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Abstract. In the present paper, we introduce and study the concepts of statistical convergence
and statistical summability for martingale sequences of random variables via deferred Cesàro
mean. We then establish an inclusion theorem concerning the relation between these two beauti-
ful and potentially useful concepts. Also, based upon our proposed notions, we state and prove
new Korovkin-type approximation theorems with algebraic test functions for a martingale se-
quence over a Banach space. Moreover, we demonstrate that our theorems effectively extend and
improve most (if not all) of the previously existing results (in statistical and classical versions).
Finally, by using the generalized Bernstein polynomials, we present an illustrative example of a
martingale sequence in order to demonstrate that our established theorems are stronger than their
traditional and statistical versions.
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1. INTRODUCTION AND MOTIVATION

Let (Ω,F ,P) be a probability measurable space and suppose that (Xn) is a ran-
dom variable defined over this space. Also let Fn ⊆ F (n ∈ N) be a monotonically
increasing sequence of σ-fields of measurable sets. Now, considering the random
variable (Xn) and the measurable functions (Fn), we adopt a stochastic sequence
(Xn,Fn;n ∈ N).

A given stochastic sequence (Xn,Fn;n ∈ N) is said to be a martingale sequence if
(i) E|Xn|< ∞,

(ii) E(Xn+1|Fn) = Xn almost surely (a.s.) and

(iii) (Fn) is a measurable sequence of functions,
where E is the mathematical expectation.
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We now recall the definition of convergence of martingale sequences of random
variables.

Definition 1. A martingale sequence (Xn,Fn;n ∈ N) with E|Xn| is bounded and
Prob(Xn) = 1 (that is, with probability 1) is said to be convergent to a martingale
(X0,F0), if

lim
n→∞

(Xn,Fn) −→ (X0,F0) (E|X0|< ∞).

Recently, the study of statistical convergence has been one of the beautiful as-
pects of the theory of sequence spaces. The investigation and study of statistical
convergence are potentially useful in sequence space because it is more general than
the usual convergence. Such a concept was first introduced independently by two
eminent mathematicians, Fast [6] and Steinhaus [24]. Subsequently, by using this
nice concept with different settings, various researchers developed many interest-
ing and useful results in several fields of mathematics such as summability theory,
Fourier series, approximation theory, probability theory, measure theory, and so on.
Moreover, the introduction of statistical probability convergence has enhanced the
glory of this develoment. For some recent research works in this direction, see
[2–4, 7–9, 11, 17, 21] and [22].

Let U⊆ N. Also let

Un = {i : i ≦ n and i ∈ U}.

Then the natural density d(U) of U is defined by

d(U) = lim
n→∞

|Un|
n

= b,

where b is a real and finite number and |Un| is the cardinality of Un.
A given sequence (an) is statistically convergent to λ if, for each ε > 0,

Uε = {i : i ∈ N and |ai −λ|≧ ε}

has zero natural density (see [6] and [24]). Thus, for each ε > 0, we have

d(Uε) = lim
n→∞

|Uε|
n

= 0.

We write
stat lim

n→∞
an = λ.

We now introduce the definition of statistical convergence of martingale sequence.

Definition 2. A bounded martingale sequence (Xn,Fn,n ∈N) having its probabil-
ity 1 is said to be statistically convergent to a martingale (X0,F0) with E|X0|< ∞ if,
for all ε > 0,

Uε = {i : i ≦ n and |(Xi,Fi)− (X0,F0)|≧ ε}
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has zero natural density. This means that, for every ε > 0, we have

d(Uε) = lim
n→∞

|Uε|
n

= 0.

We write
statmart lim

n→∞
(Xn,Fn) = (X0,F0).

Example 1. Let (Fn,n ∈ N) be a monotonically increasing sequence of 0-mean
independent random variables over σ-fields. Also let (Xn) ∈ Fn be such that

Xn =

{
1 (n = m2; m ∈ N)
0 (otherwise).

It is easy to see that the martingale sequence (Xn,Fn;n∈N) is statistically convergent
to zero, but not simply martingale convergent.

Based on our proposed definition, we now establish a theorem concerning a rela-
tion between the ordinary and statistical versions of convergence of martingale se-
quences.

Theorem 1. If a martingale sequence (Xn,Fn,n∈N) is convergent to a martingale
(X0,F0) with E|X0|< ∞, then it is statistically convergent to the same martingale.

Proof. Let the martingale sequence (Xn,Fn;n ∈ N) be bounded and convergent
with probability 1, then there exists a martingale (X0,F0) with E|X0|< ∞, that is,

lim
n→∞

(Xn,Fn) −→ (X0,F0).

As the given martingale sequence (Xn,Fn;n ∈N) is bounded with probability 1, then,
for every ε > 0, we have

1
n
{i : i ≦ n and |(Xi,Fi)− (X0,F0)|≧ ε} ⊆ lim

n→∞
|(Xn,Fn)− (X0,F0)|< ε.

Consequently, by Definition 2, we obtain

d(Uε) = lim
n→∞

|Uε|
n

= 0,

where, just as in Definition 2, we have

Uε := {i : i ≦ n and |(Xi,Fi)− (X0,F0)|≧ ε}.
This evidently completes the demonstration of Theorem 1. □

Motivated essentially by the above-mentioned investigations, here we introduce
and study the concepts of statistical convergence and statistical summability for mar-
tingale sequences of random variables via deferred Cesàro mean. We then establish
an inclusion theorem with associated example concerning a relation between these
new concepts. Also, based upon our proposed methods, we state and prove the new
Korovkin-type approximation theorems, with algebraic test functions, involving a
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martingale sequence over a Banach space. Moreover, we demonstrate that our theor-
ems effectively extend and improve most (if not all) of the previously existing results
(in both the statistical and classical versions). Finally, by considering the generalized
Bernstein polynomials, we present an illustrative example of a martingale sequence in
order to demonstrate that our established theorems are stronger than their traditional
and statistical versions.

2. DEFERRED CESÀRO MARTINGALE SEQUENCE

Let (un) and (vn) be sequences of non-negative integers such that un < vn and

lim
n→∞

vn =+∞.

Then the deferred Cesàro mean for the martingale sequence (Xn,Fn;n ∈N) is defined
by

D(Xn,Fn) =
(Xun+1,Fun+1)+(Xun+2,Fun+2)+ · · ·+(Xvn ,Fvn)

vn −un

=
1

vn −un

vn

∑
k=un+1

(Xk,Fk).

We now present the definitions of deferred Cesàro statistical convergence and statist-
ically deferred Cesàro summability of martingale sequences.

Definition 3. Let (un) and (vn) be sequences of non-negative integers. A bounded
martingale sequence (Xn,Fn;n ∈N) having probability 1 is deferred Cesàro statistic-
ally convergent to a martingale (X0,F0) with E|X0|< ∞ if, for all ε > 0,

Uε = {i : un < i ≦ vn and |(Xi,Fi)− (X0,F0)|≧ ε}

has zero natural density. This means that, for every ε > 0, we have

lim
n→∞

|{i : un < i ≦ vn and |(Xi,Fi)− (X0,F0)|≧ ε}|
un − vn

= 0.

We write
DMstat lim

n→∞
(Xn,Fn) = (X0,F0).

Definition 4. Let (un) and (vn) be sequences of non-negative integers. A bounded
martingale sequence (Xn,Fn;n∈N) having probability 1 is statistically deferred Cesàro
summable to a martingale (X0,F0) with E|X0|< ∞ if, for all ε > 0,

Uε = {i : un < i ≦ vn and |D(Xi,Fi)− (X0,F0)|≧ ε}

has zero natural density. This means that, for every ε > 0, we have

lim
n→∞

|{i : un < i ≦ vn and |D(Xi,Fi)− (X0,F0)|≧ ε}|
un − vn

= 0.
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We write
statDM lim

n→∞
D(Xi,Fi) = (X0,F0).

We now establish an inclusion theorem concerning the two new and interesting
notions that every deferred Cesàro statistical convergent martingale sequence is stat-
istically deferred Cesàro summable, but the converse is not generally true.

Theorem 2. If a given martingale sequence (Xn,Fn;n ∈ N) is deferred Cesàro
statistically convergent to a martingale (X0,F0) with E|X0|<∞, then it is statistically
deferred Cesàro summable to the same martingale, but not conversely.

Proof. Suppose the given martingale sequence (Xn,Fn;n ∈ N) is deferred Cesàro
statistically convergent to a martingale (X0,F0) with E|X0|< ∞. Then, by Definition
3, we have

lim
n→∞

|{i : un < i ≦ vn and |(Xi,Fi)− (X0,F0)|≧ ε}|
un − vn

= 0.

Now, for the following two sets:

Wε = {i : un < i ≦ vn and |(Xi,Fi)− (X0,F0)|≧ ε}
and

W c
ε = {i : un < i ≦ vn and |(Xi,Fi)− (X0,F0)|< ε},

we find that

|D(Xn,Fn)− (X0,F0)|=

∣∣∣∣∣ 1
vn −un

vn

∑
k=un+1

(Xk,Fk)− (X0,F0)

∣∣∣∣∣
≦

∣∣∣∣∣ 1
vn −un

vn

∑
k=un+1

[(Xk,Fk)− (X0,F0)]

∣∣∣∣∣
+

∣∣∣∣∣ 1
vn −un

vn

∑
k=un+1

(X0,F0)− (X0,F0)

∣∣∣∣∣
≦

1
vn −un

vn

∑
k=un+1
(i∈Wε)

|D(Xn,Fn)− (X0,F0)|

+
1

vn −un

vn

∑
k=un+1
(i∈W c

ε )

|D(Xn,Fn)− (X0,F0)|

+ |(X0,F0)|

∣∣∣∣∣ 1
vn −un

vn

∑
λ=un+1

−1

∣∣∣∣∣
≦

1
vn −un

∣∣Wε

∣∣+ 1
vn −un

|W c
ε |= 0.
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Thus, clearly, we obtain

|D(Xn,Fn)− (X0,F0)|< ε.

Therefore, the martingale sequence (Xn,Fn;n ∈ N) is statistically deferred Cesàro
summable to the martingale (X0,F0) with E|X0|< ∞.

Next, in support of the non-validity of the converse statement, we present here
an example demonstrating that a statistically deferred Cesàro summable martingale
sequence is not necessarily deferred Cesàro statistically convergent.

Example 2. Let us set

un = 2n and vn = 4n (n ∈ N).

Also let (Fn,n ∈ N) be a monotonically increasing sequence of 0-mean independent
random variables of σ-fields with (Xn) ∈ Fn such that

Xn =

{
1 (n = 2m; m ∈ N)
−1 (n = 2m+1; m ∈ N).

It is easy to see that, the martingale sequence (Xn,Fn,n∈N) is neither convergent nor
deferred Cesàro statistically convergent; however, it is deferred Cesàro summable to
1
2 . Therefore, it is statistically deferred Cesàro summable to 1

2 .

□

3. KOROVKIN-TYPE THEOREMS FOR MARTINGALE SEQUENCE

Quite recently, a number of researchers worked toward extending (or generalizing)
the approximation aspect of the Korovkin-type theorems in different fields of math-
ematics such as (for example) sequence spaces, Banach space, probability space,
measurable space, and so on. This concept is extremely valuable in real analysis,
functional analysis, harmonic analysis, and other related areas. Here, in this connec-
tion, we choose to refer the interested readers to the recent works [5, 12–15, 17–19]
and [20].

We establish here the statistical versions of new Korovkin-type approximation the-
orems for martingale sequences of positive linear operators via deferred Cesàro mean.

Let C ([0,1]) be the space of all real-valued continuous functions defined on [0,1]
under the norm ∥ · ∥∞. Also let C [0,1] be a Banach space. Then, for f ∈ C [0,1], the
norm of f denoted by ∥ f∥ is given by

∥ f∥∞ = sup
x∈[0,1]

{| f (x)|}.

We say that the operator L is a martingale sequence of positive linear operators,
provided that

L( f ;x)≧ 0 whenever f ≧ 0 with L( f ;x)< ∞ and Prob
(
L( f ;x)

)
= 1.
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Theorem 3. Let
Lm : C [0,1]→ C [0,1]

be a martingale sequence of positive linear operators. Then, for all f ∈ C [0,1],

DMstat lim
m→∞

∥Lm( f ;x)− f (x)∥∞ = 0 (3.1)

if and only if

DMstat lim
m→∞

∥Lm(1;x)−1∥∞ = 0, (3.2)

DMstat lim
m→∞

∥Lm(2x;x)−2x∥∞ = 0 (3.3)

and

DMstat lim
m→∞

∥Lm(3x2;x)−3x2∥∞ = 0. (3.4)

Proof. Since each of the following functions:

f0(x) = 1, f1(x) = 2x and f2(x) = 3x2

belong to C [0,1] and are continuous, the implication given by (3.1) implies that con-
ditions (3.2) to (3.4) are obvious.

In order to complete the proof of Theorem 3, we first assume that conditions (3.2)
to (3.4) hold true. If f ∈ C [0,1], then there exists a constant A > 0 such that

| f (x)|≦ A (∀ x ∈ [0,1]).

We thus find that

| f (t)− f (x)|≦ 2A (t,x ∈ [0,1]). (3.5)

Clearly, for a given ε > 0, there exists δ > 0 such that

| f (t)− f (x)|< ε (3.6)

whenever
|t − x|< δ for all t,x ∈ [0,1].

Let us choose
ϕ1 = ϕ1(t,x) = 4(t − x)2.

If |t − x|≧ δ, then we find that

| f (t)− f (x)|< 2A
δ2 ϕ1(t,x). (3.7)

Thus, from the equations (3.6) and (3.7), we get

| f (t)− f (x)|< ε+
2A
δ2 ϕ1(t,x),

which implies that

−ε− 2A
δ2 ϕ1(t,x)≦ f (t)− f (x)≦ ε+

2A
δ2 ϕ1(t,x). (3.8)
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Now, since Lm(1;x) is monotone and linear, by applying the operator Lm(1;x) to this
inequality, we have

Lm(1;x)
(
−ε− 2A

δ2 ϕ1(t,x)
)
≦ Lm(1;x)( f (t)− f (x))

≦ Lm(1;x)
(

ε+
2A
δ2 ϕ1(t,x)

)
.

We note that x is fixed and so f (x) is a constant number. Therefore, we have

−εLm(1;x)− 2A
δ2 Lm(ϕ1;x)≦ Lm( f ;x)− f (x)Lm(1;x)

≦ εLm(1;x)+
2A
δ2 Lm(ϕ1;x). (3.9)

We know also that that

Lm( f ;x)− f (x) = [Lm( f ;x)− f (x)Lm(1;x)]+ f (x)[Lm(1;x)−1]. (3.10)

So, by using (3.9) and (3.10), we have

Lm( f ;x)− f (x)< εLm(1;x)+
2A
δ2 Lm(ϕ1;x)+ f (x)[Lm(1;x)−1]. (3.11)

We now estimate Lm(ϕ1;x) as follows:

Lm(ϕ1;x) = Lm((2t −2x)2;x) = Lm(2t2 −8xt +4x2;x)

= Lm(4t2;x)−8xLm(t;x)+4x2Lm(1;x)

= 4[Lm(t2;x)− x2]−8x[Lm(t;x)− x]+4x2[Lm(1;x)−1].

Thus, by using (3.11), we obtain

Lm( f ;x)− f (x)< εLm(1;x)+
2A
δ2 {4[Lm(t2;x)− x2]

−8x[Lm(t;x)− x]+4x2[Lm(1;x)−1]}+ f (x)[Lm(1;x)−1].

= ε[Lm(1;x)−1]+ ε+
2A
δ2 {4[Lm(t2;x)− x2]

−8x[Lm(t;x)− x]+4x2[Lm(1;x)−1]}+ f (x)[Lm(1;x)−1].

Since ε > 0 is arbitrary, we can write

|Lm( f ;x)− f (x)|≦ ε+

(
ε+

8A
δ2 +A

)
|Lm(1;x)−1|

+
16A
δ2 |Lm(t;x)− x|+ 8A

δ2 |Lm(t2;x)− x2|

≦ E(|Lm(1;x)−1|+ |Lm(t;x)− x|+ |Lm(t2;x)− x2|), (3.12)



STATISTICAL CONVERGENCE OF MARTINGALE SEQUENCE 451

where

E = max
(

ε+
8A
δ2 +A ,

16A
δ2 ,

8A
δ2

)
.

Now, for a given r > 0, there exists ε > 0 (ε < r), we get

Gm(x;r) = {m : un < m ≦ vn and |Lm( f ;x)− f (x)|≧ r} .

Furthermore, for j = 0,1,2, we have

G j,m(x;r) =
{

m : un < m ≦ vn and
∣∣Lm( f ;x)− f j(x)

∣∣≧ r− ε

3K

}
,

so that

Gm(x;r)≦
2

∑
j=0

G j,m(x;r).

Clearly, we obtain

∥Gm(x;r)∥C [0,1]

vn −un
≦

2

∑
i=0

∥G j,m(x;r)∥C [0,1]

vn −un
. (3.13)

Now, using the above assumption about the implications in (3.2) to (3.4) and, by
Definition 3, the right-hand side of (3.13) is seen to tend to 0 as n→∞. Consequently,
we get

lim
n→∞

∥Gm(x;r)∥C [0,1]

vn −un
= 0 (δ,r > 0).

Therefore, implication (3.1) holds true. This completes the proof of Theorem 3. □

Next, by using Definition 4, we present the following theorem.

Theorem 4. Let Lm : C [0,1]→ C [0,1] be a martingale sequence of positive linear
operators. Also let f ∈ C [0,1]. Then

statDM lim
m→∞

∥Lm( f ;x)− f (x)∥∞ = 0 (3.14)

if and only if

statDM lim
m→∞

∥Lm(1;x)−1∥∞ = 0, (3.15)

statDM lim
m→∞

∥Lm(2x;x)−2x∥∞ = 0 (3.16)

and

statDM lim
m→∞

∥Lm(3x2;x)−3x2∥∞ = 0. (3.17)

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. We, therefore,
choose to skip the details involved. □
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We present below an illustrative example for the martingale sequence of positive
linear operators that does not satisfy the conditions of the statistical convergence
versions of Korovkin-type approximation Theorem 3, and also the result of Srivastava
et al. [21], but it satisfies the conditions of statistical summability versions of our
Korovkin-type approximation Theorem 4. Thus, clearly, our Theorem 4 is stronger
than the results asserted by Theorem 3 and also the result of Srivastava et al. [21].

We now recall the operator

ν(1+νD)

(
D =

d
dν

)
,

which was used by Al-Salam [1] and, more recently, by Viskov and Srivastava [25]
(see [16] and the monograph by Srivastava and Manocha [23] for various general
families of operators and polynomials of this kind). Here, in our Example 3 below,
we use this operator in conjunction with the Bernstein polynomials.

Example 3. Let us consider the Bernstein polynomials Bm( f ;ν) on C[0,1] given
by

Bm( f ;ν) =
n

∑
m=0

f
(m

n

)(n
m

)
ν

m(1−ν)n−m (ν ∈ [0,1]). (3.18)

Next, we present the martingale sequences positive linear operators on C[0,1] defined
as follows:

Lm( f ;ν) = [1+(Xn,Fn)]ν(1+νD)Bm( f ;ν) (∀ f ∈C[0,1]) (3.19)

with (Xn,Fn) mentioned already in Example 2 above.
Now, by using our proposed operators (3.19), calculate the values of the functions

1, 2ν and 3ν2 as follows:

Lm(1;ν) = [1+(Xm,Fm)]ν(1+νD)1 = [1+(Xm,Fm)]ν,

Lm(2ν;ν) = [1+(Xm,Fm)]ν(1+νD)2ν = [1+(Xm,Fm)]ν(1+2ν),

and

Lm(3ν
2;ν) = [1+(Xm,Fm)]ν(1+νD)3

{
ν

2 +
ν(1−ν)

m

}
= [1+(Xm,Fm)]

{
ν

2
(

6− 9ν

m

)}
,

so that we have

statDM lim
m→∞

∥Lm(1;ν)−1∥∞ = 0,

statDM lim
m→∞

∥Lm(2ν;ν)−2ν∥∞ = 0
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and

statDM lim
m→∞

∥Lm(3ν
2;ν)−3ν

2∥∞ = 0.

Consequently, the sequence Lm( f ;ν) satisfies the conditions (3.15) to (3.17). There-
fore, by Theorem 4, we have

statDM lim
m→∞

∥Lm( f ;ν)− f∥∞ = 0.

Here, clearly, the given martingale sequence (Xm,Fm) of functions in Example 2 is
statistically deferred Cesàro summable but not deferred Cesàro statistically conver-
gent. Thus, the martingale operators defined by (3.19) satisfy Theorem 4. However,
they do not satisfy Theorem 3.

4. CONCLUDING REMARKS AND OBSERVATIONS

In this concluding section of our investigation, we present several further remarks
and observations concerning the various results which we have proved in this article.

Remark 1. Let (Xn,Fn;n∈N) be a martingale sequence given in Example 2. Then,
since

statDM lim
m→∞

Xm =
1
2

on [0,1],

we have

statDM lim
m→∞

∥Lm( f j;x)− f j(x)∥∞ = 0 ( j = 0,1,2). (4.1)

Thus, by Theorem 3, we can write

statDM lim
m→∞

∥Lm( f ;x)− f (x)∥∞ = 0, (4.2)

where
f0(x) = 1, f1(x) = 2x and f2(x) = 3x2.

Here the martingale sequence (Xn,Fn;n ∈ N) is neither statistically convergent nor it
converges uniformly in the ordinary sense; thus, clearly, the classical and statistical
versions of Korovkin-type theorems do not work here for the operators defined by
(3.19). Hence, this application indicates that our Theorem 4 is a non-trivial general-
ization of the classical as well as statistical versions of Korovkin-type theorems (see
[6] and [10]).

Remark 2. Let (Xn,Fn;n∈N) be a martingale sequence given in Example 2. Then,
since

statDM lim
m→∞

Xm =
1
2

on [0,1],

so (4.1) holds true. Now, by applying (4.1) and Theorem 4, condition (4.2) also
holds true. However, since the martingale sequence (Xn,Fn;n ∈ N) is not deferred
Cesàro statistically convergent, but it is statistically deferred Cesàro summable. Thus,
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Theorem 4 is certainly a non-trivial extension of Theorem 3. Therefore, Theorem 4
is stronger than Theorem 3.

Remark 3. It is sincerely hoped that the various developments, which we have
presented in this article as well as the associated bibliographical items, will motiv-
ate the interested readers in further related researches involving other approximation
operators, other applied aspects of the Laguerre and associated special functions and
polynomials which we have used here, the usages of wavelet frames, and so on.

REFERENCES

[1] W. A. Al-Salam, “Operational representations for the Laguerre and other polynomials,” Duke
Math. J., vol. 31, pp. 127–142, 1964, doi: 10.1215/S0012-7094-64-03113-8.

[2] N. L. Braha, V. Loku, and H. M. Srivastava, “Λ2-Weighted statistical convergence and Korovkin
and Voronovskaya type theorems,” Appl. Math. Comput., vol. 266, pp. 675–686, 2015.

[3] N. L. Braha, H. M. Srivastava, and S. A. Mohiuddine, “A Korovkin-type approximation theorem
for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean,”
Appl. Math. Comput., vol. 228, pp. 162–169, 2014.

[4] A. A. Das, B. B. Jena, S. K. Paikray, and R. K. Jati, “Statistical deferred weighted summability and
associated Korovokin-type approximation theorem,” Nonlinear Sci. Lett. A, vol. 9, pp. 238–245,
2018.

[5] H. Dutta, S. K. Paikray, and B. B. Jena, On statistical deferred Cesàro summability: Current
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