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Abstract. In this paper, we obtain the existence of positive solutions for the semipositone
fractional boundary value problem with n point fractional integral boundary conditions. The
existence of positive solutions is established using the five functionals fixed point theorem. An
example is given to ratify that our main result is theoretically feasible.
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1. INTRODUCTION

Nowadays, fractional boundary value problems sprung up dramatically due to the
wide applications in various research fields such as chemistry, biology, engineering,
economy and other areas. The books of Kilbas et al. [8], Podlubny [10], Samko et al.
[11] are mostly cited for the theory and applications of fractional calculus. Inspired
by the extensive application area of fractional boundary value problems, many works
focus on the existence of positive solutions for such boundary value problems. Some
kinds of procedures are applied to establish positive solutions for fractional boundary
value problems such as the Krasnoselskii fixed point theorem on cones, the Leggett
Williams fixed point theorem, the Avery Henderson fixed point theorem, upper and
lower solutions method [2–4, 9, 12–14, 16, 18]. To apply these theories and proced-
ures, boundary value problems admit nonnegative and continuous nonlinear term.
Besides, negative term can also appear in our problems dealing with real word prob-
lems. If boundary value problems involve both negative and nonnegative nonlinearity,
we say that those problems are semipositone problems, which occur in astrophys-
ics, chemical reactions, envisagement of suspension bridges. Investigations on ex-
istence results obtained for semipositone problems are more complicated than those
for positive ones. Many authors study on semipositone boundary value problems
using variational methods, fixed point theory, critical point theory [5–7, 15, 17, 19].
Generally, the existence results of solutions are obtained for fractional semipositone

© 2022 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2022.3651


94 SONGUL BATIK AND FULYA YORUK DEREN

Riemann-Liouville differential equations for zero boundary values or Caputo frac-
tional differential equations with boundary conditions such as three-point, m-point,
integral boundary conditions. For all we know, only a few papers concerned with the
existence of solutions for semipositone fractional boundary value problems subject
to the Riemann-Liouville fractional integral boundary conditions.

The aim of this paper is to establish multiple positive solutions for the fractional
differential equation with Caputo derivative of order υ ∈ (1,2]

Dυ
φ(t)+ f (t,φ(t)) = 0, t ∈ (0,1), (1.1)

with fractional integral boundary conditions

φ(0)−σφ
′(0) =

n−2

∑
j=1

a jIq
φ(η j),

φ(1)+ρφ
′(1) =

n−2

∑
j=1

b jIq
φ(ξ j),

(1.2)

in which q > 0 and σ,ρ > 0, a j,b j,η j,ξ j > 0, a j ≤ b j and η j ≤ ξ j for j ∈ {1,n−2},
n−2

∑
j=1

a jη
q
j

Γ(q+1)
< 1,

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
< 1, f ∈ C ([0,1]× [0,∞),R) and f (t,0) ̸≡ 0.

In order to assert our main result, we will give some background materials and the
five functionals fixed point theorem.

Let Φ, κ, Θ be nonnegative continuous convex functionals on the cone P and let
χ, τ be nonnegative continuous concave functionals on P. Then for nonnegative real
numbers l,k,r,h and g, we define the following convex sets:

P(Φ,g) = {ϑ ∈ P : Φ(ϑ)< g} ,
P(Φ,χ,k,g) = {ϑ ∈ P : k ≤ χ(ϑ),Φ(ϑ)≤ g} ,
Q(Φ,κ,h,g) = {ϑ ∈ P : κ(ϑ)≤ h,Φ(ϑ)≤ g} ,

P(Φ,Θ,χ,k,r,g) = {ϑ ∈ P : k ≤ χ(ϑ),Θ(ϑ)≤ r,Φ(ϑ)≤ g} ,
Q(Φ,κ,τ, l,h,g) = {ϑ ∈ P : l ≤ τ(ϑ),κ(ϑ)≤ h,Φ(ϑ)≤ g} .

The five functionals fixed point theorem is very significant in proving our main the-
orem, which is given below.

Theorem 1 ([1]). Let P be a cone in a real Banach space E. Assume there exist
g > 0 and m > 0 satisfying

χ(ϑ)≤ κ(ϑ) and ∥ϑ∥ ≤ mΦ(ϑ)

for all ϑ ∈ P(Φ,g). If

S : P(Φ,g)→ P(Φ,g)
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is completely continuous and there exist nonnegative numbers k,r,h and l with
0 < h < k such that
(i) {ϑ ∈ P(Φ,Θ,χ,k,r,g) : χ(ϑ)> k} ̸=∅ and χ(Sϑ)> k for ϑ ∈ P(Φ,Θ,χ,k,r,g),
(ii) {ϑ ∈ Q(Φ,κ,τ, l,h,g) : κ(ϑ)< h} ̸=∅ and κ(Sϑ)< h for ϑ ∈ Q(Φ,κ,τ, l,h,g),
(iii) χ(Sϑ)> k for ϑ ∈ P(Φ,χ,k,g) with Θ(Sϑ)> r,
(iv) κ(Sϑ)< h for ϑ ∈ Q(Φ,κ,h,g) with τ(Sϑ)< l.
Then, S has at least three fixed points ϑ1,ϑ2,ϑ3 ∈ P(Φ,g) satisfying

κ(ϑ1)< h, k < χ(ϑ2) and h < κ(ϑ3) with χ(ϑ3)< k.

2. PRELIMINARIES

In order to assert our main result, we assemble some definitions and lemmas from
the fractional calculus [8, 10, 11].

Definition 1. The Riemann-Liouville fractional integral of order υ for a function
y is given as

Iυy(t) =
1

Γ(υ)

∫ 1

0
(t − s)υ−1y(s)ds, υ > 0,

provided that such integral exists.

Definition 2. If y ∈ C n[0,1], then the Caputo fractional derivative of order υ is
defined by

Dυy(t) =
1

Γ(n−υ)

∫ t

0
(t − s)n−υ−1y(n)(s)ds = In−υy(n)(t),

where n−1 < υ < n,n = [υ]+1 and [υ] denotes the integer part of the real number
υ.

Lemma 1. Let υ > 0 then the fractional differential equation Dυu(t) = 0 has a
solution

u(t) = d0 +d1t +d2t2 + ...+dn−1tn−1,

in which di ∈ R, i = 0,1,2, ...,n; n−1 < υ < n, n = [υ]+1.

Next, we state some auxiliary lemmas for fractional BVP (1.1)-(1.2).

Lemma 2 ([4]). If h ∈ C [0,1], then the fractional boundary value problem (frac-
tional BVP for short)

Dυ
ϑ(t)+h(t) = 0, t ∈ (0,1),

ϑ(0)−σϑ
′(0) = 0,

ϑ(1)+ρϑ
′(1) = 0
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possesses the integral expression

ϑ(t) =
∫ 1

0
G(t,s)h(s)ds,

where

G(t,s) =
1

Γ(υ)



−(t − s)υ−1 +
(t +σ)(1− s)υ−1

1+σ+ρ
+

(t +σ)(υ−1)ρ(1− s)υ−2

1+σ+ρ
,

0 ≤ s ≤ t ≤ 1,

(t +σ)(1− s)υ−1

1+σ+ρ
+

(t +σ)(υ−1)ρ(1− s)υ−2

1+σ+ρ
,

0 ≤ t ≤ s ≤ 1.

Lemma 3 ([9, 18]). G(t,s) satisfies the following properties

(i) G(t,s) is continuous on [0,1]× [0,1],
(ii) If σ > 2−υ

υ−1 , then 0 ≤ G(t,s)≤ G(s,s) for any t,s ∈ [0,1],
(iii) If σ > 2−υ

υ−1 , then there exists ω > 0 such that ωG(s,s)≤ G(t,s)≤ G(s,s) for
any t,s ∈ [0,1],

where ω = min{ω1,ω2} can be given by

ω1 =
4ρ[σ(υ−1)+(υ−2)]

[ρ(υ−1)+1−σ]2 +4σ[ρ(υ−1)+1]
, (2.1)

ω2 =
4σρ[σ(υ−1)+(υ−2)]

[ρ(υ−1)+1−σ]2 +4σ[ρ(υ−1)+1]
. (2.2)

Lemma 4. For h ∈ C [0,1], the fractional BVP

Dυ
φ(t)+h(t) = 0, t ∈ (0,1), (2.3)

φ(0)−σφ
′(0) =

n−2

∑
j=1

a jIq
φ(η j),

φ(1)+ρφ
′(1) =

n−2

∑
j=1

b jIq
φ(ξ j),

(2.4)

possesses the integral expression

φ(t) =
∫ 1

0
H(t,s)h(s)ds, (2.5)
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where

H(t,s) = G(t,s)+
1
Λ
(

n−2

∑
j=1

a jIqG(η j,s))(1+ρ−
n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+
1
Λ
(

n−2

∑
j=1

b jIqG(ξ j,s))(σ+
n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)

+
t
Λ
[(

n−2

∑
j=1

b jIqG(ξ j,s))(1−
n−2

∑
j=1

a jη
q
j

Γ(q+1)
)

− (
n−2

∑
j=1

a jIqG(η j,s))(1−
n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)]

and

Λ = (1−
n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)+(1−

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
).

Here, IqG(η j,s) and IqG(ξ j,s) are the Riemann-Liouville fractional integrals of
G(t,s) with respect to t = η j and t = ξ j respectively.

Proof. Let

ϑ(t) =
∫ 1

0
G(t,s)h(s)ds. (2.6)

By employing Lemma 2, ϑ(t) holds

Dυ
ϑ(t)+h(t) = 0, t ∈ (0,1),

ϑ(0)−σϑ
′(0) = 0,

ϑ(1)+ρϑ
′(1) = 0.

Suppose φ(t) is a solution of the BVP (2.3)-(2.4) and

z(t) = φ(t)−ϑ(t), t ∈ [0,1],

then z(t) holds the fractional BVP :

Dυz(t) = 0, t ∈ (0,1),

z(0)−σz′(0) =
n−2

∑
j=1

a jIqz(η j)+
n−2

∑
j=1

a jIq
ϑ(η j),

z(1)+ρz′(1) =
n−2

∑
j=1

b jIqz(ξ j)+
n−2

∑
j=1

b jIq
ϑ(ξ j).

(2.7)

Lemma 1 implies that

z(t) = d0 +d1t, t ∈ [0,1],d0,d1 ∈ R, (2.8)
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and replacing z(t) into (2.7) leads to

d0 =
1
Λ
[(

n−2

∑
j=1

a jIq
ϑ(η j))(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+(
n−2

∑
j=1

b jIq
ϑ(ξ j))(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)]

(2.9)

and

d1 =
1
Λ
[(1−

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(

n−2

∑
j=1

b jIq
ϑ(ξ j))

− (1−
n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(

n−2

∑
j=1

a jIq
ϑ(η j))],

(2.10)

where

Λ = (1−
n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+(1−
n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
).

Finally, rewriting (2.9) and (2.10) into (2.8), we have

z(t) =
1
Λ
(

n−2

∑
j=1

a jIq
ϑ(η j))[(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)− t(1−

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)]

+
1
Λ
(

n−2

∑
j=1

b jIq
ϑ(ξ j))[(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)+ t(1−

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)].

(2.11)

Thus, we can conclude from (2.6) and (2.11) that (2.5) is satisfied. Therefore, the
proof of Lemma 4 is accomplished. □

Lemma 5. H(t,s) holds the following properties

(i) H(t,s) ∈ C ([0,1]× [0,1]), H(t,s)≥ 0 for any t,s ∈ (0,1).
(ii) There exist nonnegative numbers ϕ and ω such that

H(t,s)≤ ϕG(s,s), t,s ∈ [0,1],

and

H(t,s)≥ ωG(s,s), t,s ∈ [0,1], (2.12)
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in which

ϕ = 1+
1
Λ
(

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+
1
Λ
(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)

+
1
Λ
(1−

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
),

(2.13)

and ω is defined by (2.1)-(2.2).

Proof. Apparently, (i) is satisfied using the definition of H(t,s). We will show
property (ii). Lemma 3 implies that

H(t,s)≤ G(s,s)+
1
Λ
(

n−2

∑
j=1

a jη
q
j

Γ(q+1)
G(s,s))(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+
1
Λ
(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
G(s,s))(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)

+
t
Λ
(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
G(s,s))(1−

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)

≤ [1+
1
Λ
(

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)(1+ρ−

n−2

∑
j=1

b jξ
q+1
j

Γ(q+2)
)

+
1
Λ
(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(σ+

n−2

∑
j=1

a jη
q+1
j

Γ(q+2)
)

+
1
Λ
(

n−2

∑
j=1

b jξ
q
j

Γ(q+1)
)(1−

n−2

∑
j=1

a jη
q
j

Γ(q+1)
)]G(s,s)

= ϕG(s,s).

On the other hand, one can see easily that (2.12) is satisfied. Therefore, the proof of
Lemma 5 is accomplished. □

Theorem 1 will be utilized to prove the presence of positive solution. For this
purpose, we are in position to introduce the Banach space B = C [0,1] and a cone

P = {ϑ ∈ B : ϑ(t)≥ Ω∥ϑ∥, t ∈ [0,1]} ,

where Ω = ω

ϕ
, ω and ϕ are defined by (2.1)-(2.2) and (2.13).
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To prove that fractional BVP (1.1)-(1.2) possesses multiple positive solutions, we
choose l = 0, m = 1 and the following three functionals are defined by

χ(ϑ) = min
t∈[0,1]

ϑ(t), τ(ϑ) = 0, Φ(ϑ) = κ(ϑ) = Θ(ϑ) = ∥ϑ∥.

Furthermore

χ(ϑ)≤ κ(ϑ) and ∥ϑ∥ ≤ mΦ(ϑ) f or ϑ ∈ P.

Let us denote

µ = ω

∫ 1

0
G(s,s)ds,

ζ = ϕ

∫ 1

0
G(s,s)ds,

D1 =
ϕ2

ω

∫ 1

0
G(s,s)ds.

Theorem 2. Assume that there exist constants KD1 < h< h+KD1Ω< k<
k

Ω2 < g

such that
1
Ω

< N <
gµ
kζ

holds.

Furthermore f verifies the following conditions:

(C0) There exists K > 0 such that f (t,ϑ)≥−K for (t,ϑ) ∈ [0,1]×R+,
(C1) f (t,ϑ)≤ g

ζ
−K for t ∈ [0,1], ϑ ∈ [0,g],

(C2) f (t,ϑ)≥ kN
µ

−K for t ∈ [0,1], ϑ ∈ [k−KD1Ω,g],

(C3) f (t,ϑ)<
h
ζ
−K for t ∈ [0,1], ϑ ∈ [0,h].

Then fractional BVP (1.1)-(1.2) has at least two positive solutions.

Proof. Assume w is a solution of

Dυ
φ(t)+1 = 0, t ∈ (0,1),

φ(0)−σφ
′(0) =

n−2

∑
j=1

a jIq
φ(η j),

φ(1)+ρφ
′(1) =

n−2

∑
j=1

b jIq
φ(ξ j),

and z(t) = Kw(t) for t ∈ [0,1]. Then

z(t) = Kw(t) = K
∫ 1

0
H(t,s)ds ≤ Kϕ

∫ 1

0
G(s,s)ds ≤ KD1Ω.
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We shall show that the fractional BVP

Dυ
ϑ(t)+h(t,ϑ(t)) = 0, t ∈ (0,1), (2.14)

ϑ(0)−σϑ
′(0) =

n−2

∑
j=1

a jIq
ϑ(η j),

ϑ(1)+ρϑ
′(1) =

n−2

∑
j=1

b jIq
ϑ(ξ j),

(2.15)

has at least three positive solutions in which

h(t,ϑ(t)) = f (t,ϑ(t))+K and ϑ(t) = max{ϑ(t)− z(t),0} .

For ϑ ∈ P, denote an operator S by

Sϑ(t) =
∫ 1

0
H(t,s)h(s,ϑ(s))ds.

Clearly, the fractional BVP (2.14)-(2.15) has a solution provided that the operator S
admits a fixed point.

Now, we check that S(P)⊆ P. Indeed, for ϑ ∈ P, Lemma 5 implies∫ 1

0
ωG(s,s)h(s,ϑ(s))ds ≤ Sϑ(t)≤

∫ 1

0
ϕG(s,s)h(s,ϑ(s))ds.

Hence,

Sϑ(t)≥
∫ 1

0
ωG(s,s)h(s,ϑ(s))ds ≥ Ω∥Sϑ∥.

Furthermore by employing standard methods, the operator S : P → P is completely
continuous. In what follows, we will show that all the conditions of Theorem 1 are
satisfied.

We prove that S(P(Φ,g)) ⊆ P(Φ,g). Let ϑ ∈ P(Φ,g) then 0 ≤ ϑ(t) ≤ ϑ(t) ≤ g.
By C1, we get

Φ(Sϑ) = ∥Sϑ∥= max
t∈[0,1]

Sϑ(t)≤ ϕ

∫ 1

0
G(s,s)h(s,ϑ(s))ds ≤ ϕ

g
ζ

∫ 1

0
G(s,s)ds ≤ g.

So S : P(Φ,g) → P(Φ,g). In the following, we now prove that the conditions of
Theorem 1 is satisfied with r = g.

To verify condition (i) of Theorem 1, t let ϑ(t) = k
Ω2 , then one can see easily that

{ϑ ∈ P(Φ,Θ,χ,k,r,g) : χ(ϑ)> k}=
{

ϑ ∈ P : min
t∈[0,1]

ϑ(t)> k,∥ϑ∥ ≤ g
}
̸=∅.
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Moreover, if ϑ ∈ P(Φ,Θ,χ,k,r,g), then ϑ(t)− z(t) ≤ ϑ(t) ≤ g, that is k−KD1Ω ≤
ϑ(t)− z(t)≤ g. Applying (C2), we get

χ(Sϑ) = min
t∈[0,1]

Sϑ(t)≥ Ω∥Sϑ∥ ≥ Ω
kN
µ

ω

∫ 1

0
G(s,s)ds = ΩNk > k. (2.16)

Hence, condition (i) of Theorem 1 is satisfied.
Apparently,

{ϑ ∈ Q(Φ,κ,τ, l,h,g) : κ(ϑ)< h}= {ϑ ∈ P : ∥ϑ∥< h} ̸=∅.

Using (C3) leads that for ϑ ∈ Q(Φ,κ,τ, l,h,g)

κ(Sϑ) = ∥Sϑ∥= max
t∈[0,1]

Sϑ(t)≤ ϕ

∫ 1

0
G(s,s)h(s,ϑ(s))ds < ϕ

h
ζ

∫ 1

0
G(s,s)ds = h.

Hence (ii) of Theorem 1 is satisfied. Let ϑ ∈ P(Φ,χ,k,g). Using the same method
followed in (2.16) results in χ(Sϑ)> k for ϑ ∈ P(Φ,χ,k,g). Hence, (iii) of Theorem
1 holds.

Finally, we omit (iv) because τ(Sϑ) < l = 0 is not possible. Theorem 1 implies
that fractional BVP (2.14)-(2.15) has at least three positive solutions ϑ∗

1, ϑ∗
2 and ϑ∗

3
such that

∥ϑ
∗
1∥< h, k < χ(ϑ∗

2), ∥ϑ
∗
3∥> h, χ(ϑ∗

3)< k.

Moreover,

ϑ
∗
2(t)≥ Ω∥ϑ

∗
2∥> Ωχ(ϑ∗

2)> Ωk > ΩKD1 ≥ z(t), t ∈ [0,1],

ϑ
∗
3(t)≥ Ω∥ϑ

∗
3∥> Ωh ≥ ΩKD1 ≥ z(t), t ∈ [0,1].

ϑ2 = ϑ∗
2− z, ϑ3 = ϑ∗

3− z are two positive solutions of (1.1)-(1.2). This completes the
proof. □

Example 1. Consider the fractional boundary value problem

D3/2φ(t)+ f (t,φ(t)) = 0, t ∈ (0,1),

φ(0)− 5
2 φ′(0) =

2

∑
j=1

a jI1/2
φ(η j),

φ(1)+ 1
2 φ′(1) =

2

∑
j=1

b jI1/2
φ(ξ j),

(2.17)

in which υ = 3
2 ,σ = 5

2 , ρ = 1
2 , q = 1

2 , n > 3,n = 4, a1 =
1
4 , b1 =

1
3 , η1 =

1
4 , ξ1 =

1
3 ,

a2 =
1
8 , b2 =

1
2 , η2 =

1
8 , ξ2 =

1
2 .
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f (t,ϑ) =



−1
2 cos π

2 t + ϑ

20000 , t ∈ [0,1],ϑ ∈ [0,50],

−1
2 cos π

2 t + ϑ

20000 +
100000

29 (ϑ−50), t ∈ [0,1],ϑ ∈ [50,52.9],

−1
2 cos π

2 t + ϑ

20000 +10000, t ∈ [0,1],ϑ ∈ [52.9,23000],

−1
2 cos π

2 t + 23
20 +10000, t ∈ [0,1],ϑ ∈ [23000,∞),

Through calculation, we get ω1 = 0.106, ω2 = 0.266, Λ = 2.037, ϕ = 2.132,
D1 = 42.53, µ = 0.105, ζ = 2.11, Ω = 0.049. Let K = 1, N = 19, h = 50, k = 55,
g = 23000, then f (t,ϑ) satisfies

f (t,ϑ)≥−K =−1, fort ∈ [0,1],

f (t,ϑ)≤ g
ζ
−K ≈ 10898.47, fort ∈ [0,1],ϑ ∈ [0,23000],

f (t,ϑ)≥ kN
µ

−K ≈ 9951.38, fort ∈ [0,1],ϑ ∈ [52.9,23000],

f (t,ϑ)≤ h
ζ
−K ≈ 22,69, fort ∈ [0,1],ϑ ∈ [0,50].

We conclude that all the assumptions of Theorem 2 are verified, thus problem (2.17)
has at least two positive solutions.
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[6] Ş. Ege and F. Topal, “Existence of multiple positive solutions for semipositone fractional boundary
value problems,” Filomat, vol. 33, no. 3, pp. 749–759, 2019, doi: 10.2298/fil1903749e.

[7] J. He, M. Jia, X. Liu, and H. Chen, “Existence of positive solutions for a high order fractional
differential equation integral boundary value problem with changing sign nonlinearity,” Advances
in Difference Equations, vol. 49, pp. 145–159, 2018, doi: 10.1186/s13662-018-1465-6.

http://dx.doi.org/10.1007/s12190-018-1166-z
http://dx.doi.org/10.1155/2014/925010
http://dx.doi.org/10.2298/fil1903749e
http://dx.doi.org/10.1186/s13662-018-1465-6


104 SONGUL BATIK AND FULYA YORUK DEREN

[8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential
equations, in: North-Holland Mathematics Studies. Amsterdam: Elsevier Science B.V, 2006.

[9] X. Li, S. Liu, and W. Jiang, “Positive solutions for boundary value problem of nonlinear fractional
functional differential equations,” Applied Mathematics and Computation, vol. 217, no. 22, pp.
9278–9285, 2011, doi: 10.1016/j.amc.2011.04.006.

[10] I. Podlubny, Fractional differential equations (vol. 198 of Mathematics in Science and Engineer-
ing). San Diego, California, USA: Academic Press, 1999.

[11] A. A. K. Stephan G. Samko and O. I. Marichev, Fractional Integrals and Derivatives, Theory and
Applications. Switzerland ; Philadelphia, Pa., USA: Gordon and Breach Science Publishers,
1993.

[12] J. Tariboon, S. K. Ntouyas, and W. Sudsutad, “Positive solutions for fractional differential equa-
tions with three-point multi-term fractional integral boundary conditions,” Advances in Difference
Equations, vol. 2014, no. 1, 2014, doi: 10.1186/1687-1847-2014-28.

[13] S. Vong, “Positive solutions of singular fractional differential equations with integral boundary
conditions,” Mathematical and Computer Modelling, vol. 57, no. 5-6, pp. 1053–1059, 2013, doi:
10.1016/j.mcm.2012.06.024.

[14] Y. Wang and Y. Yang, “Positive solutions for Caputo fractional differential equations involving
integral boundary conditions,” Journal of Nonlinear Sciences and Applications, vol. 08, no. 02,
pp. 99–109, 2015, doi: 10.22436/jnsa.008.02.03.

[15] X. Xu and H. Zhang, “Multiple positive solutions to singular positone and semipositone m-point
boundary value problems of nonlinear fractional differential equations,” Boundary Value Prob-
lems, vol. 2018, no. 1, 2018, doi: 10.1186/s13661-018-0944-8.

[16] D. Yang, H. Zhu, and C. Bai, “Positive solutions for semipositone fourth-order two-point boundary
value problems.” Electronic Journal of Differential Equations (EJDE)[electronic only], vol. 16,
pp. 1–8, 2007.

[17] W. Yang, “Positive solutions for nonlinear Caputo fractional differential equations with integral
boundary conditions,” Journal of Applied Mathematics and Computing, vol. 44, no. 1-2, pp. 39–
59, 2013, doi: 10.1007/s12190-013-0679-8.

[18] Y. Zhao, H. Chen, and L. Huang, “Existence of positive solutions for nonlinear fractional func-
tional differential equation,” Computers & Mathematics with Applications, vol. 64, no. 10, pp.
3456–3467, 2012, doi: 10.1016/j.camwa.2012.01.081.

[19] M. Zhong and X. Zhang, “The existence of multiple positive solutions for a class of semipositone
Dirichlet boundary value problems,” Journal of Applied Mathematics and Computing, vol. 38, no.
1-2, pp. 145–159, 2011, doi: 10.1007/s12190-010-0469-5.

Authors’ addresses

Songul Batik
Ege University, Department of Mathematics, 35100 Izmir, Turkey
E-mail address: batiksongul@gmail.com

Fulya Yoruk Deren
(Corresponding author) Ege University, Department of Mathematics, 35100 Izmir, Turkey
E-mail address: fulya.yoruk@ege.edu.tr

http://dx.doi.org/10.1016/j.amc.2011.04.006
http://dx.doi.org/10.1186/1687-1847-2014-28
http://dx.doi.org/10.1016/j.mcm.2012.06.024
http://dx.doi.org/10.22436/jnsa.008.02.03
http://dx.doi.org/10.1186/s13661-018-0944-8
http://dx.doi.org/10.1007/s12190-013-0679-8
http://dx.doi.org/10.1016/j.camwa.2012.01.081
http://dx.doi.org/10.1007/s12190-010-0469-5

	1. Introduction
	2. Preliminaries
	References

