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Abstract. In this paper, a two dimensional discrete-time predator-prey system with weak Allee
effect, affecting the prey population, is considered. The existence of the positive fixed points of
the system and topological classification of coexistence positive fixed point are examined. By
using the bifurcation theory, it is shown that the discrete-time predator-prey system with Al-
lee effect undergoes flip and Neimark-Sacker bifurcations depending on the parameter a. The
parametric conditions for existence and direction of bifurcations are investigated. Numerical
simulations including bifurcation diagrams, phase portraits and maximum Lyapunov exponents
of the system are performed to validate analytical results. The computation of the maximum Lya-
punov exponents confirm the presence of chaotic behaviour in the considered system. Finally,the
OGY feedback control method is implemented to stabilize chaos existing in the system.

2010 Mathematics Subject Classification: 39A33; 37G35; 39A30

Keywords: predator-prey system, fixed point, stability, flip bifurcation, Neimark-Sacker bifur-
cation, chaotic behavior, OGY feedback control method

1. INTRODUCTION

The predator-prey systems which show interactions between two species are very
dominant phenomenon in bio-mathematical literature. The first and the simplest of
predator prey system is formulated by Lotka-Volterra [2, 22]. Since this system has
neglected many real situations, significant changes in system by adding ecological
factors such as functional responses, emigration, immigration, time delays, diffusion,
Allee effect, etc. have been made by many researchers. In recent times, there have
been increasing interests on study of the complex dynamical behaviors of predator
prey systems [1, 10–19, 24].

The Allee effect can appear thanks to widespread range of biological phenomena,
such as reduced anti-predator vigilance, genetic trends, mating difficulty and feeding
deficiency at low population densities. The Allee effect introduced by Warder Clyde
Allee can be classified into two types as a weak Allee effect and strong Allee effect
to the basis of per capita growth rate at low density. The weak Allee effect represents
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that the unit growth rate is smaller when the population is small; but it will not be
negative [23]. The strong Allee effect is called that the sign of the per capita growth
rate in the limit of low density is negative. The strong Allee effect which is known
as the Allee effect have been investigated intensively, but the researches on the weak
Allee effect are relatively rare. Nowadays, it is well known that the Allee effect
plays an important and fundamental role to understand the biological systems. So,
many scholars have payed attention on Allee effect since it exhibits a rich dynamics
[5, 6, 8, 9, 12, 20, 21, 23].

In [3], the author has investigated the following discrete-time predator-prey model

Xt+1 = aXt(1−Xt)−XtYt Yt+1 =
1
β

XtYt (1.1)

where Xt and Yt represent prey and predator population respectively with t th gener-
ation. The parameters a and β are positive real numbers. The authors have analyzed
stability and Neimark-Sacker bifurcation of the discrete-time predator-prey system.
In this paper, our aim is to discuss the dynamics of the following modified discrete-
time predator-prey system (1.1) with adding weak Allee effect on prey population:

Xt+1 = aXt(1−Xt)(Xt −θ)−XtYt Yt+1 =
1
β

XtYt (1.2)

In the system (1.2), the term aXt(1−Xt)(Xt − θ) represents the growth rate of the
prey population with −1 < θ < 1. In the above the system (1.2) if 0 < θ < 1 or
−1 < θ < 0, the Allee effect is considered to be strong or weak, respectively. In this
study, we have investigated only type of weak Allee of discrete-time predator prey
system on prey population [8, 12, 20]. We studied type of strong Allee effect of the
presented model on prey population in our another paper.

The aim of the present paper is to compare dynamical behaviors of the discrete-
time predator- prey system with and without Allee effect and discuss richer and
complex behaviors of the system (1.2) with weak Allee effect on prey population.
Thereby we will investigate stability, flip and Neimark-Sacker bifurcations, and chaos
control analyses of the system (1.2) at the coexistence fixed point. In Section 2, the
conditions of the existence and stability of the fixed points are discussed. In Sec-
tion 3, flip and Neimark-Sacker bifurcation analysis are studied by choosing a para-
meter as a bifurcation parameter. Furthermore, directions of both flip bifurcation
and Neimark-Sacker bifurcation are obtained by using normal form theory [7]. In
Section 4, OGY feedback control method is implemented for chaos control due to
emergence of Neimark-Sacker bifurcation. Finally, some numerical simulations are
carried out both to illustrate the analytic finding and to display new complex dynam-
ical behaviors in Section 5.
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2. THE FIXED POINTS, THEIR EXISTENCE AND STABILITY ANALYSIS

In this section, we present the existence and stability conditions of the fixed points
of the system (1.2). So, we can obtain the following Lemma 1 about the existence of
the fixed points of the considered system:

Lemma 1. For the system (1.2), the following statements hold true:
(1) The trivial fixed point E0 = (0,0) is always feasible.

(2) The axial fixed points E1 =

(
a(θ+1)±

√
a2(θ−1)2−4a
2a ,0

)
are feasible if −1

a <

θ < 0.
(3) The unique positive fixed point E2 = (β,a(1−β)(β−θ)−1) is feasible if

a > 1
(1−β)(β−θ) and 0 < β < 1.

Proof. To find the fixed points of the system (1.2), we can solve Equation (2.1)

X∗ = aX∗(1−X∗)(X∗−θ)−X∗Y ∗, Y ∗ =
1
β

X∗Y ∗. (2.1)

We first observe that for X∗ = 0, we have the extinction fixed point (0,0) for any
values of parameters For X∗ ̸= 0 and Y ∗ = 0, we have the solution

E1 =

(
a(θ+1)±

√
a2(θ−1)2 −4a
2a

,0

)
.

The fixed point E1 has only biological meaning if −1
a < θ< 0. For X∗ ̸= 0 and Y ∗ ̸= 0,

from the second equation of the system (1.2), we obtain X∗ = β. Substituting X∗ = β

into the function (2.1); it is obtained Y ∗ = a(1−β)(β−θ)−1 > 0 if a > 1
(1−β)(β−θ)

and 0 < β < 1.
□

Now, we analyze the stability of the coexistence positive fixed point E2 of the
system (1.2) only. The Jacobian matrix of the system (1.2) evaluated at the unique
positive fixed point E2 is

J(E2) =

(
aβ−2aβ2 +aβθ+1 −β

aβ−aβ2−aθ+aβθ−1
β

1

)
.

Then characteristic polynomial of J(E2) is

F(λ) = λ
2 +
(
−2−aβ+2aβ

2 −aβθ
)

λ+2aβ−3aβ
2 +2aβθ−aθ. (2.2)

In order to investigate the dynamics of a unique positive fixed point E2 of the system
(1.2), we give the following Definition 1 and Lemma 2 [3, 10, 24]:

Definition 1. Assume that λ1 and λ2 be roots of the characteristic polynomial at
the positive fixed point (x,y). An fixed point (x,y) is called

(1) sink if |λ1|< 1 and |λ2|< 1, and it is locally asymptotically stable,
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(2) source if |λ1|> 1 and |λ2|> 1, and it is locally unstable,
(3) saddle if |λ1|> 1 and |λ2|< 1 or |λ1|< 1 and |λ2|> 1,
(4) non-hyperbolic if either |λ1|= 1 or |λ2|= 1.

Lemma 2. Let F(λ) = λ2 +Bλ+C, where B and C are two real constants and
let F(1) > 0. Suppose λ1 and λ2 are two roots of F (λ) = 0. Then the following
statements hold true:

(1) |λ1|< 1 and |λ2|< 1 if and only if F(−1)> 0 and C < 1,
(2) |λ1|> 1 and |λ2|> 1 if and only if F(−1)> 0 and C > 1,
(3) |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1) if and only if F(−1)< 0,
(4) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and

only if B2 −4C < 0 and C = 1,
(5) λ1 =−1 and |λ2| ̸= 1 if and only if F(−1) = 0 and C ̸=±1.

Now we will discuss the topological classification of the unique positive fixed
point E2 of the system (1.2) and we will apply Lemma 2 to prove the following
Lemma 3. From Lemma 2, we have F(1) = aβ− aθ− aβ2 + aβθ− 1 > 0 . Since
a > 1

(1−β)(β−θ) and 0 < β < 1, F (1) > 0. F(−1) = Ka+ 3 and F(0) = Sa where
K = 3β−5β2 +3βθ−θ, S =−3β2 +2βθ−θ+2β.

Lemma 3. Assume that a > a3 and 0 < β < 1 then for unique positive fixed point
E2 of the system (1.2) the following holds true.

(1) E2 is a sink fixed point if the following conditions hold:
(i) K > 0, S > 0 and max{a1,a3}< a < a2,

(ii) K < 0, S < 0 and max{a2,a3}< a < a1,
(iii) K < 0, S > 0 and a3 < a < min{a1,a2},

(2) E2 is a source fixed point if the following conditions hold:
(i) K > 0, S > 0 and a > max{a1,a2,a3},

(ii) K < 0, S < 0 and a3 < a < min{a1,a2},
(iii) K < 0, S > 0 and max{a2,a3}< a < a1,

(3) E2 is a saddle fixed point if the following conditions hold:
(i) K > 0, S > 0 and a3 < a < a1,

(ii) K < 0, S < 0 and min{a1,a3}< a,
(iii) K < 0, S > 0 and a > max{a1,a3},

(4) The roots of Equation (2.2) are complex with modules one if and only if
a = a2, a > a3, −1 < θ < 0 and 0 < β < 1, K > 0, S > 0,

(5) E2 non-hyperbolic fixed point if the following conditions hold:
a = a1 and a ̸=± 1

S where a1 =
−3
K , a2 =

1
S ,a3 =

1
(1−β)(β−θ) , K = 3β−5β2 +

3βθ−θ, S =−3β2 +2βθ−θ+2β.

Example 1. For the parameter values a = 3,β = 0.5,θ = −0.3 and initial condi-
tion (X0,Y0) = (0.3,0.17), the positive fixed point of the system (1.2) is obtained as
(X∗,Y ∗) = (0.5,0.2). Figure 1a is shown that the fixed point (X∗,Y ∗) of the system
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(1.2) is local asymptotically stable where x(t) prey and y(t) predator population rep-
resent, respectively. For showing the impact of the Allee effect on the stability of the
model, Figure 1b is plotted for different values of θ. From Figure 1b, it is clearly
that if −1 < θ <−0.5, then the predator density of the model subject to Allee effect
increases, otherwise (−0.5 ≤ θ < 0) it decreases.
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(A) A stable fixed point for the system (1.2).

(B) Time-population density graphs of systems with and without Allee effect for different
values of θ.

FIGURE 1

3. BIFURCATION ANALYSIS

In this section, by choosing the parameter a as a bifurcation parameter, we analyze
the existence conditions and directions of both Neimark-Sacker bifurcation and flip
bifurcation at unique positive fixed point E2 of the system (1.2).
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3.1. Neimark-Sacker Bifurcation at the Fixed Point E2

From Lemma 3 (4), we can write NSBE2 as follow:

NSBE2 = {(a,β,θ) : a > a3, aNS = a2, −1 < θ < 0 and 0 < β < 1, K > 0, S > 0} .

The two eigenvalues of the Jacobian matrix J (E2) are complex conjugate pairs
with modulus one, if the parameters change in small neighborhood of NSBE2 . This
means that Neimark-Sacker bifurcation will occur at the fixed point E2. The eigen-
values of the system (1.2) under these conditions are given by

λ,λ =
M± i

√
Q

−2S
,

where

M = 8β
2 −5(1+βθ)+2θ,

Q =−28β
4 +32(1+θ)β3 +(−9−26θ−9θ

2)β2 +4θ(1+θ)β.

One gets that |λ|=
∣∣∣λ∣∣∣= 1. The transversality condition imply that

d |λi (a)|
da

∣∣∣∣
a=aNS

=−3β
2 +2βθ−θ+2β ̸= 0 i = 1,2.

The nonresonance condition trJE2 (aNS) ̸= 0,−1 namely

a2 ̸= 2R,3R (3.1)

where R = 1
β(2β−θ−1) . Then, we have λk (aNS) ̸= 1 for k = 1,2,3,4.

Assume that q, p ∈ C2 are two eigenvectors of J (NSBE2) and transposed matrix
JT (NSBE2) corresponding to λ and λ, respectively. We have

q ∼
(

1,
F −2G

2β
− i

√
Q

2β

)T

and p ∼
(
−F −2G

2β
+ i

√
Q

2β
,1
)T

.

where F = aβ(θ+1), G = aβ2, Q = 4(F −G+1+aθ)− (F −2G)2. To achieve the
normalization < p,q >= 1 where <,> means the standard scalar product in C2, we
can take the normalized eigenvectors as

q =

(
1,

F −2G
2β

− i
√

Q
2β

)T

, p =

(
1
2
+

i(F −2G)

2
√

Q
,
−iβ√

Q

)T

.

Let xt = Xt − x∗, yt = Yt − y∗ and J (E∗) = J(x∗,y∗). We transform the fixed point
E2 of the system (1.2) into the origin (0,0) . From Taylor expansion, the system (1.2)
convert to (

xt
yt

)
→ J (E∗)

(
xt
yt

)
+

(
F1 (xt ,yt)
F2 (xt ,yt)

)
, (3.2)
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where F1 (xt ,yt)=−ax3
t +(aθ−3aβ+a)x2

t −ytxt +O
(
X4

t
)
, F2 (xt ,yt)=

xt yt
β
+O

(
X4

t
)
,

Xt = (xt ,yt)
T .

The system (3.2) can be expressed as(
xt+1
yt+1

)
= J (E∗)

(
xt
yt

)
+

1
2

B(xt ,xt)+
1
6

C (xt ,xt ,xt)+O
(
X4

t
)
,

where B(x,y) =
(

B1 (x,y)
B2 (x,y)

)
and C (x,y,u) =

(
C1 (x,y,u)
C2 (x,y,u)

)
are symmetric multi-

linear vector functions of x,y,u ∈ R2. These functions are defined by as follows:

B1 (x,y) =
2

∑
j,k=1

∂2F1

∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk = (2aθ−6aβ+2a)x1y1 − x1y2 − x2y1,

B2 (x,y) =
2

∑
j,k=1

∂2F2

∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk =
x1y2 + x2y1

β
,

C1 (x,y,u)
2

= ∑
j,k,l=1

∂3F1

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 6ax1y1u1,

C2 (x,y,u) =
2

∑
j,k,l=1

∂3F2

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0.

Now, we decompose vector X ∈ R2 as X = zq+ zq, for r near to aNS and z ∈ C.
The explicit formula of z is determined as z =< p,X > . The system (3.2) can be
transformed for all sufficiently small |a| into the form z → λ(a)z+ g(z,z,a) where
λ(a) = (1+ϕ(a))eiarctan(a) with ϕ(aNS) = 0 and g(z,z,a) is smooth complex-valued
function. After Taylor expression of g with respect to (z,z) , we obtain

g(z,z,a) = ∑
k+l≥2

1
k!l!

gkl (a)zkzl,with gkl ∈ k, l = 0,1, . . . .

By symmetric multi-linear vector functions, the Taylor coefficients gkl can be ex-
pressed by the formulas

g20 (aNS) =< p,B(q,q)>,

g11 (aNS) =< p,B(q,q)>,

g02 (aNS) =< p,B(q,q)>,

g21 (aNS) =< p,C (q,q,q)> .

The coefficient β2(aNS), which determines the direction of the appearance of the
invariant curve in a generic system exhibiting the Neimark-Sacker bifurcation, can
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be calculated via

β2 (aNS) = Re

(
e−iθ(aNS)g21

2

)
−Re

((
1−2eiθ(aNS)

)
e−2iθ(aNS)

2
(
1− eiθ(aNS)

) g20g11

)

− 1
2
|g11|2 −

1
4
|g02|2

where eiθ(aNS) = λ(aNS) .
One gets that the following result which gives parametric conditions for existence

and direction of the Neimark-Sacker bifurcation for the positive fixed point E2 of
system (1.2):

Theorem 1. Suppose that E2 is a positive unique fixed point of the system (1.2).
If (3.1) holds, β2 (aNS) ̸= 0 and the parameter a changes its value in small vici-
nity of NSBE2 then, the system (1.2) passes through a Neimark-Sacker bifurcation at
only fixed point E2. Moreover, if β2 (aNS) < 0 (respectively β2 (aNS)> 0) , then the
Neimark-Sacker bifurcation of the system (1.2) at a = aNS is supercritical (respect-
ively subcritical) and there exists a unique closed invariant curve bifurcates from E2
for a = aNS, which is attracting (respectively repelling).

3.2. Flip Bifurcation at the Fixed Point E2

Let us consider the term of FBE2 as follows:

FBE2 = {(a,β,θ) : a > a3, aF = a1,−1 < θ < 0 and 0 < β < 1,K < 0,S < 0} .

We consider the system (1.2) at fixed point E2 with parameters lie in FBE2 . The
eigenvalues of the system (1.2) under these conditions are obtained as λ1(aF) =−1,
λ2(aF) =

3S
K .

The condition |λ2(aF)| ̸= 1 leads to

K ̸=±3R, (3.3)

where R = 3β2 +θ−2βθ−2β.
Let xt =Xt −x∗, yt =Yt −y∗ and J (E∗) = J(x∗,y∗). We transform the fixed point E2

of the system (1.2) into the origin (0,0) . By first-order Taylor expansion, the system
(1.2) can be written(

xt
yt

)
→ J (E∗)

(
xt
yt

)
+

(
F1 (xt ,yt ,a)
F2 (xt ,yt ,a)

)
, (3.4)

where F1 (xt ,yt) = −a1x3
t +(a1 − 3a1β+ a1θ)x2

t − ytxt +O
(
X4

t
)
, F2 (xt ,yt) =

xt yt
β

+

O
(
X4

t
)
.

The system (3.4) can be expressed as(
xt+1
yt+1

)
= J (E∗)

(
xt
yt

)
+

1
2

B(xt ,xt)+
1
6

C (xt ,xt ,xt)+O
(
x4

t
)
,
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where B(x,y) =
(

B1 (x,y)
B2 (x,y)

)
and C (x,y,u) =

(
C1 (x,y,u)
C2 (x,y,u)

)
are symmetric multi-

linear vector functions of x,y,u ∈ R2. These functions are defined by as follows:

B1 (x,y) =
2

∑
j,k=1

∂2F1

∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk = (2a1 −6a1β+2a1θ)x1y1 − x1y2 − x2y1,

B2 (x,y) =
2

∑
j,k=1

∂2F2

∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk =
x1y2 + x2y1

β
,

C1 (x,y,u) =
2

∑
j,k,l=1

∂3F1

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul =−6a1x1y1u1,

C2 (x,y,u) =
2

∑
j,k,l=1

∂3F2

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0.

Now, we assume that q, p ∈ R2 are two eigenvectors of J (FBE2) for eigenvalue
λ1(aFB) = −1 such that J (FBE2)q = −q and JT (FBE2) p = −p. then by direct cal-
culation we get

q ∼
(
(−3β+5−3βθ+θ)β

−3β+2θ+4β2 −3βθ
,1
)T

and p ∼
(

1,
β

2

)T

.

To achieve the normalization < p,q >= 1 where <,> means the standard scalar
product in R2, we can take the normalized vectors as

q =

(
(−3β+5−3βθ+θ)β

−3β+2θ+4β2 −3βθ
,1
)T

,

p =

(
2(−3β+2θ+4β2 −3βθ)

β(−9β+14β2 −9βθ+4θ)
,
−3β+2θ+4β2 −3βθ

−9β+14β2 −9βθ+4θ

)T

.

We see that < p,q>= 1. The direction of the flip bifurcation is determined by sign
c(aF) and is computed by

c(aF) =
1
6
⟨p,C(q,q,q)⟩− 1

2
〈

p,B(q,(A− I)−1B(q,q)
〉
. (3.5)

From the above obtained results, one gets the following theorem for direction and
existence of flip bifurcation for the positive fixed point E2 of the system (1.2):

Theorem 2. Suppose that E2 is a positive unique fixed point of the system (1.2). If
(3.3) holds, c(aF) ̸= 0 and the parameter a varies its value in a small vicinity of FBE2 ,
the system (1.2) passes through a flip bifurcation at positive fixed point E2. Moreover,
if c(aF)< 0 (respectively c(aF)> 0) , then there exists unstable (respectively stable)
period-2 orbits bifurcate from E2.
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4. CHAOS CONTROL

The theory of bifurcation and chaos control have significant characteristics in bio-
logical species. So, in this section, we display how chaos can be ruled out from
the irregular complex dynamics of the system (1.2) such as bifurcations and chaotic
attractors. There is chaotic behavior in many areas like physics, biochemistry, econo-
metrics, cardiology, communications, biology, and engineering. As a matter of fact,
it is wished that the system be optimized with respect to some performance criterion
and chaos be avoided in dynamical systems. The aim of chaos control is to make
chaotic behavior more predible and stable. Chaos control is a technique of stabiliza-
tion via the help of small perturbations. There are many techniques for chaos control
in literature [10,11]. The chaotic motion of the considered system (1.2) is controlled
on the stable orbit through OGY control strategy, taking a as a control parameter. In
order to apply OGY method introduced by Ott et al [4], we rewrite system (1.2) in
the following form:

Xt+1 =aXt(1−Xt)(Xt −θ)−XtYt = f (Xt ,Yt ,a) ,

Yt+1 =
1
β

XtYt = g(Xt ,Yt ,a) ,
(4.1)

where a denotes parameter for chaos control. Furthermore, a is restricted to lie in
some small interval |a−a0| < µ with µ > 0 and a0 represents the nominal value be-
long to chaotic region. We apply the stabilizing feedback control strategy in order to
move the trajectory towards the desired orbit. Suppose that (X∗,Y ∗) be unstable fixed
point of the system (1.2) in chaotic region produced by the emergence of Neimark-
Sacker bifurcation, then the system (4.1) can be approximated in the neighbourhood
of the unstable fixed point (X∗,Y ∗) by the following linear map:[

Xt+1 −X∗

Yt+1 −Y ∗

]
≈ A

[
Xt −X∗

Yt −Y ∗

]
+B [a−a0] , (4.2)

where

A =

[
∂ f (X∗,Y ∗,a0)

∂X
∂ f (X∗,Y ∗,a0)

∂Y
∂g(X∗,Y ∗,a0)

∂X
∂g(X∗,Y ∗,a0)

∂Y

]
=

[
a0β−2a0β2 +a0βθ+1 −β

−−a0β+a0θ+a0β2−a0βθ+1
β

1

]

and

B =

[
∂ f (X∗,Y ∗,a0)

∂a
∂g(X∗,Y ∗,a0)

∂a

]
=

[
β2 −βθ−β3 +β2θ

0

]
.

In order to check that the system (4.1) is controllable, the following matrix is
computed:
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C = [B : AB]

=

[
β2 −βθ−β3 +β2θ (a0β−2a0β2 +a0βθ+1)(β2 −βθ−β3 +β2θ)

0 − (a0β+a0θ+a0β2−a0βθ+1)(β2−βθ−β3+β2θ)
β

]
.

C is of rank 2 at positive fixed point. We suppose that [a−a0] = −K
[

Xt −X∗

Yt −Y ∗

]
,

where K = [ρ1 ρ2] , then the system (4.2) can be written as follows:[
Xt+1 −X∗

Yt+1 −Y ∗

]
≈ [A−BK]

[
Xt −X∗

Yt −Y ∗

]
.

The corresponding controlled system of (1.2) can be written as:
Xt+1 = (a0 −ρ1 (Xt −X∗)−ρ2 (Yt −Y ∗))Xt(1−Xt)(Xt −θ)−XtYt ,

Yt+1 =
1
β

XtYt .
(4.3)

In addition, if the modulus the matrix A−BK ’s eigenvalues is less than, the fixed
point (X∗,Y ∗) of the system (4.3) is locally asymptotically stable. The Jacobian
matrix A−BK of the controlled system (4.3) can be written as follows:

[A−BK] =

[
a −β− (β2 −βθ−β3 +β2θ)ρ2

−−a0β+a0θ+a0β2−a0βθ+1
β

1

]
where

a = a0β−2a0β
2 +a0βθ+1− (β2 −βθ−β

3 +β
2
θ)ρ1.

The characteristic equation of the Jacobian matrix A−BK is given by

P(λ) = λ
2 − (tr(A−BK))λ+det(A−BK) = 0. (4.4)

Let λ1 and λ2 are roots of characteristic equation (4.4), then

λ1 +λ2 = (−β
2 +βθ+β

3 −β
2
θ)ρ1 +2+a0β−2a0β

2 +a0βθ,

λ1λ2 = ((β−β
2)θ−β

2 +β
3)ρ1 +((a0β

2 +a0 −2a0β)θ2

+(1−2a0β
3 +4a0β

2 +(−1−2a0)β)θ+β
4a0 −2a0β

3

+(a0 +1)β2 −β)ρ2 +(2a0β−a0)θ+2a0β−3a0β
2

(4.5)

are valid. In order to obtain the lines of marginal stability we must solve equations
λ1 =±1 and λ1λ2 = 1. These restrictions make sure that λ1 and λ2 have absolute less
than 1. Assume that λ1λ2 = 1, then second part of Equation (4.5) implies that:

L1 :=
(
β

3 +(−1−θ)β2 +βθ
)

ρ1 +
(
β

4a0 +(2a0(−1−θ)β3

+(a0 +4a0θ+θ
2a0 +1)β2 + (−1−2θ

2a0 +(−1−2a0)θ
)

β+θ+θ
2a0
)

ρ2

−3a0β
2 +(2a0(1+θ))β−a0 −1 = 0
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Moreover, we suppose that λ1 = 1, then using the equations (4.5) yield that:

L2 :=
(
β

4a0 +(−2a0 −2a0θ)β3 +(a0 +4a0θ+θ
2a0 +1)β2

+(−1−2θ
2a0 +(−1−2a0)θ

)
β+θ+θ

2a0)ρ2 +θ+θ
2a0
)

ρ2β
2

+a0(1+θ)β−a0θ−1 = 0

Finally, taking λ1 =−1 and using equations (4.5) we get

L3 :=
((
−2β

2 +2β
)

θ−2β
2 +2β

3)
ρ1 +(a0β

2 +a0 −2a0β)θ2

+
(
1−2a0β

3 +4a0β
2 +(−1−2a0)β

)
θ+β

4a0β
3 −2a0β

3
β

3

+(a+1)β2 −β)ρ2 +(−a0 +3a0β)θ+3−5a0β
2 +3a0β = 0

Then, stable eigenvalues lie within the triangular region in ρ1ρ2 plane bounded by
the straight lines L1, L2, L3 for particular parametric values.

5. NUMERICAL ANALYSIS

In this section, numerical simulations including bifurcation diagrams, phase por-
traits, and maximum Lyapunov exponents are presented both to illustrate the results
of theoretical analyses and to exhibit complex and new dynamical behaviours.

Example 2. By taking the parameters values (β,θ) = (0.5,−0.1), the critical value
of Neimark-Sacker bifurcation point is aNS = 4. Also, the positive fixed point of the
system (1.2) is evaluated as E2 = (0.5,0.2) . Using these parameter values, we get the

Jacobian matrix as JE2(aNS) =

[
0.8 −0.5
0.4 1

]
. Also, we have

λ1,2 = 0.9±0.4358898944i,

g20(aNS) = 0.276346573+0.795433216i,

g11(aNS) = 2.774882688+4.072599295i,

g02(aNS) = 7.749765376+4.635245515i,

g21(aNS) =−15.000000−23.93149824i,

β2 (aNS) =−41.52149634 < 0.

Therefore, Neimark-Sacker bifurcation is supercritical and it shows the correctness of
Theorem 1. The bifurcation diagram, maximum Lyapunov exponents and the phase
portraits of the system (1.2) are shown in Figure 2 and Figure 3, respectively.

The bifurcation diagrams shown in Figure 2a and Figure 2b show that the stability
of E2 happens for a < 4 and loses its stability at a = 4 and an attracting invariant
curve appears if r > 4. We compute the maximum Lyapunov exponents for detecting
the presence of chaos in the model. The existence of chaotic regions in the parameter
space is clearly visible in Figure 2c.
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(A) (B) (C)

FIGURE 2. Bifurcation diagrams and MLE for the system (1.2)
with values of β = 0.5,θ = −0.1 and a ∈ [3.8,4.6] and initial value
(x0,y0) = (0.4,0.1).

FIGURE 3. Phase portraits of the system (1.2) for different values of
a.

The phase portraits for different values of a are presented in Figure 3, which clearly
depicts the process of how a smooth invariant circle bifurcates from the stable fixed
point E2 = (0.5,0.2) . When a exceeds 4 there appears a circular curve enclosing the
fixed point E2, and its radius becomes larger with respect to the growth of a.

Example 3. For the parameters values θ = −0.8, β = 0.7, the critical value of
flip bifurcation point is obtained as aF = 2.439024390 and the positive fixed point of
the system (1.2) is evaluated as E2 = (0.6999999998,0.09756097611) . The Jacobian

matrix of the system (1.2) is JE2(aF) =

[
−1.048780486 −0.6999999998
0.1393728231 1.000000000

]
.
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(A) (B) (C)

FIGURE 4. Bifurcation diagrams and MLE for the system (1.2) with
values of θ = −0.8,β = 0.7,aF = 2.439024390 and initial value
(x0,y0) = (0.67,0.08).

The eigenvalues are evaluated as λ1 = −1, λ2 = 0.9512195120. Direct computa-
tion shows

q ∼ (−0.9975807099,0.06951781980)T ,

p ∼ (−0.9438583564,−0.3303504248)T .

To obtain the normalization ⟨p,q⟩= 1, we can take normalized vectors as

q = (−0.9975807099,0.06951781980)T

p = (−1.027485787,−0.3596200254)T .

Then, symmetric multi-linear vector functions are obtained as follows

B1(x,y) =−9.268292682 x1y1 − x1y2 − x2y1,

B2(x,y) = 1.428571429 x1y2 +1.428571429 x2y1,

C1(x,y,u) =−14.63414634 x1y1u1,

C2(x,y,u) = 0.

From (3.5), the critical part is obtained as c(aF) =−1.091637569 < 0. Therefore,
the flip bifurcation is unstable period-2 orbits bifurcate from E2 and it shows the
correctness of Theorem 2. The bifurcations diagram, maximum Lyapunov exponents
and the phase portraits of the system (1.2) are shown in Figure 4.

From Figures 4a and 4b, we see that for a < 2.439024390 the fixed point E2 is
stable, and loses its stability at the flip bifurcation parameter value a = 2.439024390.
We also observe that if let a > 2.439024390, the system (1.2) with Allee effect dis-
plays chaotic dynamics through flip bifurcation in Figure 4a and 4b. After the stable
fixed point, periodic oscillations are observed with periods 2,4,8 and eventually lead-
ing to chaos with gradually increasing the parameter a. Moreover, the maximum Lya-
punov exponents are computed and the existence of chaotic regions in the parameter
space is clearly visible in Figure 4c.
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Example 4. In order to discuss the OGY feedback control method for system (1.2),
we take a0 = 4.2 and (β,θ) = (0.5,−0.1). In this case system (1.2) has unique pos-
itive fixed point (X∗,Y ∗) = (0.5,0.260) which is unstable. Then corresponding con-
trolled system is given by:

Xt+1 = (4.2−ρ1(Xt −0.5)−ρ2(Yt −0.260))Xt(1−Xt)(Xt +0.1)−XtYt

Yt+1 =
1
β

XtYt
(5.1)

where K = [ρ1 ρ2] be gain matrix and (X∗,Y ∗) = (0.5,0.26) is unstable fixed point
of the system (1.2). We have

A =

[
0.790 −0.5
0.520 1

]
, B =

[
0.150
0

]
, C =

[
0.150 0.11850
0 0.07800

]
.

Then it is easy to check that rank of C matrix is 2. Therefore, the system (5.1) is
controllable. Then, Jacobian matrix A−BK of the controlled system (5.1) is given
by

[A−BK] =

[
0.790−0.150ρ1 −0.5−0.150ρ2
0.520000 1

]
Moreover, the lines L1, L2 and L3 of marginal stability are given by:

L1 = 0.05−0.15ρ1 +0.0780ρ2 = 0,
L2 = 0.26+0.0780ρ2 = 0,
L3 = 3.84−0.3ρ1 +0.078ρ2 = 0.

Then, the stable triangular region bounded by marginal lines L1, L2 and L3 for the
controlled system (5.1) is shown in Figure 5.

6. DISCUSSIONS

In this paper, we extend the system (1.1) by introducing weak Allee effect and
investigate the dynamical behaviors of the modified the system (1.2) around coexist-
ence fixed point. The system (1.2) obtained by modified from of the system (1.1) has
different dynamics properties compared to the system (1.1). While the system (1.1)
has two fixed points, model (1.2) has three fixed points. One of them is the same as
in the system (1.1) without Allee effect, E0 and the others have a new expressions E1
and E2. Because of its biological significance, we focused on the coexistence fixed
point E2 and analyze the topological classifications of this fixed point of the discrete-
time predator-prey system with weak Allee effect. In Figure 1b, we have compared
the local stability analysis of the coexistence fixed point of the predator-prey model
with and without Allee effect. One can see that the system with Allee effect reaches
the fixed solution more slowly than in the system without the Allee effect. Moreover,
if −1 < θ < −0.5, then the predator density of the model subject to Allee effect
increases, otherwise (−0.5 ≤ θ < 0) it decreases.
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–10

0

10

20

30

40

50

p2

–40 –20 20 40

p1

FIGURE 5. Triangular stability region bounded by L1,L2 and L3 for
the controlled system (5.1).

We display that flip and Neimark-Sacker bifurcations happen at certain bifurcation
parameter a and some conditions on parameters θ and β. The directions of both flip
bifurcation and Neimark-Sacker bifurcation are given. In order to support to obtained
theoretical results and show the complex dynamical behaviors of the system (1.2),
we present bifurcation diagrams, phase portraits and maximum Lyapunov exponents.
Maximum Lyapunov exponents exhibit the existences of periodic orbits and chaos as
parameter a increases.

In study [3], while the system (1.1) undergoes Neimark- Sacker bifurcation around
the coexistence fixed point, the system (1.2) undergoes both flip and Neimark- Sacker
bifurcations. Under the influence of Neimark-Sacker bifurcation unstable invariant
closed curves are produced. Moreover, when the system (1.1) undergoes flip bifurc-
ation, we can observe the existence many attractors such as steady state, period-2
orbit, period-4 orbit, period-8 orbit, chaos etc as parameter a varies. These results
show that the system (1.2) has far richer dynamics compared to the system (1.1).

On the other hand, Neimark-Sacker bifurcation is successfully controlled with
OGY control strategy. From our numerical investigation, it is clear that OGY method
based on feedback control strategy can restore the stability. This controlling method
is effective in order to advance or completely vanish the chaos due to emergence of
Neimark-Sacker bifurcation.
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