

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2012.362

Parabolic class number of a subgroup of the normalizer of $\Gamma_0(m)$

Refik Keskin

PARABOLIC CLASS NUMBER OF A SUBGROUP OF THE NORMALIZER OF $\Gamma_0(m)$

REFİK KESKİN

Received 4 May, 2011

Abstract. In this study, we introduce a subgroup of the normalizer of $\Gamma_0(m)$ and we calculate parabolic class number of this group.

2000 Mathematics Subject Classification: 20H10; 20H20

Keywords: normalizer, parabolic class number, Fuchsian group, orbit

1. Introduction

Let m be a positive integer and let $N(\Gamma_0(m))$ be the normalizer of $\Gamma_0(m)$ in $PSL(2,\mathbb{R})$. The normalizer $N(\Gamma_0(m))$ was studied for the first time by Newman in [8]. A complete description of the elements of $N(\Gamma_0(m))$ is given in [2]. Especially, a necessary and sufficient condition for $N(\Gamma_0(m))$ to act transitively on $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ was given in [1]. Moreover, the signatures and therefore the parabolic class numbers of some subgroups of $N(\Gamma_0(m))$ were calculated in [1], [5], and [6]. In this study, we introduce a subgroup of $N(\Gamma_0(m))$ and we calculate the parabolic class number of this subgroup when m is a square free positive integer.

2. Preliminaries

Let Λ be a discrete subgroup of $PSL(2,\mathbb{R})$. When $x \in \mathbb{R} \cup \{\infty\}$ is a fixed point of a parabolic element of Λ , we say that x is a parabolic point of Λ . We also call a parabolic point of Λ , a cusp of Λ .

The proof the following theorem is easy and can be found in [7] or [10].

Theorem 1. Let Λ be a discrete subgroup of $PSL(2,\mathbb{R})$ and assume that Λ^* is a subgroup of finite index in Λ . Let P be the set of the parabolic points of Λ . Then P is the set of the parabolic points of Λ^* and the parabolic class number of Λ^* is the number of orbits of Λ^* on P.

By a Fuchsian group Λ we will mean a finitely generated discrete subgroup of $PSL(2,\mathbb{R})$ the group of conformal homeomorphisms of the upper-half plane. The most general presentation for Λ is

Generators:

$$a_1, b_1, \cdots, a_g, b_g$$
 Hyperbolic

$$x_1, x_2, \cdots, x_r$$
 Elliptic

$$p_1, p_2, \cdots, p_s$$
 Parabolic

with the relations

$$x_1^{m_1} = x_2^{m_2} = \dots = x_r^{m_r} = \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^r x_j \prod_{k=1}^s p_k = 1.$$

We then say Λ has signature (see [4])

$$(g, m_1, m_2,, m_r; s).$$

s is the number of parabolic classes, i.e., of parabolic generators, and r is the number of elliptic generators. The m_i are the periods of Λ .

A complete description of the elements of $N(\Gamma_0(m))$ is given in [2]. If we represent the elements of $N(\Gamma_0(m))$ by the associated matrices, then the normalizer consists exactly of the matrices

$$\left(\begin{array}{cc} ae & b/h \\ cm/h & de \end{array}\right)$$

where $e \mid (m/h^2)$ such that $(e, m/h^2e) = 1$ and h is the largest divisor of 24 for which $h^2 \mid m$ with the understanding that the determinant of the matrix is e > 0. If $e \mid n$ and (e, n/e) = 1, we represent this as $e \mid n$ and we say that e is exact divisor of n. Thus we have

$$N(\Gamma_0(m)) = \left\{ \begin{pmatrix} a\sqrt{q} & b/h\sqrt{q} \\ cm/h\sqrt{q} & d\sqrt{q} \end{pmatrix} : \det = 1; 1 \le q; q \parallel \frac{m}{h^2}; a, b, c, d \in \mathbb{Z} \right\}.$$

The following theorem is given in [1] and [11].

Theorem 2. Let m have prime power decomposition $2^{\alpha_1}3^{\alpha_2}p_3^{\alpha_3}...p_r^{\alpha_r}$. Then $N(\Gamma_0(m))$ acts transitively on $\hat{\mathbb{Q}}$ if and only if $\alpha_1 \leq 7, \alpha_2 \leq 3, \alpha_i \leq 1, i = 3, 4, ..., r$.

If m is a square free positive integer, then

$$N(\Gamma_0(m)) = \left\{ \begin{pmatrix} a\sqrt{q} & b/\sqrt{q} \\ cm/\sqrt{q} & d\sqrt{q} \end{pmatrix} : \det = 1; 1 \le q; q \parallel m; a, b, c, d \in \mathbb{Z} \right\}.$$

Let Γ be modular group. In [3], we calculated parabolic class number of the subgroup $\Gamma_0(n) \cap \Gamma^N$ such that

$$\Gamma^{N} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a \equiv d \equiv 0 \pmod{N} \text{ or } b \equiv c \equiv 0 \pmod{N} \right\}$$

and

$$\Gamma_0(n) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma : c \equiv 0 \, (\bmod \, n) \right\},$$

where (N,n) = 1 and N is a power of a prime number. And it is shown that parabolic class number of this group is

$$N\sum_{d\mid n}\varphi\left(\left(d,\frac{n}{d}\right)\right).$$

Let (m,n) = (m,N) = (n,N) = 1 and let $\Gamma_0^*(n)$ be defined by

$$\Gamma_0^*(n) = \left\{ \begin{pmatrix} a\sqrt{q} & b/h\sqrt{q} \\ cm/h\sqrt{q} & d\sqrt{q} \end{pmatrix} \in N(\Gamma_0(m)) : c \equiv 0 \pmod{n} \right\}$$

and let $\Gamma(m, N)$ be defined by

$$\Gamma(m, N) = \{ A \in N(\Gamma_0(m)) : a \equiv d \equiv 0 \pmod{N} \text{ or } b \equiv c \equiv 0 \pmod{N} \}.$$

Moreover, we define $\Gamma_0^*(m,n,N)$ by $\Gamma_0^*(m,n,N) = \Gamma(m,N) \cap \Gamma_0^*(n)$. It is clear that $\Gamma_0^*(m,n,1) = \Gamma_0^*(n)$. In this paper, we will show that the parabolic class number of $\Gamma_0^*(m,n,N)$ is

$$N\sum_{d\mid n}\varphi\left(\left(d,\frac{n}{d}\right)\right)$$

when (m,n) = (m,N) = (n,N) = 1 and N is a power of a prime number. In the next section, we give five lemmas, which are necessary for our main theorem.

3. Main Theorems

From now on, otherwise stated, we will assume that m is a square free positive integer and (m,n) = (m,N) = (n,N) = 1.

Lemma 1.
$$|N(\Gamma_0(m)): \Gamma_0^*(m,n,N)| = \frac{|\Gamma_0(m):\Gamma_0(mnN)|}{2}$$

Proof. Let q|m. Since m is square free, (q, m/q) = 1. Thus it follows that $(qN^2, (m/q)n) = 1$. Therefore there exist two integers x_1 and y_1 such that $qN^2x_1 - (mn/q)y_1 = 1$. Let

$$A_q = \left(\begin{array}{cc} N\sqrt{q} & y_1/\sqrt{q} \\ mn/\sqrt{q} & Nx_1\sqrt{q} \end{array} \right).$$

Then $AA_q^{-1} \in \Gamma_0(mnN)$ for any

$$A = \begin{pmatrix} aN\sqrt{q} & b/\sqrt{q} \\ cmn/\sqrt{q} & dN\sqrt{q} \end{pmatrix} \in \Gamma_0^*(m,n,N).$$

Thus $A \in \Gamma_0(mnN)A_q$. On the other hand, since $(q, n(m/q)N^2) = 1$, there exist two integers x_2 and y_2 such that $qx_2 - n(m/q)N^2y_2 = 1$. Let

$$B_q = \left(\begin{array}{cc} x_2 \sqrt{q} & y_2 N / \sqrt{q} \\ m n N / \sqrt{q} & \sqrt{q} \end{array} \right).$$

Then we see that $BB_a^{-1} \in \Gamma_0(mnN)$ for any

$$B = \begin{pmatrix} a\sqrt{q} & bN/\sqrt{q} \\ cmnN/\sqrt{q} & d\sqrt{q} \end{pmatrix} \in \Gamma_0^*(m,n,N).$$

Thus it follows that $B \in \Gamma_0(mnN)B_q$. It can be seen that $\Gamma_0(mnN)A_{q_1} \neq \Gamma_0(mnN)A_{q_2}$ and $\Gamma_0(mnN)B_{q_1} \neq \Gamma_0(mnN)B_{q_2}$ for $q_1 \neq q_2$. Moreover,

$$\Gamma_0(mnN)A_{q_1} \neq \Gamma_0(mnN)B_{q_2}$$

for $q_1|m$ and $q_2|m$. Thus it follows that $|\Gamma_0^*(m,n,N):\Gamma_0(mnN)|<\infty$ and it can be shown that $|\Gamma_0^*(m,n,N):\Gamma_0(mnN)|=2^{t+1}$ where t is the number of the prime divisor of m. Also we have

$$|N(\Gamma_0(m)) : \Gamma_0^*(m,n,N)| = \frac{|N(\Gamma_0(m)) : \Gamma_0(mnN)|}{|\Gamma_0^*(m,n,N) : \Gamma_0(mnN)|}$$
$$= \frac{|N(\Gamma_0(m)) : \Gamma_0(m)||\Gamma_0(m) : \Gamma_0(mnN)|}{2^{t+1}}$$

Since $|N(\Gamma_0(m)):\Gamma_0(m)|=2^t$, the proof follows.

In view of the above lemma, it is seen that $\Gamma_0^*(m, n, N)$ is finitely generated and therefore it is a Fuchsian group.

Lemma 2. Let $N = p^r$ where p is a prime number and let $k/s \in \hat{\mathbb{Q}}$ with p|s. Then there exist some $T \in \Gamma_0^*(m,n,N)$ such that $T(k/s) = k_1/s_1$ with $(s_1,N) = 1$.

Proof. Since (m, N) = (n, N) = 1, we see that $(mn, N^2) = 1$ and therefore there exist two integers x and y such that $N^2x - mny = 1$. Let

$$T = \left(\begin{array}{cc} xN & y \\ mn & N \end{array}\right).$$

Then $T \in \Gamma_0^*(m,n,N)$ and $T(k/s) = \frac{xNk+ys}{mnk+sN} = k_1/s_1$ with $s_1 = mnk + sN$. It can be seen easily that $(s_1,N) = 1$.

Lemma 3. Let (k,s) = (s,N) = 1. Then there exist some $T \in \Gamma_0^*(m,n,N)$ such that $T(k/s) = k_1/s_1$ with $s_1|n$.

Proof. Let $s_1 = (s, n)$ and q = (s, m). Then $s_1 = (s, kn) = (s, knN)$. Moreover (s, m/q) = 1, since m is square free. Therefore $(s, knN\frac{m}{q}) = s_1$ and thus there exist two integers c_1 and d_1 such that $sd_1 + kn\frac{m}{q}Nc_1 = s_1$. Since $(d_1, (knm/s_1q)N) = 1$, there exist some integer k_0 such that

$$(d_1 - \frac{k n m}{s_1 q} N k_0, (m/q) n N^2) = 1.$$

Let

$$d = d_1 - \frac{knm}{s_1 q} N k_0$$

and

$$c = c_1 + \frac{s}{s_1} k_0.$$

Then $kn(m/q)Nc + sd = s_1$. On the other hand, $(dq, cN^2(m/q)n) = 1$ since $(d, c) = (d, (m/q)nN^2) = 1$. It can be seen easily that (q, c) = 1. Therefore $(dq, c(m/q)nN^2) = 1$. Thus there exist two integers x and y such that $xdq - c(m/q)nN^2y = 1$. Let

$$T = \left(\begin{array}{cc} x\sqrt{q} & yN/\sqrt{q} \\ cmnN/\sqrt{q} & d\sqrt{q} \end{array} \right).$$

Then $T \in \Gamma_0^*(m, n, N)$ and

$$T(k/s) = \frac{qxk + sNy}{cknmN + dsq} = \frac{qxk + sNy}{q(ckn(m/q)N + ds)} = \frac{xk + N(s/q)y}{(ckn(m/q)N + ds)} = \frac{k_1}{s_1}.$$

Lemma 4. Let $(a_1,d_1)=(a_2,d_1)=1$ and $d_1|n$. Then a_1/d_1 is conjugate to a_2/d_1 under $\Gamma_0^*(m,n,N)$ if and only if $a_1\equiv a_2\pmod{Nt}$ where $t=(d_1,n/d_1)$.

Proof. Suppose that a_1/d_1 is conjugate to a_2/d_1 under $\Gamma_0^*(m,n,N)$. Then there exist some $T \in \Gamma_0^*(m,n,N)$ such that $T(a_1/d_1) = a_2/d_1$. Assume that

$$T = \left(\begin{array}{cc} a\sqrt{q} & bN/\sqrt{q} \\ cmnN/\sqrt{q} & d\sqrt{q} \end{array} \right),$$

where q|m. Then we have

$$\frac{aa_1q + bNd_1}{cnmNa_1 + dd_1q} = \frac{a_2}{d_1}$$

and

$$adq - bcn(m/q)N^2 = 1.$$

Since

$$\begin{split} a(cmnNa_1+dd_1q)-\frac{cmnN}{q}(aa_1q+bd_1N)&=d_1,\\ dq(aa_1q+bd_1N)-bN(cmnNa_1+dd_1q)&=a_1q, \end{split}$$

and $(d_1, a_1q) = 1$, we see that $(aa_1q + bd_1N, cmnNa_1 + dd_1q) = 1$. Therefore there exist some $u = \pm 1$ such that

$$ua_2 = aa_1q + bNd_1$$

and

$$ud_1 = cmnNa_1 + dd_1q$$
.

Since $q(cn(m/q)Na_1 + dd_1) = ud_1$ and $(q, d_1) = 1$, it follows that q = 1. Thus

$$ua_2 = aa_1 + bNd_1$$
,

$$ud_1 = cmnNa_1 + dd_1$$

and

$$ad - bcnmN^2 = 1$$

From the above equations, we see that $ua_2 \equiv aa_1 \pmod{tN}$, $u \equiv d \pmod{tN}$, and $ad \equiv 1 \pmod{tN}$. Therefore $a_1 \equiv u^2 a_2 \pmod{tN}$, which implies that $a_1 \equiv a_2 \pmod{tN}$. Now assume that

$$T = \begin{pmatrix} aN\sqrt{q} & b/\sqrt{q} \\ cmn/\sqrt{q} & dN\sqrt{q} \end{pmatrix},$$

where $adN^2q - bcn(m/q) = 1$. Then we obtain

$$\frac{aa_1Nq + bd_1}{cnma_1 + dd_1qN} = \frac{a_2}{d_1}.$$

Similarly, it is seen that $(cnma_1 + dd_1qN, aa_1Nq + bd_1) = 1$. Thus there exist some $u = \pm 1$ such that

$$ua_2 = aa_1Nq + bd_1$$

and

$$ud_1 = cmna_1 + dd_1qN.$$

Since $ud_1 = q(cn(m/q)a_1 + dd_1N)$ and $(q, d_1) = 1$, it follows that q = 1. Thus

$$ua_2 = aa_1N + bd_1,$$

$$ud_1 = cmna_1 + dd_1N,$$

and

$$adN^2 - bcnm = 1$$
.

From the above equations, we get

$$ua_2 \equiv bd_1 \pmod{N}$$
,

$$ud_1 \equiv cmna_1 \pmod{N}$$
,

and

$$bcmn \equiv 1 \pmod{N}$$
.

This implies that $a_1 \equiv a_2 \pmod{N}$. In the same way we see that

$$ua_2 \equiv aa_1 N \pmod{t}$$
,

$$u \equiv dN \pmod{t}$$
,

and

$$adN^2 \equiv 1 \pmod{t}$$
.

Thus we have $a_1 \equiv a_2 \pmod{t}$. Since (t, N) = 1, it follows that $a_1 \equiv a_2 \pmod{t}$.

Now suppose that $a_1 \equiv a_2 \pmod{tN}$, where $t = (d_1, n/d_1)$. Let $n_1 = n/d_1$. Then $t = (d_1, n_1)$ and $(a_1a_2, d_1) = 1$. Therefore $t = (a_1a_2n_1, d_1)$. This shows that $tN = (d_1N, a_1a_2n_1N)$. Since $tN|a_2-a_1$, there exist two integers x and y such that $n_1a_1a_2Nx+d_1Ny=a_2-a_1$. Thus we obtain $a_1(n_1a_2Nx+1)+d_1Ny=a_2$. If we take b=y and $a=n_1a_2Nx+1$, we have $aa_1+d_1Nb=a_2$. Let $c=n_1d_1x=nx$ and $d=1-Nn_1a_1x$. Then $cNa_1+dd_1=d_1$. On the other hand, we see that

$$ad - bcN^{2} = a(1 - Nn_{1}a_{1}x) - bn_{1}d_{1}xN^{2}$$

= $a - (aa_{1} + d_{1}Nb)Nn_{1}x = a - n_{1}a_{2}Nx = 1.$

Let

$$T(z) = \frac{az + bN}{cmNz + d}.$$

Then n|c and therefore $T \in \Gamma_0^*(m, n, N)$. Moreover, we get

$$T(a_1/d_1) = \frac{aa_1 + bd_1N}{cNa_1 + dd_1} = a_2/d_1.$$

The proof of the following lemma is easy and will be omitted.

Lemma 5. Let $(a_1, d_1) = (a_2, d_1) = 1$, $d_1|n$, $d_2|n$, where d_1 and d_2 are positive integers. If a_1/d_1 is conjugate to a_2/d_2 under $\Gamma_0^*(m, n, N)$, then $d_1 = d_2$.

In the following, we give a lemma without proof, which we use later. The lemma appears in [9], page 73, as problem.

Lemma 6. Let m and k be positive integers. Then the number of the positive integers $\leq mk$ that are prime to m is $k\varphi(m)$.

Theorem 3. Let p be a prime number and $N = p^r$. Then the parabolic class number of $\Gamma_0^*(m,n,N)$ is

$$N\sum_{d\mid n}\varphi\left(\left(d,\frac{n}{d}\right)\right)$$

Proof. It suffices to calculate the number of orbits of $\Gamma_0^*(m,n,N)$ on $\hat{\mathbb{Q}}$. By Lemma 4 and Lemma 6, there exist $N\varphi((d,n/d))$ different orbits for each $d\mid n$. Then from Lemma 2 to Lemma 5, it follows that the number of orbits of $\Gamma_0^*(m,n,N)$ on $\hat{\mathbb{Q}}$ is

$$\sum_{d|n} N\varphi\left(\left(d, \frac{n}{d}\right)\right) = N \sum_{d|n} \varphi\left(\left(d, \frac{n}{d}\right)\right)$$

372

Corollary 1. Let p be a prime number. Then the parabolic class number of $\Gamma(m, p^k)$ is p^k .

Corollary 2. The parabolic class number of $\Gamma_0^*(n)$ is

$$\sum_{d\mid n}\varphi\left(\left(d,\frac{n}{d}\right)\right).$$

Let r be a natural number and let

$$\varGamma_0^+(r) = \left\{ \left(\begin{array}{cc} a\sqrt{q} & b/\sqrt{q} \\ cr/\sqrt{q} & d\sqrt{q} \end{array} \right) : adq - bcr/q = 1; 1 \leq q; \; q \; \parallel r; a,b,c,d \in \mathbb{Z} \right\}.$$

Then $\Gamma_0^+(r)$ is a subgroup of the normalizer of $\Gamma_0(r)$. Moreover, any element of $\Gamma_0^+(r)$ is an Atkin-Lehner involution of $\Gamma_0(r)$. Recall that an Atkin-Lehner involution w_q of $\Gamma_0(r)$ is an element of determinant 1 of the form

$$w_q = \left(\begin{array}{cc} a\sqrt{q} & b/\sqrt{q} \\ cr/\sqrt{q} & d\sqrt{q} \end{array}\right)$$

for some exact divisor q of r. If h = 1, then $\Gamma_0^+(r)$ is equal to $N(\Gamma_0(r))$, where h is the largest divisor of 24 such that $h^2|r$. The following lemmas are well known and their proofs can be found in [11].

Lemma 7. $\Gamma_0^+(r)$ acts transitively on the set $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ if and only if r is a square-free positive integer.

Lemma 8. Let $r = m/h^2$. Then $N(\Gamma_0(m))$ acts transitively on the set $\hat{\mathbb{Q}}$ if and only if $\Gamma_0^+(r)$ acts transitively on the set $\hat{\mathbb{Q}}$.

Let $r = m/h^2$. Then, it is well-known and easy to see that

$$N(\Gamma_0(m)) = \begin{pmatrix} 1/\sqrt{h} & 0 \\ 0 & \sqrt{h} \end{pmatrix} \Gamma_0^+(r) \begin{pmatrix} 1/\sqrt{h} & 0 \\ 0 & \sqrt{h} \end{pmatrix}^{-1}.$$

Assume that $N(\Gamma_0(m))$ acts transitively on the set $\hat{\mathbb{Q}}$. Taking $r = m/h^2$ and

$$X = \left(\begin{array}{cc} 1/\sqrt{h} & 0 \\ 0 & \sqrt{h} \end{array} \right),$$

it is immediate that XHX^{-1} is equal to $\Gamma_0^*(m,n,N)$, provided that $H = \Gamma_0^*(r,m,N)$. Therefore, we can give the following corollary easily.

Corollary 3. Suppose that $N(\Gamma_0(m))$ acts transitively on the set $\hat{\mathbb{Q}}$ and $N=p^k$ for some prime p. Then parabolic class number of $\Gamma_0^*(m,n,N)$ is

$$N\sum_{d\mid n}\varphi\left(\left(d,\frac{n}{d}\right)\right).$$

REFERENCES

- [1] M. Akbas and D. Singerman, "The signature of the normalizer $\Gamma_0(N)$," in *Groups, combinatorics* and geometry. Proceedings of the L.M.S. Durham symposium, held July 5-15, 1990 in Durham, UK, ser. Lond. Math. Soc. Lect. Note Ser., M. Liebeck, Ed., vol. 165. Cambridge: Cambridge University Press, 1992, pp. 77–86.
- [2] J. H. Conway and S. P. Norton, "Monstrous moonshine," Bull. Lond. Math. Soc., vol. 11, pp. 308–339, 1979.
- [3] R. Keskin, "A note on some modular subgroups," *Rocky Mt. J. Math.*, vol. 35, no. 2, pp. 573–585, 2005.
- [4] R. Keskin and B. Demirtürk, "On suborbital graphs for the normalizer of $\Gamma_0(N)$," *Electron. J. Comb.*, vol. 16, no. 1, p. 18, 2009.
- [5] M.-L. Lang, "The signature of $\Gamma_0^+(n)$," J. Algebra, vol. 241, no. 1, pp. 146–185, 2001.
- [6] C. Maclachlan, "Groups of units of zero ternary quadratic forms," *Proc. R. Soc. Edinb., Sect. A*, vol. 88, pp. 141–157, 1981.
- [7] T. Miyake, Modular forms. Transl. from the Japanese by Joshitaku Maeda. Berlin: Springer-Verlag, 1989.
- [8] M. Newman, "Conjugacy, genus, and class numbers," Math. Ann., vol. 196, pp. 198-217, 1972.
- [9] I. Niven, H. S. Zuckerman, and H. L. Montgomery, *An introduction to the theory of numbers. 5th ed.* New York: John Wiley & Sons, Inc., 1991.
- [10] G. Shimura, Introduction to the arithmetic theory of automorphic functions, ser. Publications of the Mathematical Society of Japan. Princeton, NJ: Publishers and Princeton University Press, 1971, vol. 11.
- [11] D. Singerman, "Subgroups of Fuchsian groups and finite permutation groups," *Bull. Lond. Math. Soc.*, vol. 2, pp. 319–323, 1970.

Author's address

Refik Keskin

Sakarya University, Mathematics Department, TR 54187 Sakarya, Turkey

E-mail address: rkeskin@sakarya.edu.tr