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NUMERICAL OSCILLATION OF NONLINEAR GENERALIZED
DELAY SINGLE SPECIES POPULATION MODEL
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Abstract. In this paper, we mainly consider the oscillation of numerical solutions for a nonlinear
delay differential equation which is generalized from a delay Lotka-Volterra type single species
population growth model. By studying the corresponding difference scheme of the equation dis-
cretized by θ-method, forward Euler method and backward Euler method, some sufficient condi-
tions under which the numerical solutions oscillate are obtained. Furthermore, we prove that the
positive non-oscillatory numerical solutions tend to the equilibrium of the original differential
equation. Finally, some numerical experiments are given to verify the theoretical results.
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1. INTRODUCTION

In recent years, the reason why the properties of solutions of nonlinear delay
differential equations (NDDEs) are getting more and more attention is that this type
of equation has been widely used to describe phenomena in various fields of science
such as life science, biology, ecology and physics [1,3,7,14,15,17]. Many research-
ers hold strong interest in all kinds of behaviors of solutions of NDDEs such as sta-
bility [24], periodicity [4], hopf bifurcation [25] and oscillation [11, 13]. Relative
to the oscillation of analytic solutions, it is necessary to study the oscillation of the
corresponding numerical solutions. Because only those numerical methods that pre-
serve the inherent properties of the continuous model are meaningful and valuable.
Nowadays, some results on the numerical oscillation of NDDEs have been published
in [18–20]. Different from them, in this paper, we consider the following NDDEs

ẋ(t) = x(t)(a+bxp(t − τ)− cxq(t − τ)), t ≥ 0, (1.1)
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which is called generalized single species population model. The parameters in (1.1)
satify

a,c, p,q,τ > 0,b ∈ R, p < q. (1.2)

We consider the solutions of (1.1) with initial condition of the form

x(t) = ϕ(t), −τ ≤ t ≤ 0,

where ϕ ∈C([−τ,0],(0,∞)) and ϕ(0)> 0.
In [12], Ladas and Qian studied globally asymptotically stablity for every positive

solution of (1.1). After that, some extended forms of (1.1) were considered. The
global attractive and the oscillation of a unique positive periodic solution of delay
periodic logistic equation were studied in [22], sufficient conditions were obtained for
the existence and global attractivity of positive periodic solution of an impulsive DDE
with Allee effect [23], the existence of a positive periodic solution of the delayed
periodic logistic equation was established in [5], and some corresponding discrete
models were studied also [6].

In particular, when p = 1 and q = 2, then (1.1) gives

ẋ(t) = x(t)(a+bx(t − τ)− cx2(t − τ)), (1.3)

which is a delay Lotka-Volterra type single species population growth model pro-
posed by Gopalsamy and Ladas [9]. As a case in exhibition of the Allee effect [21],
(1.3) means the positive feedback effects of aggregation and cooperation are domi-
nated by density-dependent stabilizing negative feedback effects due to intraspecific
competition when the density of the population is higher than a critical value. In this
model, the per capita growth is expressed as a quadratic function, related either at
present or in history, of the density. Specifically, this per-capita growth rate can be
interpreted as a ”first order” nonlinear approximation of more general types of plau-
sible nonlinear growth rates with single humps. As for the research on the properties
of (1.3), the interested readers can refer to [8].

The definitions of oscillatory for solutions of differential equation and difference
equation can be found in [2], next we list some helpful results which will be used in
the upcoming analysis.

Theorem 1 ([10, Corollary 7.1.1]). Consider the difference equation

an+1 −an +
l

∑
j=−k

q jan+ j = 0, (1.4)

assume that k, l ∈ N and q j ∈ R for j =−k, . . . , l. Then the following statements are
equivalent:

(i) Every solution of (1.4) oscillates.
(ii) The characteristic equation r−1+∑

l
j=−k q jr j = 0 has no positive roots.
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Theorem 2 ([10, Theorem 7.2.1]). For the difference equation

an+1 −an + lan−k = 0, (1.5)

where l ∈ R, k ∈ Z. Then every solution of (1.5) oscillates if and only if one of the
following conditions holds:

(i) k =−1 and l ≤−1;
(ii) k = 0 and l ≥ 1;

(iii) k ∈ {. . . ,−3,−2}∪{1,2, . . .} and l(k+1)k+1/kk > 1.

Lemma 1 ([12, Theorem 1]). Assume that (1.2) holds, then every solution of (1.1)
oscillates about x∗ if and only if

(qc(x∗)q − pb(x∗)p)τ >
1
e
, (1.6)

where x∗ is the positive equilibrium of (1.1).

2. OSCILLATIONS OF NUMERICAL SOLUTIONS

In this section, we will apply the θ-method to the simplified form of (1.1), then by
analyzing the characteristic equation of the corresponding difference scheme we get
the conditions under which the numerical solutions oscillate for two different ranges
of parameter θ.

At first, making the change of variable x(t) = x∗ey(t), (1.1) is reformulated as

ẏ(t)+(qc(x∗)q − pb(x∗)p)g(y(t − τ)) = 0, (2.1)

where

g(v) =
c(x∗)q(eqv −1)−b(x∗)p(epv −1)

qc(x∗)q − pb(x∗)p ,

so the linearized form of (2.1) is

ż(t)+(cq(x∗)q −bp(x∗)p)z(t − τ) = 0. (2.2)

In the rest paper, we mainly investigate the conditions under which the numerical
solution of (1.1) is oscillatory when (1.6) is satisfied. In this situation, the θ-method
preserves the oscillation of the analytic solution of (1.1). Therefore this numerical
method is meaningful and available.

Let h = τ/m be a given stepsize with integer m ∈N+. Application of the θ-method
to (2.1) gives

yn+1 = yn −hθ(qc(x∗)q − pb(x∗)p)g(yn+1−m)

−h(1−θ)(qc(x∗)q − pb(x∗)p)g(yn−m),
(2.3)

where θ ∈ [0,1], yn+1 and yn+1−m are approximations to y(t) and y(t − τ) of (2.1) at
tn+1, respectively.
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Let yn = ln(xn/x∗), we have the difference scheme for (1.1)

xn+1 = xn exp
{

hθ
[
c
(
(x∗)q − xq

n+1−m

)
+b

(
xp

n+1−m − (x∗)p)]
+h(1−θ)

[
c
(
(x∗)q − xq

n−m
)
+b

(
xp

n−m − (x∗)p)]} . (2.4)

Next, we consider whether the θ-method preserves the oscillation of (1.1). Thus,
we study the oscillation of (2.3) to get the conditions under which (2.4) oscillates.

On the other hand, using the θ-method to (2.2) yields difference equation
zn+1 = zn −hθ(qc(x∗)q − pb(x∗)p)zn+1−m

−h(1−θ)(qc(x∗)q − pb(x∗)p)zn−m,
(2.5)

which is exactly the linearized form of (2.3).
For simplicity, let α = qc(x∗)q and β = pb(x∗)p, then (1.6) and (2.5) reduces to the

following simplified inequality

(α−β)τ >
1
e

(2.6)

and
zn+1 = zn −hθ(α−β)zn+1−m −h(1−θ)(α−β)zn−m, (2.7)

respectively.

Lemma 2. The characteristic equation of (2.5) is given by

r = S
(
−h(α−β)r−m) . (2.8)

Proof. Substituting zn = rnz0 into (2.7), and according to the expression of the
stability function of the θ-method, we can get this proof. □

The next lemma is for the first case of θ which is in the interval [0,0.5].

Lemma 3. If (1.2) and (2.6) hold, then for θ ∈ [0,0.5], (2.8) has no positive roots.

Proof. We introduce D(r) = r−S (−h(α−β)r−m). On the other hand, from Lem-
ma 3 in [16] we have

S
(
−h(α−β)r−m)≤ exp(−h(α−β)r−m).

In the following, we shall prove E(r) = r− exp(−h(α−β)r−m)> 0 for all r > 0.
We consider it by using the proof by contradiction. Suppose that there exists a r0 > 0
such that E(r0)≤ 0, then

r0 ≤ exp(−h(α−β)r−m
0 ),

hence
rm

0 ≤ exp(−τ(α−β)r−m
0 ),

which, rearranging terms, writes also as

τ(α−β)e ≤ τ(α−β)r−m
0 exp(1− τ(α−β)r−m

0 ).

We examine it in two cases:
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• If 1− τ(α−β)r−m
0 = 0, then τ(α−β)e ≤ 1, which contradicts to (2.6).

• If 1− τ(α−β)r−m
0 ̸= 0, by the fact ex < 1/(1− x) we have

exp(1− τ(α−β)r−m
0 )<

1
τ(α−β)r−m

0
,

that is τ(α−β)e ≤ 1, which also contradicts to (2.6).
Therefore, the following inequality is true for all r > 0,

D(r) = r−S
(
−h(α−β)r−m)≥ r− exp(−h(α−β)r−m) = E(r)> 0,

the proof is finished. □

For the second case: θ ∈ (0.5,1], we might as well assume m > 1.

Lemma 4. If (1.2) and (2.6) hold, then for θ ∈ (0.5,1], (2.8) has no positive roots
for h < h0, where

h0 =

{
∞, (α−β)τ ≥ 1;
τ(1+ ln(α−β)), (α−β)τ < 1.

(2.9)

Proof. We only to prove that D(r)> 0. Note that, the function S (−h(α−β)r−m)
is increasing about θ if r > 0, that is

S
(
−h(α−β)r−m)= 1−h(1−θ)(α−β)r−m

1+hθ(α−β)r−m ≤ 1
1+h(α−β)r−m .

Next, we are going to prove

r− 1
1+h(α−β)r−m > 0 (2.10)

holds conditionally. Rearranging terms on the left of (2.10) gives

r− 1
1+h(α−β)r−m =

r1−m

1+h(α−β)r−m (rm − rm−1 +h(α−β)).

Denoting
G(r) = rm − rm−1 +h(α−β),

then G(r) is the characteristic polynomial of the difference equation

vn+1 − vn +h(α−β)vn+1−m = 0.

Next we aim to prove G(r) > 0 for r > 0. By means of Theorems 1 and 2, we
know that G(r) has no positive roots if and only if

h(α−β)
mm

(m−1)m−1 > 1,

which can be restated as

ln(α−β)τ+(m−1) ln
m

m−1
> 0. (2.11)
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Therefore we have the following two cases:

• If (α−β)τ ≥ 1, then (2.11) holds naturally for m > 1;
• If (α−β)τ < 1, in view of (2.9) as well as the fact ln(1+ x)> x/(1+ x) we

know that (2.11) also holds.

Thus (2.10) is true for h < h0. Then we arrive at

D(r) = r−S
(
−h(α−β)r−m)> r− 1

1+h(α+β)r−m > 0,

which indicates that (2.8) has no positive roots. This proof is completed. □

We therefore have the following theorem.

Theorem 3. If (1.2) and (2.6) hold, then (2.4) is oscillatory for

h <

{
∞ if θ ∈ [0,0.5],
h0 if θ ∈ (0.5,1],

where h0 is defined by (2.9).

3. ASYMPTOTIC BEHAVIOR OF NON-OSCILLATORY SOLUTION

In this section, we study the asymptotic behavior of non-oscillatory numerical
solution of (1.1). That is, we aim to prove that the non-oscillatory solution of (2.4)
approaches the equilibrium point.

Lemma 5 ([12, Lemma 4]). Let x(t) be a positive solution of (1.1) which does not
oscillate about x∗, then lim

t→∞
x(t) = x∗.

Lemma 6. Let yn be a non-oscillatory solution of (2.3), then lim
n→∞

yn = 0.

Proof. Assume yn > 0 for n sufficiently large. The case of yn < 0 is similar and be
omitted. To begin with, we notice that

0 = a+b(x∗)p − c(x∗)q,

together with (1.2) which implies

α−β = qc(x∗)q − pb(x∗)p > q(c(x∗)q −b(x∗)p) = qa > 0. (3.1)

From (2.3) we have

yn+1 − yn =−hθ(α−β)g(yn+1−m)−h(1−θ)(α−β)g(yn−m)< 0, (3.2)

then {yn} is decreasing. Hence there is a ζ > 0 such that

lim
n→∞

yn = ζ. (3.3)
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In order to prove that ζ = 0, in contrast we assume ζ > 0, then there exists Ñ ∈N+

and any given ε > 0, such that for n−m > Ñ, 0 < ζ−ε < yn < ζ+ε. So yn−m > ζ−ε

and yn+1−m > ζ− ε. Thus (3.2) gives

yn+1 − yn =−hθ(α−β)g(yn+1−m)−h(1−θ)(α−β)g(yn−m)

<−hθ(α−β)g(ζ− ε)−h(1−θ)(α−β)g(ζ− ε)

=−h(α−β)g(ζ− ε)< 0,

results in yn+1 − yn < H < 0, where

H = h(b(x∗)p(ep(ζ−ε)−1)− c(x∗)q(eq(ζ−ε)−1)).

Thus yn →−∞ as n → ∞, which contradicts to (3.3). The proof is complete. □

Based on Lemma 6, we obtain the following theorem.

Theorem 4. Let xn be a positive solution of (2.4), which does not oscillate about
x∗, then lim

n→∞
xn = x∗.

4. THE FORWARD EULER METHOD AND THE BACKWARD EULER METHOD

In this section, we shall carry out the analysis of oscillation and non-oscillation
of (1.1) in the case of discretization by the forward Euler method and the backward
Euler method. The results for the numerical oscillation and the asymptotic behavior
will be given in detail.

4.1. The forward Euler method

Let h = τ/m be a given stepsize with m ∈N+. Apply the forward Euler method to
(2.1) and (2.2) gives

yn+1 = yn −h(qc(x∗)q − pb(x∗)p)g(yn−m) (4.1)

and
zn+1 = zn −h(qc(x∗)q − pb(x∗)p)zn−m, (4.2)

respectively.
Let yn = ln(xn/x∗) in (4.1), we have the discrete scheme for (1.1)

xn+1 = xn exp
{

h
[
c
(
(x∗)q − xq

n−m
)
+b

(
xp

n−m − (x∗)p)]} . (4.3)

Lemma 7. If (1.2) and (2.6) hold, then the characteristic equation of (4.2) has no
positive roots.

Proof. Set zn = rnz0 in (4.2), we get the characteristic equation of (4.2) as follows

r = 1−h(α−β)r−m. (4.4)

Denoting
F(r) = r−

(
1−h(α−β)r−m) ,

next we will discuss in two cases.
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(i) When r ≥ 1, from (3.1) we know that F(r)> 0, so (4.4) has no positive roots in
[1,+∞).

(ii) When 0 < r < 1, in view of 1+ x < ex for all x > 0, we get

1−h(α−β)r−m < e−h(α−β)r−m
,

then
F(r) = r−

(
1−h(α−β)r−m)> r− e−h(α−β)r−m

,

in order to prove F(r)> 0, we only need to prove r > e−h(α−β)r−m
, that is

lnr >−h(α−β)r−m.

Set
Γ(r) = lnr+h(α−β)r−m,

from
dΓ

dr
=

rm − τ(α−β)

rm+1 = 0

we have
r = (τ(α−β))

1
m .

So it is easy to know that

min
0<r<1

Γ(r) = Γ((τ(α−β))
1
m ) =

1+ ln(τ(α−β))

m
,

in terms of (2.6) we have Γ(r) > 0 for 0 < r < 1, thus F(r) > 0 for 0 < r < 1.
So (4.4) has no positive roots in (0,1). The proof is finished.

□

Theorem 5. If (1.2) and (2.6) hold, then (4.3) is oscillatory for any h > 0.

Similar to Lemma 6 and Theorem 4 we have the following theorem.

Theorem 6. Let xn be a positive solution of (4.3), which does not oscillate about
x∗, then lim

n→∞
xn = x∗.

4.2. The backward Euler method

Using the similar technique in Section 4.1, we obtain the corresponding results for
the backward Euler method.

Let h = τ/m (m ∈ N+), apply the backward Euler method to (2.1) and (2.2) gives

yn+1 = yn −h(qc(x∗)q − pb(x∗)p)g(yn+1−m) (4.5)

and
zn+1 = zn −h(qc(x∗)q − pb(x∗)p)zn+1−m, (4.6)

respectively.
Let yn = ln(xn/x∗) in (4.5), we have the discrete scheme for (1.1)

xn+1 = xn exp
{

h
[
c
(
(x∗)q − xq

n+1−m

)
+b

(
xp

n+1−m − (x∗)p)]} . (4.7)



NUMERICAL OSCILLATION OF NDDE 497

Lemma 8. If (1.2) and (2.6) hold, then the characteristic equation of (4.6) has no
positive roots for h < h̄, here

h̄ = τ− 1
(α−β)e

. (4.8)

Theorem 7. If (1.2) and (2.6) hold, then (4.7) is oscillatory for h < h̄, here h̄ is
defined in (4.8).

Theorem 8. Let xn be a positive solution of (4.7), which does not oscillate about
x∗, then lim

n→∞
xn = x∗.

5. NUMERICAL EXPERIMENTS

In this section, we present some examples to verify the above theoretical results.
First of all, we consider the equation

ẋ(t) = x(t)
(
3−10x(t −0.27)−10x2(t −0.27)

)
, t ≥ 0 (5.1)

with initial condition ϕ(t) = 1 for −0.27 ≤ t ≤ 0. Since a = 3, b = −10, c = 10,
p = 1, q = 2 and τ = 0.27, then we compute that x∗ ≈ 0.2416 and 1/e < (α−β)τ ≈
0.9676 < 1, so (2.6) is satisfied, which indicates the analytic solution of (5.1) is
oscillatory. From Theorem 3 we know that the numerical solution of (5.1) should
be oscillatory if we choose θ = 0.4 ∈ [0,0.5],m = 5 and h = τ/m = 0.0540 < ∞. At
the same time, the numerical solution of (5.1) should also be oscillatory if we choose
θ = 0.7 ∈ (0.5,1], m = 7 and h = τ/m ≈ 0.0385 < h0 = τ(1+ ln(α−β))≈ 0.6146.
We draw the figures of the analytic solution and numerical solution of (5.1) in each
of Figures 1 and 2 with the parameters mentioned above. From these figures we can
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FIGURE 1. The analytic solution and the numerical solution of (5.1)
with m = 5 and θ = 0.4.
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FIGURE 2. The analytic solution and the numerical solution of (5.1)
with m = 7 and θ = 0.7.

see that the numerical solution of (5.1) oscillates about x∗. That is, the numerical
phenomena are consistent with Theorem 3.

Secondly, for another equation

ẋ(t) = x(t)
(

1
11

+2x(t −2)−7x2(t −2)
)
, t ≥ 0 (5.2)

with initial condition ϕ(t) = 0.5 for −2 ≤ t ≤ 0. It is easy to get that x∗ ≈ 0.3256
and 1/e < 1 < (α−β)τ ≈ 1.6660, so (2.6) holds, then the analytic solution of (5.2)
is oscillatory. We set θ = 0.5 ∈ [0,0.5], m = 10, h = 0.2 < ∞ in Figure 3 and θ =
0.55 ∈ (0.5,1], m = 20, h = 0.1 < h0 = ∞ in Figure 4, respectively. From the two
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FIGURE 3. The analytic solution and the numerical solution of (5.2)
with m = 10 and θ = 0.5.
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FIGURE 4. The analytic solution and the numerical solution of (5.2)
with m = 20 and θ = 0.55.

figures we see that the numerical solution of (5.2) oscillates about x∗, which are in
agreement with Theorem 3.

Thirdly, we give an example to verify the asymptotic behavior. Consider the fol-
lowing equation

ẋ(t) = x(t)
(

1
13

+
1
7

x(t −0.5)− 1
5

x2(t −0.5)
)
, t ≥ 0 (5.3)

with initial condition ϕ(t) = 2 for −0.5 ≤ t ≤ 0. So we have x∗ ≈ 1.0728 and
(α− β)τ ≈ 0.1536 < 1/e, then (2.6) is not fulfilled. Thus the analytic solution of
(5.3) is non-oscillatory. In Figure 5 we draw the figures of the analytic solution and
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FIGURE 5. The analytic solution and the numerical solution of (5.3)
with m = 5 and θ = 0.4.
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the numerical solution of (5.3) with θ = 0.4,m = 5. We can see that x(t) → x∗ as
t → ∞ and xn → x∗ as n → ∞. The numerical results are identical with Theorem 4.

Finally, for the following four equations

ẋ(t) = x(t)
(
0.5−13x2(t −1.2)−5x5(t −1.2)

)
, t ≥ 0,

ϕ(t) =
1
3
, −1.2 ≤ t ≤ 0,

(5.4)

ẋ(t) = x(t)
(

4
21

− x3(t −0.6)− 1
13

x7(t −0.6)
)
, t ≥ 0,

ϕ(t) = 0.4, −0.6 ≤ t ≤ 0,
(5.5)

ẋ(t) = x(t)
(
0.25−2x2(t −2.2)−13x9(t −2.2)

)
, t ≥ 0,

ϕ(t) = 0.6, −2.2 ≤ t ≤ 0,
(5.6)

ẋ(t) = x(t)
(

1
17

−4x5(t −0.7)−18x8(t −0.7)
)
, t ≥ 0,

ϕ(t) = 0.12, −0.7 ≤ t ≤ 0,
(5.7)

we can verify Theorems 5 and 6 for the forward Euler method with (5.4) and (5.5)
(see Figures 6, 7), Theorems 7 and 8 for the backward Euler method with (5.6) and
(5.7) (see Figures 8, 9) in the similar way.
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FIGURE 6. The analytic solution and the forward Euler numerical
solution of (5.4) with m = 20.

From all these figures we can see that the numerical methods inherit the corres-
ponding oscillation and asymptotic property of the above equations.
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FIGURE 7. The analytic solution and the forward Euler numerical
solution of (5.5) with m = 10.
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FIGURE 8. The analytic solution and the backward Euler numerical
solution of (5.6) with m = 35.

6. CONCLUSION

In this paper, we investigate the oscillation and the asymptotic behavior of the nu-
merical solution of nonlinear generalized delay single species population model with
three kinds of numerical methods: the θ-method, the forward Euler method and the
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FIGURE 9. The analytic solution and the backward Euler numerical
solution of (5.7) with m = 14.

backward Euler method. Under the condition that the analytic solution is oscillatory,
several conditions under which the numerical solution oscillates are obtained. Fur-
thermore, we confirmed that the non-oscillatory numerical solution approaches to the
steady state of the equation. In our future work, we will consider the higher order nu-
merical method, fractional order problem and variable exponents problem including
the equation ẋ(t) = x(t)(a+bxp(x)(t − τ)− cxq(x)(t − τ)).
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