z
)

−Γ(z−1)(ϱ2)
(
(x−ϱ2)z

−
1
Pr

r∑
ȷ=1

p ȷ
(
x ȷ −ϱ2

)z
)}
. (6.2)

Theorem 13. Under the assumptions of Theorem 5(ii), let (3.1) hold and Γ be
n−convex. Also let p := (p1, . . . , pr) ∈ Rr and q := (q1, . . . ,qr) ∈ (0,∞)r, then we have
the following result:

ĨΓ(p,q) ≥ PrΓ(1) + PrF
(
q,

p ȷ
q ȷ
,Γ

)
. (6.3)

Proof. From Theorem 5 we can rearrange (3.2) as

1
Pr

r∑
ȷ=1

p ȷΓ(x ȷ ) ≥ Γ(x)−
n−1∑
z=2

(
n− z

z!(ϱ2−ϱ1)

)
(6.4)

×

{
Γ(z−1)(ϱ2)

(
(x−ϱ2)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ2)z
)
−Γ(z−1)(ϱ1)

(
(x−ϱ1)z

−
1
Pr

r∑
ȷ=1

p ȷ (x ȷ −ϱ1)z
)}
.

Now by replacing p ȷ with q ȷ and x ȷ with p ȷ
q ȷ

, and following (6.2) we get (6.3). □

For a positive r-tuple q = (q1, ...,qr) such that
∑r
ȷ=1 q ȷ = 1, the Shannon entropy

[23] is defined by

S (q) = −

r∑
ȷ=1

q ȷ lnq ȷ . (6.5)
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Corollary 10. Under the assumptions of Theorem 13, let n be even. Then we have
the following results:

(i) If q := (q1, . . . ,qr) ∈ (0,∞)r, then
r∑
ȷ=1

q ȷ lnq ȷ ≥ rF
(
q,

1
q ȷ
,− ln(·)

)
. (6.6)

(ii) We can get bounds for the Shannon entropy of q, if we choose q := (q1, . . . ,qr)
a positive probability distribution:

S (q) ≤ −rF
(
q,

1
q ȷ
,− ln(·)

)
. (6.7)

Proof. (i) For even n, Γ(x) := − ln x is n−convex and using p := (1,1, . . . ,1) in
Theorem 13 we get (6.6) by following (6.2).

(ii) Since we have
∑r
ȷ=1 q ȷ = 1, therefore by multiplying −1 on both side to (6.6)

and taking into account expression (6.5), we get (6.7). □

The Kullback-Leibler distance [16] between the positive probability distributions
p = (p1, ..., pr) and q = (q1, ...,qr) is defined by

D(q ∥ p) =

r∑
ȷ=1

q ȷ ln
(

q ȷ
p ȷ

)
. (6.8)

Corollary 11. Under the assumption of Corollary 10, we have the following res-
ults:

(i) If q := (q1, . . . ,qr),p := (p1, . . . , pr) ∈ (0,∞)r, then
r∑
ȷ=1

q ȷ ln
(

q ȷ
p ȷ

)
≥ rF

(
q,

p ȷ
q ȷ
,− ln(·)

)
. (6.9)

(ii) Now if we take positive probability distributions q := (q1, . . . ,qr) and
p := (p1, . . . , pr), then we have

D(q ∥ p) ≥ rF
(
q,

p ȷ
q ȷ
,− ln(·)

)
. (6.10)

Proof. (i) Using Γ(x) := − ln x (which is n−convex for even n) in Theorem 13 and
following (6.2), after simplification we get (6.9).

(ii) It is a special case of (i). □

7. Results for Zipf and hybrid Zipf-Mandelbrot entropy

One of the basic laws in information science is Zipf’s law [20, 24] and is highly
applied in linguistics. Let c ≥ 0, d > 0 and N ∈ {1,2,3, . . .}. The Zipf-Mandelbrot
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entropy can be given as

ZM(H,c,d) =
d

HN
c,d

N∑
ȷ=1

ln( ȷ + c)
( ȷ + c)d + ln(HN

c,d), (7.1)

where

HN
c,d =

N∑
σ=1

1
(σ+ c)d .

Consider

q ȷ = Γ( ȷ ; N,c,d) =
1

(( ȷ + c)dHN
c,d)

(7.2)

where Γ( ȷ ; N,c,d) is a discrete probability distribution known as Zipf-Mandelbrot
law. The Zipf-Mandelbrot law has many applications in linguistics and information
science. Some of the recent studies about Zipf-Mandelbrot law can be seen in the
listed references (see [11, 13]). Now we state our results involving entropy intro-
duced by Mandelbrot law by establishing the relationship with Shannon and relative
entropies.

Theorem 14. Let q be a Zipf-Mandelbrot law as defined in (7.2) with parameters
c ≥ 0, d > 0 and N ∈ {1,2, . . .}. Then we have

ZM(H,c,d) = S (q) ≤ −N ×F
(
q, (( ȷ + c)dHN

c,d),− ln(·)
)
. (7.3)

Proof. It is interesting to see that for q ȷ , defined as in (7.2),
N∑
ȷ=1

q ȷ = 1. Therefore,

using the above q ȷ in Shannon entropy (6.5), we get Mandelbrot entropy (7.1):

S (q) = −

N∑
ȷ=1

q ȷ lnq ȷ = −

N∑
ȷ=1

1
(( ȷ + c)dHN

c,d)
ln

1
(( ȷ + c)dHN

c,d)

=
d

(HN
c,d)

N∑
ȷ=1

ln( ȷ + c)
( ȷ + c)d + ln(HN

c,d). (7.4)

Finally, substituting q ȷ = 1
(( ȷ+c)dHN

c,d)
in Corollary 10(ii) and following (6.2) we get the

desired result. □

Corollary 12. Let q and p be Zipf-Mandelbrot laws with parameters c1,c2 ∈

[0,∞), d1,d2 > 0, let HN
c1,d1

=
N∑
σ=1

1
(σ+c1)d1

and HN
c2,d2

=
N∑
σ=1

1
(σ+c2)d2

. Now using

q ȷ =
1

( ȷ + c1)d1 HN
c1,d1

and p ȷ =
1

( ȷ + c2)d2 HN
c2,d2



MEASURE THEORETIC GENERALIZATIONS OF JENSEN’S INEQUALITY 151

in Corollary 11(ii) and following (6.2), we have

D(q ∥ p) =

N∑
ȷ=1

1
( ȷ + c1)d1 HN

c1,d1

ln

 ( ȷ + c2)d2 HN
c2,d2

( ȷ + c1)d1 HN
c1,d1


= −ZM(H,c1,d1) +

d2

HN
c1,d1

N∑
ȷ=1

ln( ȷ + c2)
( ȷ + c1)d1

+ ln
(
HN

c2,d2

)
(7.5)

≥ N ×F

q, ( ȷ + c1)d1 HN
c1,d1

( ȷ + c2)d2 HN
c2,d2

,− ln(·)

 .
The final results are about hybrid Zipf-Mandelbrot entropy, which is a further

generalization of Zipf-Mandelbrot entropy. Let N ∈ {1,2,3, . . .}, c ≥ 0, d,ω > 0. Then
hybrid Zipf-Mandelbrot entropy can be given as follows:

ẐM(H∗,c,d,ω) =
1

H∗c,d,ω

N∑
ȷ=1

ω ȷ

( ȷ + c)d ln
( ( ȷ + c)d

ω ȷ

)
+ ln(H∗c,d,ω), (7.6)

where

H∗c,d,ω =

N∑
ȷ=1

ω ȷ

( ȷ + c)d (7.7)

Consider
q ȷ = Γ( ȷ ; N,c,d,ω) =

ω ȷ

( ȷ + c)dH∗c,d,ω
, (7.8)

which is called hybrid Zipf-Mandelbrot law. There is a unified approach, max-
imization of Shannon entropy [25], that naturally follows the path of generalization
from Zipf’s to hybrid Zipf’s law. Extending this idea Jakšetic et al. in [12] presen-
ted a transition from Zipf-Mandelbrot to hybrid Zipf-Mandelbrot law by employing
maximum entropy technique with one additional constraint. It is interesting that the
examination of its densities provides some new insights of Lerch’s transcendent.

Theorem 15. Let q be a hybrid Zipf-Mandelbrot law as defined in (7.8) with
parameters c ≥ 0, d,ω > 0 and N ∈ {1,2, . . .}, then we have

ẐM(H∗,c,d,ω) = S (q) ≤ −N ×F

q, ( ȷ + c)dH∗c,d,ω
ω ȷ

,− ln(·)

 . (7.9)

Proof. It is interesting to see that for q ȷ , defined as in (7.8),
r∑
ȷ=1

q ȷ = 1. Therefore,

using the above q ȷ in Shannon entropy (6.5), we get hybrid Zipf-Mandelbrot entropy
(7.6):

S (q) = −

N∑
ȷ=1

q ȷ lnq ȷ = −

N∑
ȷ=1

ω ȷ

( ȷ + c)dH∗c,d,ω
ln

ω ȷ

( ȷ + c)dH∗c,d,ω
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=
−1

H∗c,d,ω

N∑
ȷ=1

ω ȷ

( ȷ + c)d

ln(
ω ȷ

( ȷ + c)d

)
+ ln

 1
H∗c,d,ω


=

1
H∗c,d,ω

N∑
ȷ=1

ω ȷ

( ȷ + c)d

[
ln

(
( ȷ + c)d

ω ȷ

)
+ ln

(
H∗c,d,ω

)]

=
1

H∗c,d,ω

N∑
ȷ=1

ω ȷ

( ȷ + c)d ln
(
( ȷ + c)d

ω ȷ

)
+ ln

(
H∗c,d,ω

)
. (7.10)

Finally, substituting this q ȷ = ω ȷ

( ȷ+c)dH∗c,d,ω
in Corollary 10(ii) and following (6.2) we

get the desired result. □

Corollary 13. Let q and p be hybrid Zipf-Mandelbrot laws with parameters
c1,c2 ∈ [0,∞), ω1,ω2,d1,d2 > 0. Now using

q ȷ =
ω
ȷ
1

( ȷ + c1)d1 H∗c1,d1,ω1

and p ȷ =
ω
ȷ
2

( ȷ2 + c2)d2 H∗c2,d2,ω2

in Corollary 11(ii) and following (6.2), then we have

D(q ∥ p) =

N∑
ȷ=1

ω
ȷ
1

( ȷ + c1)d1 H∗c1,d1,ω1

ln

ω ȷ1ω ȷ2
( ȷ + c2)d2 H∗c2,d2,ω2

( ȷ + c1)d1 H∗c1,d1,ω1


= −ẐM(H∗,c1,d1,ω1) +

1
H∗c1,d1,ω1

N∑
ȷ=1

ω
ȷ
1

( ȷ + c1)d1
ln

 ( ȷ + c2)d
2

ω
ȷ
2

+ ln
(
H∗c2,d2,ω2

)
.

≥ N ×F

q, ω ȷ2( ȷ1 + c1)d1 H∗c1,d1,ω1

ω
ȷ
1( ȷ2 + c2)d2 H∗c2,d2,ω2

,− ln(·)

 . (7.11)

Remark 9. Similarly, we can give results for Shannon entropy, Kullback-Leibler
distance, Zipf-Mandelbrot entropy and hybrid Zipf-Mandelbrot entropy by using res-
ults for converse discrete Jensen’s inequality and therefore also for generalized Giac-
cardi inequality defined in (5.6) on the same approach.

8. Concluding remarks

Jensen’s inequality is considered to be much fruitful for the characterization of
convex functions. First we gave real Stieltjes measure theoretic representations of
integral Jensen’s inequality by using Fink’s identity. Then we formulate results
for other inequalities like Jensen Steffensen’s inequality, Jensen-Boas inequality and
Jensen–Brunk inequality. We can obtain Jensen Steffensen’s inequality, Jensen-Boas
inequality and Jensen–Brunk inequality by changing the assumptions in Jensen’s in-
equality. We also gave generalized Jensen’s inequality in discrete case having real
weights. As a result we give its reverses and converses by studying conditions on
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tuples. At the end we gave applications in information theory for our obtained res-
ults, specially we gave results for hybrid Zipf-Mandelbrot entropy.
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[7] S. I. Butt, J. Pečarić, and A. Vukelić, “Generalization of Popoviciu-type inequalities Via Fink’s
identity,” Mediterranean Journal of Mathematics, vol. 13, no. 4, pp. 1495–1511, 2016, doi:
10.1007/s00009-015-0573-8.

[8] I. Csiszár, “Information-type measures of difference of probability distributions and indirect ob-
servation,” Studia Scientiarum Mathematicarum Hungarica, vol. 2, pp. 229–318, 1967.

[9] S. S. Dragomir, T. M. Rassias, and I. Aleksanova, Ostrowski type inequalities and applications in
numerical integration. Springer, 2002.

[10] A. Fink, “Bounds on the deviation of a function from its averages,” Czechoslovak Mathematical
Journal, vol. 42, no. 2, pp. 289–310, 1992, doi: 10.21136/cmj.1992.128336.
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[18] J. E. Pečarić, “On an inequality of P.M. Vasić and R.R. Janić,” Publ. Inst. Math.(Beograd)(NS),
vol. 28, no. 42, pp. 145–149, 1980.

http://dx.doi.org/10.2140/pjm.1969.29.19
http://dx.doi.org/10.1016/0022-247X(85)90315-4
http://dx.doi.org/10.1016/0022-247X(85)90315-4
http://dx.doi.org/10.2307/2033544
http://dx.doi.org/10.1002/mma.6869
http://dx.doi.org/10.1007/s00009-015-0573-8
http://dx.doi.org/10.21136/cmj.1992.128336
http://dx.doi.org/10.1007/S40840-017-0526-4
http://dx.doi.org/10.7153/jmi-2019-13-20
http://dx.doi.org/10.7153/mia-2018-21-42
http://dx.doi.org/10.1186/s13660-020-02343-7
http://dx.doi.org/10.1186/s13662-020-02794-8


154 S. I. BUTT, T. RASHEED, D. PEČARIĆ, AND J. PEČARIĆ
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