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Abstract. In Geometric Function Theory of Complex Analysis, there have been many interesting
and fruitful usages of a wide variety of differential subordinations for holomorphic functions in
the unit disk U:

U= {z : z ∈ C and |z|< 1} .
Here, in this article, we derive some properties of the first-order differential subordinations for
holomorphic functions which are defined in the unit ball B:

B= {z : z ∈ Cn and ∥z∥< 1}
by using a certain class of admissible functions. We also make use of the theory of biholomorphic
functions in our investigation here.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

We first introduce some of the notation that will be used in this paper. The symbol
ν′ represents the transpose of the vector ν. We denote by Cn the space of n complex
variables z = (z1,z2, · · · ,zn)

′ with an arbitrary norm ∥ · ∥. The origin (0,0, · · · ,0) is
denoted by 0.

Let B given by
B= {z : z ∈ Cn and ∥z∥< 1}

be the unit ball in Cn. and Also let H (B) denote the class of holomorphic functions
f : B−→ Cn which have the following form:

f (z) = z+
∞

∑
n=2

anzn. (1.1)

We now review the principle of subordination between holomorphic functions in the
normed space (Cn,∥ · ∥). Let the functions f and g be members of the class H (B).
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Then the function f is said to be subordinate to g, if there exists a function ϕ ∈ H (B)
with

ϕ(0) = 0 and ∥ϕ(z)∥< 1 (z ∈ B),

such that

f (z) = g
(
ϕ(z)

)
.

This subordination is denoted by

f ≺ g or f (z)≺ g(z) (z ∈ B).

Further, if the function g is biholomorphic in B, then

f ≺ g (z ∈ B) ⇐⇒ f (0) = g(0) and f (B)⊆ g(B).

Formally, a biholomorphic function is a function φ defined on an open subset U of
the n-dimensional complex space Cn with values in Cn, which is holomorphic and
one-to-one, such that its image is an open set V in Cn and the inverse φ−1 : V −→U
is also holomorphic (see, for details, [6]).

We next define the classes of starlike and convex functions in the unit ball B as
follows.

Definition 1. A function f ∈ H (B) with f (z) ̸= 0 is said to be starlike in B, if it
satisfies the following condition:

ℜ

(
z f ′(z)
f (z)

)
> 0 (z ∈ B).

Furthermore, a function f ∈ H (B) with f ′(z) ̸= 0 is said to be convex in B, if it
satisfies the following condition:

ℜ

(
z f ′′(z)
f ′(z)

+1
)
> 0 (z ∈ B).

Our next definitions (Definitions 2, 3 and 4 below) make use of biholomorphic
functions.

Definition 2 ([6]). Let ψ : Cn ×Cn ×B −→ C. Also let h be a biholomorphic
function in B. If p is holomorphic in B and satisfies the first-order differential subor-
dination given by

ψ
(

p(z),zp′(z);z
)
≺ h(z) (z ∈ B), (1.2)

then p is called a solution of the differential subordination (1.2). The function q is
called a dominant of the solutions of the differential subordination or, more simply,
a dominant if p(z) ≺ q(z) for all solution p of (1.2). A dominant q̌ that satisfies
q̌(z)≺ q(z) for all dominants q of (1.2) is said to be the best dominant.
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Definition 3 ([6]). Let k ≧ 1 and ξ ∈ ∂B. Also let q be a biholomorphic function
in Bρ with ρ > 1. Then the subset Qk(q,ξ) of Cn ×Cn is defined by

Qk(q,ξ) =
{
(u,v) : u = q(ξ) and k

∥∥∥(q′(ξ)
)−1

∥∥∥−1
≦ ∥v∥≦ k

∥∥q′(ξ)
∥∥} .

And the subset Q(q) of Cn ×Cn is defined by

Q(q) =
⋃

{Qk(q,ξ) : k ≧ 1 (ξ ∈ ∂B)} .

Definition 4 ([6]). Let Ω ⊂ Cn and q be a biholomorphic function in Bρ with
ρ > 1. The class of admissible functions Ψ [Ω,q] consists of those functions ψ :
Cn ×Cn ×B −→ C that satisfy the conditions ψ(q(0),0;0) ∈ Ω and ψ(u,v;z) /∈ Ω

when (u,v) ∈ Q(q) and z ∈ B.

The following lemma will be used in proving our main results.

Lemma 1 ([6]). Let ψ ∈ Ψ [Ω,q] and suppose that p ∈ H (B) with p(0) = q(0). If

ψ
(

p(z),zp′(z);z
)
∈ Ω,

then p ≺ q.

The existing literature in Geometric Function Theory of Complex Analysis con-
tains a considerably large number of interesting investigations dealing with differen-
tial subordination problems for analytic functions in the unit disk U (see, for example,
[1–5, 7–18]). In particular, in the recently-published survey-cum-expository review
article by Srivastava [7], the so-called (p,q)-calculus was exposed to be a rather
trivial and inconsequential variation of the classical q-calculus, the additional para-
meter p being redundant or superfluous (see, for details, [7, p. 340]). In the present
work, we determine certain appropriate classes of admissible functions and invest-
igate some first-order differential subordination properties of holomorphic functions
defined in unit ball B. We also make use of the theory of biholomprphic functions in
our investigation here.

2. A SET OF MAIN RESULTS

In this section, we first give the following definition.

Definition 5. Let Ω⊂Cn and q be a biholomorphic function in Bρ with ρ> 1. The
class of admissible functions ΦB [Ω,q] consists of those functions φ :Cn×Cn×B−→
C that satisfy the conditions φ(1,0;0) ∈ Ω and φ(s, t;z) /∈ Ω when (s, t) ∈ Q(q) and
z ∈ B.

Theorem 1. Let φ ∈ ΦB [Ω,q]. If f ∈ H (B) satisfies the following inclusion
relation: {

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)

(z ∈ B)
}
⊂ Ω, (2.1)
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then
z f ′(z)
f (z)

≺ q(z).

Proof. For a given f ∈ H (B), we define the the function p by

p(z) =
z f ′(z)
f (z)

. (2.2)

It is obvious that the function p is holomorphic in B and p(0) = 1. By simple calcu-
lations using (2.2), we see that

p(z)+
zp′(z)
p(z)

=
z f ′′(z)
f ′(z)

+1. (2.3)

We now define the transformation from Cn ×Cn to C by

s(u,v) = u and t(u,v) = u+
v
u
.

We also set
ψ(u,v;z) = φ(s, t;z) = φ

(
u,u+

v
u

;z
)
. (2.4)

If we use the equations (2.2) and (2.3), it follows from (2.4) that

ψ
(

p(z),zp′(z);z
)
= φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)
. (2.5)

In view of (2.1) and (2.5), we thus find that

ψ
(

p(z),zp′(z);z
)
∈ Ω.

Hence, from (2.4), we observe that the admissibility condition for φ ∈ ΦB [Ω,q] in
Definition 5 is equivalent to the admissibility condition for ψ as given in Definition
4. Thus, clearly, ψ ∈ Ψ [Ω,q] and, by applying the Lemma in Section 1, we obtain
p(z)≺ q(z) or, equivalently,

z f ′(z)
f (z)

≺ q(z).

This completes the proof of Theorem 1. □

We next consider the special situation when there is a biholomorphic mapping
h from B onto Ω. In this case, Ω = h(B) and the class ΦB [h(B),q] is written as
ΦB [h,q]. The following result is an immediate consequence of Theorem 1.

Theorem 2. Let φ ∈ ΦB [h,q] and f ∈ H (B). If

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)

is holomolphic in B and

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)
≺ h(z), (2.6)



SOME APPLICATIONS OF FIRST-ORDER DIFFERENTIAL SUBORDINATIONS 893

then
z f ′(z)
f (z)

≺ q(z).

The next result is an extension of Theorem 1 to the case when the behaviour of q
on the boundary of B is not known.

Theorem 3. Let the function q be biholomorphic on B. Also let φ ∈ ΦB [Ω,qη] for
some η ∈ (0,1), where qη(z) = q(ηz). Also let f ∈ H (B). If

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)

is holomorphic in B and

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)
∈ Ω,

then
z f ′(z)
f (z)

≺ q(z).

Proof. Since q is biholomorphic on B, the function qη is biholomorphic on Bρ for
some ρ > 1. Thus, by applying Theorem 1, we obtain

z f ′(z)
f (z)

≺ qη(z).

The result asserted by Theorem 3 is now deduced from the fact that qη(z)≺ q(z). □

The next result gives the best dominant of the differential subordination (2.6).

Theorem 4. Let h be a biholomorphic function on Bρ with ρ > 1. Also let
φ : Cn ×Cn ×B−→ C. Suppose that the following differential equation:

φ

(
q(z),q(z)+

zq′(z)
q(z)

;z
)
= h(z) (2.7)

has a solution q with q(0) = 1 and satisfies one of the following conditions:
(1) φ ∈ ΦB [h,q] ;
(2) φ ∈ ΦB [h,qη] for some η ∈ (0,1).

If f ∈ H (B) and

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1;z
)

is holomorphic in B, then the differential subordination (2.6) implies that

z f ′(z)
f (z)

≺ q(z)

and q is the best dominant.
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Proof. By applying Theorem 1 and Theorem 3, we deduce that q is a dominant of
the differential subordination (2.6). Since q satisfies (2.7), it is also a solution of (2.6)
and hence q is the best dominant among all dominants of (2.6). □

In the particular case, we introduce a class of admissible functions, which deals
with differential subordinations with dominants of the form q : B −→ Cn given by
q(z) = Mz, where M is a positive constant. In this case, q is a biholomorphic function
on B and q(B) is a ball in Cn. The class ΦB [Ω,Mz], which is denoted simply by
ΦB [M], can be expressed in the following form.

Definition 6. Let Ω ⊂ Cn and let M be a positive constant. The class ΦB [M] of
admissible functions consists of those functions φ : Cn ×Cn ×B −→ Cn that satisfy
the conditions φ(0,0;0) ∈ Ω and φ(s, t;z) /∈ Ω when (s, t) ∈ Q(M) and z ∈ B, where

Q(M)≡ Q(M,z) = {(s, t) ∈ Cn ×Cn : ∥s∥= M and ∥t∥≧ M} .

Theorem 5. Let φ ∈ ΦB [M]. If f ∈ H (B) satisfies the following condition:

φ
(
z f ′(z),z2 f ′′(z);z

)
∈ Ω, (2.8)

then
z f ′(z)≺ Mz (M > 0).

Proof. For given f ∈ H (B), we define the the function p by

p(z) = z f ′(z). (2.9)

It is obvious that the function p is holomorphic in B and p(0) = 1. After some
computations and by using (2.9), we conclude that

zp′(z)− p(z) = z2 f ′′(z). (2.10)

We now define the transformation from Cn ×Cn to Cn by

s(u,v) = u and t(u,v) = v−u.

We assume that
ψ(u,v;z) = φ(s, t;z) = φ(u,v−u;z) . (2.11)

In view of (2.9) and (2.10), we find from (2.11) that

ψ
(

p(z),zp′(z);z
)
= φ

(
z f ′(z),z2 f ′′(z);z

)
. (2.12)

Hence (2.8) becomes ψ(p(z),zp′(z);z) ∈ Ω.
We next find from (2.11) that the admissibility condition for φ ∈ ΦB [M] in Defin-

ition 6 is equivalent to the admissibility condition for ψ as given in Definition 4 and,
by applying the Lemma in Section 1, we obtain p(z)≺ Mz or, equivalently,

z f ′(z)≺ Mz (M > 0).

□
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3. CONCLUDING REMARKS AND OBSERVATIONS

In Geometric Function Theory of Complex Analysis, there are many interesting
and fruitful usages of a wide variety of differential subordinations for holomorphic
functions in the unit disk U:

U= {z : z ∈ C and |z|< 1} .
Here, in this article, we have derived several properties of the first-order differential
subordinations for holomorphic functions which are defined in the unit ball B:

B= {z : z ∈ Cn and ∥z∥< 1}
by using a certain class of admissible functions. In our investigation, we have made
use of biholomorphic functions as well. We have also indicated how one can deduce
a number of special cases and consequences for our main results (Theorem 1 and
Theorem 5).

We conclude our investigation by remarking that, in order to motivate further re-
searches on the subject-matter of this article, we have chosen to draw the attention of
the interested readers toward a considerably large number of related recent publica-
tions on the subjects which we have discussed here.
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