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Abstract. We consider superfluous elements in a bounded lattice with 0 and 1, and introduce
various types of graphs associated with these elements. The notions such as superfluous element
graph (S(L)), join intersection graph (JI(L)) in a lattice, and in a distributive lattice, superfluous
intersection graph (SI(L)) are defined. Dual atoms play an important role to find connections
between the lattice-theoretic properties and those of corresponding graph-theoretic properties.
Consequently, we derive some important equivalent conditions of graphs involving the cardinal-
ity of dual atoms in a lattice. We provide necessary illustrations and investigate properties such
as diameter, girth, and cut vertex of these graphs.
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1. INTRODUCTION

The study of graphs associated with algebraic structures is important to under-
stand their structural aspects. Among possible graphs obtained from various algeb-
raic structures, zero divisor graphs, annihilator graphs, and intersection graphs are
the significant ones [5, 6, 12]. Amjadi [2], defined an essential ideal graph with re-
spect to a commutative ring. The notion of the essential submodule and its dualizing
concept namely, the superfluous submodule were studied by the authors (Anderson
[3], Fluery [13]). Intersection graphs of rings and module over rings were studied by
Chakrabarty [12], and in commutative rings, graphs associated with proper non-small
ideals were studied by Atani [4]. However, some authors [15, 16] have studied the
properties of graphs with respect to lattices obtained from standard substructures of
modules over associative rings. Grzeszczuk and Puczyłowski [15] have introduced
essential elements and superfluous elements in a lattice. Nimborkar and Vidya [19]
have investigated the properties of the essential element graph of a lattice. Alizade
and Toksoy [1] have obtained interesting properties and characterization for cofin-
itely weak supplement lattices. The dualizing submodules notions such as super-
fluous submodules and hollow submodules are well known in the case of a module
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over rings. Anderson [3], Fleury [13], and Bhavanari [7] have extensively studied
the spanning dimension in modules associated with the notions of superfluous and
hollow submodules. The authors Bhavanari and Kuncham [8] studied isomorphism
theorems for a directed hypercube, and in Bhavanari et. al [10], graphs with respect
to ideal symmetry and related properties were studied in the case of a generalized
rings. Indeed, it is interesting to note that several module analogous developments in
lattices were found in Calugareanu [11].

The purpose of this paper is to define various types of graphs associated with su-
perfluous elements in a bounded lattice L with 0 and 1. We introduce the notions of
superfluous element graph (S(L)), weak supplement element graph (WSp(L)), join
intersection graph (JI(L)) in a lattice, and if a lattice is distributive, we introduce su-
perfluous intersection graph (SI(L)). Dual atoms play an important role to find some
important connections between the lattice-theoretic properties and those of corres-
ponding graph-theoretic properties. We prove that a non-superfluous element in L
is a dual atom if and only if S(L) is complete. We derive important equivalent con-
ditions of graphs involving the cardinality of dual atoms in a lattice. We obtain an
equivalent condition for SI(L) to be disconnected if L has exactly two dual atoms.
Apart from several properties of SI(L), we show that for any natural number r, SI(L)
can not be complete r-partite. Further, we have established some equivalent condi-
tions that yield interrelations between the lattice and graph theoretical properties. We
also investigate properties such as diameter, girth, and cut vertex of these graphs.

2. PRELIMINARIES

A lattice is called distributive if a∧ (b∨ c) = (a∧ b)∨ (a∧ c), for all a,b,c ∈ L,
and modular if for a,b,c ∈ L with a ≤ c, a∨ (b∧c) = (a∨b)∧c. For any x,y ∈ L and
x ≤ y, let [x,y] = {a ∈ L | x ≤ a ≤ y} be the interval between x and y. An element a
of a lattice L is proper if a ̸= 1. If L is a bounded lattice, then a ∈ L is an atom (resp.
dual atom), if there does not exists b ∈ L such that 0 < b < a (resp. a < b < 1). The
set of all dual atoms in L is denoted by D(L).

We consider a simple finite graph G, whose vertex set is V (G) and the edge set is
E(G). We denote ab to represent the edge between a,b ∈V (G). We denote by deg(v)
the number of vertices associated with v. If a vertex is adjacent to all other vertices
in G, then we refer to it as a universal vertex. If there is a path between every pair of
vertices of G, then G is connected; otherwise, G is called disconnected.

A graph whose vertices set is empty, is called a null graph and a graph whose
edge set is empty is called an empty graph. The length of the shortest path between
two vertices a,b in G, is denoted by d(a,b), and d(a,b) = ∞, if such a path doesn’t
exist between a and b. Evidently, d(a,a) = 0. The diameter of a graph G, denoted
by diam(G), is equal to sup{d(a,b) : a,b ∈ V (G)}. The girth of a graph G, de-
noted by gr(G), is the length of the shortest cycle in G, provided G contains a cycle;
otherwise gr(G) = ∞. A vertex x of a connected graph G is a cut vertex of G if
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G−{x} is disconnected. For r ∈ N, the r-partite graph is a graph whose vertex set is

V (G) = P1 ∪P2 · · ·∪Pr,
r⋂

i=1
Pi =∅, and for any xy ∈ E(G), if x ∈ Pi, y ∈ Pj for i ̸= j.

A complete r-partite graph is one in which each vertex is adjacent to every vertex that
is not in the same subset. The complete bipartite (that is, 2-partite) graph with part
size m and n is denoted by Km,n, and when m = 1, we call it a star graph. G is said
to be k-regular (k ∈ N), if every vertex is of degree k. The eccentricity (denoted by,
e(v)) of a vertex v in a connected graph G is max d(u,v) for all u ∈ V (G). A vertex
with minimum eccentricity is called a center of G.

We consider a bounded lattice (L,∧,∨,0,1), where 0,1 are the smallest and the
greatest element respectively. For standard notions and terminologies in lattice the-
ory, we refer to Grätzer [14], and for concepts in graph theory, we refer to Bhavanari
and Kuncham [9].

3. SUPERFLUOUS ELEMENT GRAPH: S(L)

Definition 1 ([15]). An element a of a lattice L is said to be superfluous, denoted
by a ≤s L if for every 1 ̸= b ∈ L, a∨b ̸= 1.

Lemma 1. If a ≤s L and 0 ⪇ b ≤ a, then b ≤s L.

Proof. Let c ∈ L be with b∨c = 1. Now 1 = b∨c ≤ a∨c, we get a∨c = 1. Since
a ≤s L, we get c = 1. Therefore, b ≤s L. □

Definition 2 ([11]). (1) An element x ∈ L is a supplement of y ∈ L, if x is
minimal with respect to the property x∨ y = 1.

(2) The join of all atoms of L is called socle of L, denoted by soc(L). For an
element, a in L, soc(a) is the socle of the sublattice [0,a].

Definition 3 ([11]). An element x ∈ L is a weak supplement of y ∈ L if x∨ y = 1
and x∧ y ≤s L.

Definition 4 ([18]). A proper element x ∈ L is a soc-weak-supplement of y ∈ L if
x∨ y = 1 and x∧ y ≤ soc(1).

Cigdem Bicer et.al [17] studied complete modular lattices and investigated the
properties of generalized supplemented lattices. Nebiyev [16] has studied the prop-
erties of weak supplement elements.

Now we define the notion of superfluous element graph of a lattice as follows.

Definition 5. A superfluous element graph of L (denoted by, S(L)) is a graph with
V (S(L)) = {a ∈ L | 0 ̸= a ̸= 1} as its vertex set, and E(S(L)) = {ab | a∧b ≤s L} as
its edge set.

Example 1. Consider (D30,≤), the set of all positive divisors of 30, with a ≤ b ⇔
a divides b, as given in Figure 1. Then L = (D30,∧,∨) is a lattice where meet and
join are the greatest common divisor and least common multiple respectively. Here,
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the least element is denoted by 0 and the greatest element is denoted by 1. The
corresponding S(L) is given in Figure 1.

FIGURE 1.

Lemma 2. If 0 ̸= a ∈ L is superfluous, then a is universal in S(L).

Proof. Suppose 0 ̸= a ∈ L, and a ≤s L. To show a is a universal vertex, we have
to show that for any b ∈V (S(L)), ab ∈ E(S(L)). Let b ∈V (S(L)). Then, b ̸= 1, and
since a ≤s L, we have a∨ b ̸= 1. Since a∧ b ≤ a∨ b ̸= 1, we get a∧ b ∈ V (S(L)).
Now, for any c ∈ L, if (a∧b)∨ c = 1, then 1 = (a∧b)∨ c ≤ a∨ c. Since a ≤s L, we
have c = 1. Therefore, (a∧ b) ≤s L, for all b ∈ V (S(L)), shows that a is a universal
vertex. □

Remark 1. The lattices L1 and L2 given in Figure 2 are not isomorphic but their
superfluous element graph is the same, as shown in Figure 2.

Definition 6. The dual annihilator of an element x in L, denoted by the set,
annd(x) = {y ∈ L | x∨ y = 1}.

Proposition 1. For a proper element x of L, x∧ (
∧

annd(x))≤s L.

Proof. Suppose [x∧ (
∧

annd(x))]∨ y = 1, for some y ∈ L. Clearly,

1 = [x∧ (
∧

annd(x))]∨ y ≤ x∨ y,

implies that x∨ y = 1. Hence, y ∈ annd(x). Also, since 1 = [x∧ (
∧

annd(x))]∨ y ≤
y∨ [

∧
annd(x)], it follows that

∧
annd(x) ≤ y. This shows that y∨ (

∧
annd(x)) = y.

Hence, 1 ≤ y∨ (
∧

annd(x)) = y, implies y = 1. □

Now we define the notions of weak supplement element graph and socle-weak
supplement graph of a lattice as follows.
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FIGURE 2.

Definition 7.
(1) A weak supplement element graph of L (referred as, WSp(L)), with vertex

set V (WSp(L)) = {a ∈ L | 0 ̸= a ̸= 1}, and edge set

E(WSp(L)) = {ab | a∨b = 1, a∧b ≤s L}.

(2) A socle-weak supplement element graph of L (referred as, SWSp(L)), with
vertex set V (SWSp(L)) = {a ∈ L | 0 ̸= a ̸= 1}, and edge set

E(SWSp(L)) = {ab | a∨b = 1, a∧b ≤ soc(1)}.

Example 2. Consider the lattice L given in Figure 3. Then graph WSp(L) corres-
ponding to L is given in Figure 3.

Proposition 2. Let 0 ̸= a,b ̸= 1 be in L such that a is a weak supplement of b, for
all b. Then a is universal in WSp(L).

Proof. Suppose 0 ̸= a ̸= 1 ∈ L and a is a weak supplement of b, for all 0 ̸= b ̸=
1 ∈ L. To show a is a universal vertex, we have to show that for any b ∈V (WSp(L)),
ab ∈ E(WSp(L)). Let b ∈V (WSp(L)). Then clearly, 0 ̸= b ̸= 1, and hence a∨b = 1
and a∧b ≤s L. Therefore ab ∈ E(WSp(L)), for every b ∈ V (S(L)), proves that a is
universal. □
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FIGURE 3.

Remark 2. If an element is both an atom as well as a dual atom in L, then it is
universal in SWSp(L). In the lattice L2 given in Figure 2, a is a universal vertex in
SWSp(L2).

Lemma 3. S(L) is a graph with E(S(L)) = ∅ if and only if L contains a unique
non-zero proper element.

Proof. Clearly, if L contains a unique non-zero proper element, then E(S(L)) =∅.
Conversely, assume that E(S(L)) = ∅. Let a,b ∈ L. If L has atoms c ̸= d such that
0<c ≤ a and 0<d ≤ b, then c∧ d = 0 ≤s L, and so cd ∈ E(S(L)), a contradiction.
Thus, c = d. Let 1 ̸= x ̸= c. If c ≰ x, then since c is an atom, x is indifferent from
c, showing that x∧ c = 0, and so xc ∈ E(S(L)), a contradiction. Therefore, for every
1 ̸= x∈ L, c≤ x. Hence, x∨c= x ̸= 1, for all 1 ̸= x∈ L, implies that c≤s L. Now c≤ a
implies ac ∈ E(S(L)), a contradiction. Therefore, a is the only non-zero element that
is proper in L. □

Remark 3. The following example shows that S(L) of a lattice L can be discon-
nected. Consider the lattice L, given in Figure 3. Then the corresponding S(L) is a
disconnected graph shown in Figure 4.

Theorem 1. Any one of the following conditions implies S(L) is complete.
(1) a ≤s L, for all a ∈ L, 0 ̸= a ̸= 1.
(2) a∨b = 1 ⇔ either a = 1 or b = 1 in L.
(3) L has a non-zero superfluous element in which S(L) is k-regular.

Proof. (1) Let 0 ̸= a ∈ L be a superfluous element of L. Then, by Lemma 2, a is a
universal vertex in S(L). Hence, a is adjacent to all other vertices in S(L), and this is
true for all 0 ̸= a ∈ L, which shows that S(L) is complete.
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FIGURE 4.

(2) In a contrary way, suppose that S(L) is not complete. Then there exist a,b ∈
L with ab /∈ E(S(L)). Then a ∧ b ≰s L, implies there exists 1 ̸= c ∈ L such that
(a∧b)∨ c = 1. Now by hypothesis, and since c ̸= 1, we have a∧b = 1, a contradic-
tion, as a and b are proper. Therefore, S(L) is complete.

(3) Let S(L) be k-regular. Let 0 ̸= x ≤s L, then by Lemma 2, x is universal in S(L).
That is, xy ∈ E(S(L)), for all y ∈ V (S(L)). Therefore, S(L) contains exactly k + 1
vertices, which implies that S(L) is a complete graph. □

Remark 4. The existence of a non-zero superfluous element in Theorem 1(3) is
necessary. However, the condition is not sufficient.

Consider the graph given in Figure 5. Here the non-zero element are {a,b} which
are non-superfluous in L. But ab ∈ E(S(L)), since a∧ b ≤s L. Hence, S(L) is com-
plete.

FIGURE 5.

Theorem 2. S(L) is complete if and only if every 1 ̸= a ≰s L, is a dual atom.

Proof. Let every 1 ̸= a ≰s L be a dual atom. Let 0 ̸= x, y ̸= 1 be two distinct ele-
ments of L. If one of x or y is superfluous, then x∨ y ̸= 1. Since x∧ y ≤ x∨ y ̸= 1,
we get x∧ y ̸= 1. That is, x∧ y is not a dual atom. Hence, by hypothesis, x∧ y ≤s L.
Therefore, xy ∈ E(S(L)). Suppose neither x nor y is a superfluous element. Then



936 S. TAPATEE, P.K. HARIKRISHNAN, B.S. KEDUKODI, AND S. P. KUNCHAM

by assumption, x,y ∈ D(L). Now (x∧ y)<x<1, shows that x∧ y is not a dual atom.
Therefore, x∧ y ≤s L and xy ∈ E(S(L)), which proves S(L) is complete. Conversely,
let 1 ̸= x ≰s L and x<y<1. Since S(L) is complete, xy ∈ E(S(L)). Therefore,
x∧ y ≤s L. Now, since x = x∧ y, it follows that x ≤s L, a contradiction. Hence, x
is a dual atom. □

Theorem 3. If S(L) has exactly one universal vertex, then L contains a unique
non-zero superfluous element, which is an atom.

Proof. Let x ∈V (S(L)) be unique universal. If a and b are two non-zero superflu-
ous elements in L, then by Lemma 2, a and b are universal, a contradiction. Therefore,
L contains at most one non-zero superfluous element, say a. Then, x∧a ≤s L and so
by Lemma 2, x∧ a is also universal in S(L). Thus, x∧ a = x. Hence by Lemma 1,
we get x ≤s L. Now, by assumption, we get x = a. If 0 <y ≤ x, and since x ≤s L, by
Lemma 1, y ≤s L. Since x is the only universal vertex, we get x = y, and it follows
that x is an atom. □

4. JOIN INTERSECTION GRAPH: JI(L)

We define the notion of a join intersection graph of a lattice as follows.

Definition 8. The join intersection graph of L, (denoted by JI(L)), is the graph
with the vertex set V (JI(L)) = {a | a ∈ L} and the edge set

E(JI(L)) = {ab | a ̸= b, a∨b ̸= 1}.

Example 3. Consider the Lattice L given in Figure 6. Then graph JI(L) corres-
ponding to L is given in Figure 6.

FIGURE 6.
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Theorem 4. The following conditions are equivalent in a join intersection graph
of L.

(1) a ≤s L;
(2) If |V (JI(L))|= n, then deg(a) = n−2;
(3) a is a center in JI(L)\{1}.

Proof. (1)⇒ (2): Suppose a ≤s L and let |V (JI(L))|= n.
Consider V (JI(L)) = {x1,x2, · · · ,xn}, where x1 = 0, xn = 1 and x2 = a. Since a ≤s L,
a∨xi ̸= 1, for all 1 ̸= xi ∈V (JI(L)), shows that axi ∈ E(JI(L)). That is, a is adjacent
to all in V (JI(L)) except 1 and itself. Hence, deg(a) = n−2.

(2) ⇒ (3): Let |V (JI(L))| = n and deg(a) = n − 2. Clearly by definition,
a1 /∈E(JI(L)) and aa /∈E(JI(L)). Since a is adjacent to all other vertices, d(a,x)= 1,
for all x ∈V (JI(L)), x /∈ {0,1}. Therefore, a is the center of JI(L)\{1}.

(3)⇒ (1): Let a be the center of JI(L)\{1}. To show a ≤s L, let 1 ̸= b ∈ L. Then
b ∈ V (JI(L)), and d(a,b) is minimum. Hence, ab ∈ E(JI(L)), implies a ̸= b and
a∨b ̸= 1. Since b is arbitrary, we have a ≤s L. □

Theorem 5. The following conditions are equivalent.

(1) a ≰s L, for all 0 ̸= a ∈ L;
(2)

∧
d∈D(L)

d = 0;

(3) 0 is the only center in JI(L)\{1}.

Proof. (1)⇒ (2): Let a ≰s L, for all 0 ̸= a ∈ L. On a contrary, assume that
n∧

i=1
ai =

d ̸= 0, where ai ∈ D(L), 1 ≤ i ≤ n. Then d ≤ ai, for all i, implies d ∨ai = ai ̸= 1, for

all i, shows that, d ≤s L, a contradiction. Therefore,
n∧

i=1
ai = 0.

(2) ⇒ (3): Suppose
n∧

i=1
ai = 0, where D(L) = {ai | 1 ≤ i ≤ n}. On the contrary,

assume that a ̸= 0 is a center in JI(L)\{1}. Then by Theorem 4, a ≤s L, and hence
a∨ ai ̸= 1, for all i. That is, aai ∈ E(JI(L)). Now since ai’s are dual atoms for all
i, we have a∨ ai ≤ ai, for all i. Then a∨ ai = ai, for all i. That is, a ≤ ai, for all i,

implies that a ≤
n∧

i=1
ai = 0. Hence, a = 0, a contradiction.

(3)⇒ (1): Suppose 0 is the only center in JI(L) \ {1}. Let 0 ̸= b ∈ L. Then b ∈
V (JI(L)). Since b is not a center in JI(L)\{1}, bx /∈ E(JI(L)), for some x ∈ JI(L),
0 ̸= x ̸= 1. That is, there exists 1 ̸= x ∈V (JI(L)) such that b∨ x = 1. Hence, b ≰s L.
Since b is arbitrary, we get b ≤s L, for all 0 ̸= b ∈ L. □

5. SUPERFLUOUS INTERSECTION GRAPH: SI(L)

In this section, let L denote a distributive lattice.
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Definition 9. An element a of L is said to be non-superfluous, denoted by a ≰s L,
if there exists a proper element b in L such that a∨b = 1.

Lemma 4. Let a and b be two proper elements of L. If c ∈ D(L), then a∧b ≤ c ⇒
a ≤ c or b ≤ c.

Proof. Suppose c is a dual atom and a,b are two proper elements of L such that
a∧b ≤ c. Clearly, c ≮ a, c ≮ b. If a ≰ c and b ≰ c, then there exists d ∈ L such that
d = a∧b≤ c. This implies that there exists a diamond sublattice in L, a contradiction,
as L is distributive. Therefore, a ≤ c or b ≤ c. □

Lemma 5. Let D(L) = {ai}i∈I and T ⊂ I. Then,
∧

i∈T
ai ≰s L.

Proof. Assume the contrary, suppose
∧

i∈T
ai ≤s L. Then

∧
i∈T

ai ∨ x ̸= 1, for all

x ̸= 1 ∈ L. In particular,
∧

i∈T
ai ∨ a j ̸= 1, for every a j ∈ D(L). Since a j is a dual

atom, we have
∧

i∈T
ai ≤ a j, for each j ∈ I \T . Then by Lemma 4 we have ai ≤ a j, for

some i ∈ T , a contradiction as ai is a dual atom. □

We define the notion of a superfluous intersection graph of a lattice as follows.

Definition 10. The superfluous intersection graph of L (referred as SI(L)) is a
graph with V (SI(L)) = {a ∈ L | 1 ̸= a ≰s L} as its vertex set and E(SI(L)) =
{ab | a∧b ≰s L} as its edge set.

Example 4. Consider the Lattice L, the 3-cube given in Figure 1. Then graph SI(L)
corresponding to L is given in Figure 7.

FIGURE 7.

Proposition 3. SI(L) is a null graph if and only if L has a unique dual atom.

Proof. Let SI(L) be a null graph. Then, V (SI(L)) = ∅. That is, there are no
proper non-superfluous elements of L. Let L have two dual atoms, say a and b.
Then, 0<a<1 and 0<b<1, implies that a∨ b = 1, with b ̸= 1. Hence, a ≰s L, a
contradiction. Therefore, L has a unique dual atom. Conversely, suppose that L has
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a unique dual atom, say d. To show that SI(L) is a null graph. If there exists an
element 1 ̸= a ∈ L such that a ≰s L, then for every 1 ̸= b ∈ L, a∨b = 1. This shows
that a∨d = 1, a contradiction to the hypothesis. Therefore, V (SI(L)) =∅. □

Theorem 6. SI(L) is an empty graph if and only if D(L) = {a1,a2}, where a1,a2
are non-superfluous elements.

Proof. Suppose SI(L) is an empty graph. If |D(L)| = 1, then by Proposition 3,
SI(L) is a null graph, a contradiction. Let D(L) = {ai}i∈I , |I| ≥ 3. Then by Lemma 5,
ai∧a j ≰s L whenever i ̸= j. Hence aia j ∈ E(SI(L)), a contradiction, since SI(L) is an
empty graph. Therefore, |D(L)| = 2. Let D(L) = {a1,a2}, with a1 ̸= a2. It remains
to show a1 and a2 are non-superfluous. Since a1<1 and a2<1, and a1 ∨ a2 = 1,
with a2 ̸= 1, it follows that a1 ≰s L. Similarly, a2 ≰s L. Conversely, let D(L) =
{a1,a2}, where a1 ≰s L and a2 ≰s L. In order to show that SI(L) is an empty graph,
we show that a1 and a2 are the only non-superfluous elements of L. Assume the
contrary, suppose that x ∈ L such that x ≰s L. Then x<a1 or x<a2. Let x<a1. Since
a1 ∧a2 is maximal such that a1 ∧a2<a1 and a2, we get x ≤ a1 ∧a2<a2. Then x<a2.
Therefore, x ≤s L, a contradiction to our assumption. Hence, a1 and a2 are the only
non-superfluous elements of L. This shows that V (SI(L)) = {a1,a2}. Further, since
a1 ∧a2 ≤s L, a1 and a2 are not adjacent in SI(L). Therefore, E(SI(L)) =∅, SI(L) is
an empty graph. □

Theorem 7. The the following conditions are equivalent.
(1) SI(L) is a disconnected graph.
(2) |D(L)|= 2.
(3) SI(L) = SI1(L)∪ SI2(L), where SI1(L) and SI2(L) are two disjoint complete

subgraphs of SI(L).

Proof. (1) ⇒ (2): Suppose that SI(L) is disconnected. Let SI1(L) and SI2(L) be
two components of SI(L), and a1,a2 be two elements of L such that a1 ∈ SI1(L) and
a2 ∈ SI2(L). Let x1 and x2 be two dual atoms of L such that a1 ≤ x1 and a2 ≤ x2. If
x1 = x2, then a1 ≤ x1<1 and a2 ≤ x1<1, implies a1∨a2 ≤ x1 ̸= 1. Hence a1 ≤s L and
a2 ≤s L, shows that V (SI(L)) =∅, a contradiction. Therefore, x1 ̸= x2. If x1∧x2 ≰s L,
then x1x2 ∈ E(SI(L)), a contradiction. Hence x1 ∧ x2 ≤s L. Therefore, |D(L)| ≥ 2.
Let D(L) = {ai}i∈I , |I| ≥ 3. Then by Lemma 5, ai ∧a j ≰s L whenever i ̸= j ∈ I. This
shows that SI(L) is connected, a contradiction. Hence |D(L)|= 2.

(2)⇒ (3): Let |D(L)|= 2, say x1,x2. Let SI1(L) = {a j ∈ L | a j ≤ xi and a j ≰s L},
for i = 1,2. Let a1,a2 be two elements of SI1(L). If a1 and a2 are not adjacent, then
a1 ∧ a2 ≤s L, which implies a1 ∧ a2 ≤ x1 ∧ x2 ≤ x2. Now by Lemma 4, a1 ≤ x2 or
a2 ≤ x2. This implies a1 ≤s L or a2 ≤s L, a contradiction. Therefore, SI1(L) is a
complete subgraph of SI(L). In a similar way, we can prove that SI2(L) is a complete
subgraph of SI(L). Next, we show there is no path between SI1(L) and SI2(L). On the
contrary, suppose a1 and a2 are adjacent for some elements a1 ∈ S(L1) and a2 ∈ S(L2).
Since a1 ∧a2 ≤ x1 ∧x2, we have a1 ∧a2 ≤s L, a contradiction. Therefore, none of the
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vertices of SI1(L) and SI2(L) is adjacent. Hence, SI(L) = SI1(L)∪ SI2(L), where
SI1(L) and SI2(L) are complete subgraphs of SI(L).

(3)⇒ (1): It is clear. □

Remark 5. The following example shows that the graph SI(L) can be totally dis-
connected, if L is non-distributive having |D(L)| ≥ 3.

FIGURE 8.

Consider the lattice L given in Figure 8. Here |D(L)| = 4, but SI(L) is a discon-
nected graph.

Theorem 8. If SI(L) is a connected graph, then diam(SI(L))≤ 2.

Proof. Let a,b ∈ V (SI(L)). If ab ∈ E(SI(L)), then we are done. Let a and b be
two non-adjacent vertices in SI(L). Then, a∧b ≤s L. Let a ≤ x1 and b ≤ x2, for some
dual atoms x1, x2 of L. If a∧x2 ≰s L, then ax2 ∈ E(SI(L)), and since b∧x2 = b ≰s L,
we have bx2 ∈ E(SI(L)). Therefore, a−x2 −b is a path in SI(L). Hence, d(a,b) = 2.
Similarly, if b∧ x1 ≰s L, then bx1 ∈ E(SI(L)), and since a∧ x1 = a ≰s L, we have
ax1 ∈ E(SI(L)). Therefore, b−x1 −a is a path in SI(L). Hence d(a,b) = 2. Suppose
that a∧x2 ≤s L and b∧x1 ≤s L. Since SI(L) is connected, by Theorem 7, |D(L)| ≥ 3.
Let x3 be a dual atom in L. Since a∧ b ≤s L, (a∧ b)∨ x3 ̸= 1. Then a∧ b ≤ x3,
which implies a ≤ x3 or b ≤ x3. Without loss of generality, we assume that a ≤ x3.
Now we show that b∧ x3 ≰s L. If b∧ x3 ≤s L, then (b∧ x3)∨ d ̸= 1, ∀d ∈ D(L).
That is, b∧ x3 ≤ d. Then, by Lemma 4, b ≤ d or x3 ≤ d. Since x3 is a dual atom,
x3 ≰ d. Therefore, b ≤ d, for all d ∈ D(L). Hence, b ≤s L, a contradiction, shows
that b∧ x3 ≰s L. Thus, a− x3 − b is a path in SI(L), and so d(a,b) = 2. Hence,
diam(SI(L))≤ 2. □

Theorem 9. If SI(L) contains a cycle, then gr(SI(L)) = 3.

Proof. Case (i): Suppose |D(L)|= 2. Then, by Theorem 7, SI(L) is a union of two
disjoint complete subgraphs. Since SI(L) contains a cycle, at least one component
should contain a cycle of minimum length 3. Therefore, gr(SI(L)) = 3.
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Case (ii): If |D(L)| ≥ 3, say a1,a2,a3, then by Lemma 5, a1 − a2 − a3 − a1 is a
cycle in SI(L). So gr(SI(L)) = 3. □

Theorem 10. If SI(L) is connected, then SI(L) has no cut vertex.

Proof. Let a be a cut vertex of SI(L). Then, SI(L)\{a} is not connected. That is;
there exists x and y in SI(L) such that a lies on every path from x to y. By Theorem
8, diam(SI(L)) ≤ 2, and so the shortest path from y to x is of length 2. So x−a− y
is a path between x and y. Thus, x∧a ≰s L and a∧y ≰s L. Also since xy /∈ E(SI(L)),
x∧y ≤s L. First to show that a is a dual atom of L. If a /∈ D(L), then there exists b ∈ L
such that a<b. Since a ≰s L, we have b ≰s L. Since x∧a ≤ x∧b and x∧a ≰s L, we
have x∧b ≰s L. In a similar way, y∧b ≰s L. So x−b− y is a path in SI(L)\{a}, a
contradiction. Therefore, a is a dual atom of L. We claim that there exists a dual atom
z ̸= a of L such that x ≰ z. If x ≤ z, for each a ̸= z ∈ D(L), then x ≤

( ∧
z ̸=a

z
)

implies

that x∧a ≤
∧

z∈D(L)
z. Hence, x∧a ≤s L, a contradiction. In a similar way, there exists

a dual atom w ̸= a ∈ L such that y ≰ w. Now to show for each d ∈ D(L), x ≤ d, or
y ≤ d. Since x∧y ≤s L, we have (x∧y)∨d ̸= 1, for every d ∈ D(L). Then (x∧y)≤ d,
for every d ∈ D(L). Thus by Lemma 4, x ≤ d or y ≤ d, for every d ∈ D(L). Since
SI(L) is connected, by Theorem 7, |D(L)| ≥ 3. Now, let a ̸= t,s ∈ D(L) such that
x ≰ t and y ≰ s. Then x ≤ s and y ≤ t. Hence x− s− t − y is a path in SI(L)\{a}, a
contradiction. Therefore, SI(L) has no cut vertex. □

Theorem 11. SI(L) can not be complete q-partite for any q ∈ N.

Proof. Suppose SI(L) is a complete q-partite graph with q parts P1,P2, · · · ,Pq.
By Lemma 5, a and b are adjacent for each a,b ∈ D(L). Therefore, Pi con-

tains at most one dual atom of L. Hence, |D(L)| ≤ q, by the pigeonhole principle.
Next to show |D(L)| = q. Suppose, in a contrary, |D(L)| = {a1,a2, · · · ,at}, t<q.
Let ai ∈ Pi, for 1 ≤ i ≤ t. That is, Pt+1 has no dual atom. Since |D(L)| is finite,
by Lemma 5,

∧
j ̸=i

ai ≰s L. Now if x ∈ L such that x ̸= 1 and
∧
j ̸=i

ai ∨ x = 1, then

we have
( ∧

j ̸=i
ai ∧ a j

)
∨ x<

∧
j ̸=i

ai ∨ x = 1. Therefore,
( ∧

j ̸=i
ai ∧ a j

)
∨ x ̸= 1, and so∧

j ̸=i
ai ∧ a j ≤s L. Thus

∧
j ̸=i

ai and a j are not adjacent in SI(L). Since ai ∈ Pi, we

have
∧
j ̸=i

ai ∈ Pi. Let x be a vertex in Pt+1 and x ≤ ak, for some ak ∈ D(L). Then

xak ∈ E(SI(L)). Since SI(L) is a complete q-partite graph and ak ∈ Pk, so x is
adjacent to all elements of Pk. Then x is adjacent to

∧
j ̸=k

a j, a contradiction, as

x∧
( ∧

j ̸=k
a j

)
≤ ak ∧

( ∧
j ̸=k

a j

)
≤s L. Hence |D(L)| = q. Now, consider

q∧
i=3

a j = d.

By Lemma 5, d ≰s L. Since d ∧ a1 =
∧

i ̸=2
ai ≰s L, d is adjacent to a1. Similarly, d
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is adjacent to a2. So d /∈ P1,P2. Since d ∧ ai = d ≰s L, for each 3 ≤ i ≤ q, we have
dai ∈ E(SI(L)). So d /∈ Pi, for every 1 ≤ i ≤ q, leads to a contradiction. □

Theorem 12. If L has finitely many dual atoms, then SI(L) has no universal vertex.

Proof. Let D(L) = {a1,a2, · · · ,at}. Suppose, on the contrary, there exists x ∈
V (SI(L)) such that x is a universal vertex. Let x ≤ ai. By Lemma 5, d =

∧
j ̸=i

a j ≰s L,

whereas x∧ d ≤ ai ∧
( ∧

j ̸=i
a j

)
= ai ∧ d ≰s L, a contradiction to x is universal. Thus,

no vertex in SI(L) is a universal vertex.
□

Corollary 1. SI(L) can not be a complete graph.

Proof. Follows from Theorem 12. □

Theorem 13. The following statements hold for a lattice L.
(1) SI(L) contains a vertex of degree 1 if and only if |D(L)| = 2 and SI(L) =

SI1(L)∪SI2(L), where SI(L) and SI2(L) are two disjoint complete subgraphs
of SI(L) and |V (SIi(L))|= 2, for some i = 1,2;

(2) SI(L) cannot be a star graph.

Proof. (1) Let a∈V (SI(L)) and deg(a) = 1. If |D(L)|= 1, by Proposition 3, SI(L)
is a null graph, a contradiction. Suppose |D(L)| ≥ 3. By Lemma 5, for each xi ∈D(L),
xi is adjacent to all other x j (dual atoms) of L, so deg(xi)≥ 2. Hence, a is not a dual
atom. Without loss of generality, assume that a ≤ x1. Then, ax1 ∈ E(SI(L)). As
deg(a) = 1, we have x1 as the only vertex adjacent to a in SI(L), and in this case,
there is no dual atom xi ̸= x1 of L such that a ≤ xi. In particular, a∧ x2 ≤s L. Then,
(a∧x2)∨xi ̸= 1, for every xi ∈D(L), implies that a∧x2 ≤ xi. Now by Lemma 4, a≤ xi
or x2 ≤ xi. Since x2 is a dual atom, x2 ≰ xi for every i ̸= 2. Therefore, a ≤ xi, for all
xi ∈D(L), a contradiction. Thus, |D(L)|= 2. By Theorem 7, SI(L) = SI1(L)∪SI2(L),
where SI1(L) and SI2(L) are complete subgraphs of SI(L). Let a ∈ SIi(L), for some
i ∈ {1,2}. Since SIi(L) is complete as a subgraph of SI(L) and deg(a) = 1, we get
|V (SIi(L))|= 2.

The converse is straightforward.
(2) Suppose SI(L) is a star graph. Then SI(L) has an end vertex. So |D(L)| = 2,

by (1). Now by Theorem 7, SI(L) is disconnected, a contradiction. Therefore, SI(L)
cannot be a star graph. □

Definition 11. For every non-negative integer t, the graph G is called t-regular if
the degree of each vertex of G is equal to t.

Theorem 14. The following holds for a lattice L.
(1) If a and b are two vertices of SI(L) such that a≤ b in L, then deg(a)≤ deg(b).
(2) If SI(L) is a t-regular graph, then |D(L)|= 2 and |V (SI(L))|= 2(t +1).
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Proof. (1) Let a,b ∈ V (SI(L)) be such that a ≤ b in L. Let ca ∈ E(SI(L)). Since
a∧ c ≰s L, we have a∧ c ≤ b∧ c ≰s L. Thus, bc ∈ E(SI(L)). Therefore, any vertex
adjacent to a is also adjacent to b in SI(L). Hence, deg(a)≤ deg(b).

(2) Let SI(L) be t-regular. Clearly, for each ai ∈ D(L), deg(ai) = t. By Lemma 5,
ai is adjacent to all other dual atoms of L, hence |D(L)| is finite. If |D(L)| = 1, then
by Proposition 3, SI(L) is a null graph, a contradiction. Now suppose |D(L)| ≥ 3.
Then by (1) deg(a1 ∧a2)≤ deg(a1) = t.

Case (i): If deg(a1 ∧a2)<t, then we get a contradiction to the t-regularity.
Case (ii): We show that deg(a1 ∧ a2) ̸= t. If d =

∧
j ̸=2

a j, then by Lemma 5,

d ≰s L. Since (d ∧ a1) = d ≰s L, we have d ∧ a1 ≰s L. Therefore, a1d ∈ E(SI(L)).
But d ∧ (a1 ∧ a2) ≤s L, as d ∧ (a1 ∧ a2) =

∧
i ai, and

∧
i ai ≤ a j, for all a j ∈ D(L).

Therefore, d ∧ (a1 ∧ a2) =
∧

i ai ≤s L, implies that d(a1 ∧ a2) /∈ E(SI(L)). Thus,
deg(a1 ∧ a2) ̸= t, a contradiction to the t-regularity. So |D(L)| = 2. Hence, by The-
orem 7, SI(L) = SI1(L)∪SI2(L), where SI1(L) and SI2(L) is the union of two disjoint
complete subgraphs. Let D(L) = {a1,a2} such that a1 ∈ SI1(L) and a2 ∈ SI2(L).
Since deg(a1) = t, so |V (SI1(L))| = t + 1. Similarly, |V (SI2(L))| = t + 1. Hence,
|V (SI(L))|= 2(t +1). □

6. CONCLUSION

In this paper, some properties of superfluous elements in a lattice are considered
and investigated corresponding graph-theoretical properties. We have obtained im-
portant equivalent conditions of these graphs. These concepts can be extended to
study module theoretical analogues spanning dimensional aspects in a lattice, in
terms of superfluous and supplement elements.
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