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Abstract. Inthis article, three generalized Lipschitizian mappings in the uniformly convex Banach
spaces are considered. By defining an iterative process, the existence of a common fixed point of
this iteration is proved. An example is presented to guarantee the convergence of the iteration.
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1. INTRODUCTION

In computational mathematics, an iterative method is a mathematical procedure
that uses an initial value to generate a sequence of improving approximate solutions
for a class of problems, in which the n —th approximation is derived from the pre-
vious ones. If an equation can be put into the form f(x) = x, and a solution x is an
attractive fixed point of the function f, then one may begin with a point x; in the
basin of attraction of x, and let x,+; = f(x,) for n = 1, and the sequence {x, },>1 will
converge to the solution x. Here x, is the n-th approximation or iteration of x and
Xpa11 1S the next or n+ 1 iteration of x (see [4,7,9—16], and reference therein).

Let C be a nonempty subset of a Banach space E, T : C — C be a mapping and

F(T)={xeC:Tx=x}

denotes the set of fixed points of 7. A mapping T is said to be asymptotically non-
expansive, if there exists a sequence {k, } of positive numbers with lim k, = 1 such

n—->oo
that for x,y e Cand n > 1,
[T"x =T"y|| < knllx —yl|-

The study of iterative construction for fixed points of asymptotically nonexpansive
mappings began in 1975. Baillon [3] proved, if C is a nonempty, closed and convex
subset of a Hilbert space # and T : C — C is a nonexpansive mapping such that

© 2021 Miskolc University Press


http://dx.doi.org/10.18514/MMN.2021.3615

890 A.RAZANI

F(T) # @, then for every x € C, the Cesdro means

1 & .
= T/x
n+1]§6

is weakly convergent to a fixed point of 7. Then, Shimizu et al. [18] studied the
convergence of the following approximated sequence for an asymptotically nonex-
pansive mapping in Hilbert space,

T,x

xo=x€C,
1 &
Xnt1 = Ocnx+ (l —an)mj;oTan,

where {o, } is a real sequence satisfying 0 < o, < 1 and o, —> 0 as n — oo. They
proved that {x,} is strongly convergent to an element of F (7). We recall the defini-
tion of uniformly convex space (see [2, 0] for more details).

Definition 1. A Banach space F is said to be strictly convex if

lx+yll <2
for all x,y € E with ||x|| = ||y|| = 1 and x # y. We recall that a Banach space E is
called uniformly convex, if for each € > 0 there is a 6 > 0 such that if ||x|| = ||y|| =1
then ( )
x+y
I—==l=1-8.

It is obvious that uniform convexity implies strict convexity.
In 1991, [23] proved the characterization of uniform convexity as follows.

Theorem 1. A Banach space E is uniformly convex if and only if for each fixed
number r > 0, there exists a continuous function @ : [0,00) — [0,00), @(s) = 0 <
s = 0, such that

[Aae+ (1= 2)y1* < Ml + (1= D) [y]2 = A1 = 2@ ([lx = y])
forall k€ [0,1] and all x,y € E such that ||x|| < r and ||y|| < r.
Shioji et al. [19] studied the strongly convergence of the sequence

xo=x€C,
1 &
Xp+1 = O x + (1 —(x,/l)mjg‘ijxn,

in uniformly convex Banach spaces with uniformly Gateaux differentiable norms.
Also, for an asymptotically nonexpansive mapping 7', Tan et. al [22] defined the
modified Ishikawa iterations process

X1 =t T" (50T "xp + (1= 5) %) + (1 — 1) X,
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where {7,} and {s,} are real sequences such that {#,} is bounded away from 0 and 1
and {s, } bounded away from 1. They proved the sequence {x, } is weakly convergent
to a fixed point of T'.

Definition 2. Let E be a Banach space. E is said to satisfy Opial’s condition if for
each sequence {x,} in E the condition x,, — x implies

limsup ||x, —x|| < limsup||x, —y||
n—-yoo n—-yoo

forall y € E and y # x.

Definition 3. Let E be an arbitrary real Banach space with norm ||.|| and E* be the
dual space of E. The duality mapping J : E — E* is defined by

Jx={f € E": {x.f) = |xll”, Ilf = IIx]1},
where (x, f) denotes the value of the continuous linear function f € E* atx € E.

Lemma 1 ([21]). Let {8,}, {B.} and {y.} be three sequences of nonnegative
numbers satisfying the recursive inequality

8n11 < PBubp+7n foralln>1,

fBr>1L Yo ((Bn—1) <ocoandy, Yn < oo, then lim J, exists.
n—oo

Lemma 2 ([17]). Let E be a uniformly convex Banach space. Assume {t,} is a
sequence of real numbers in (0,1) bounded away from 0 and 1. If {x,} and {y,} are
two sequences of E such that for some a > 0

limsup ||x,|| < a, limsup ||y,|| < a and limsup ||t,x, + (1 —1,)yu|| = a,
n—-yo0 n—-joc n—-soo

then lim ||x, —y,| = 0.
n—>oo0

Lemma 3 ([1]). Let {x,} be a bounded sequence in a uniformly convex Banach
space E. If w,,({x,}) = {x}, then x, — x, where w,,({x,}) = {x € E : 3x,,; — x}
denotes the weak w-limit set of {x, }.

In 2001, Jung et al. [8] introduced the following class of mappings.

Definition 4. A mapping 7 : C — C, where C is a nonempty subset of Banach
space E, is said to be a generalized Lipschitzian mapping if

1T"x =Ty < anllx = yl| +ba(llx = T"x[| + I T"y = y[|) + ca([lx = T"y[| + | T"x — y[|)

(1.1)
for each x,y € C and n > 1, where a,, b, and ¢, are nonnegative constants such that
there exists an integer ng such that b, +c, < 1, for all n > ny.
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Definition 5. A mapping 7 : C — C, where C is a nonempty subset of Banach
space E, is said to be a uniformly generalized Lipschitzian mapping if

IT"x =T"y|| < allx =yl +b(llx = T"x|| + [|T"y = y[) +c(llx = Tyl + [IT"x = y])
(1.2)
for each x,y € C where a,b and ¢ are nonnegative constants and b +c¢ < 1.

Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping. But
the vice versa is not necessarily true. See the following example.

Example 1. Let E = R be the set of real numbers and C = [0, o0). For each x € C,

we define |
1” it xelog]
Tx=4 ' T* (1.3)

1
0 if —, 00
i x€(4, ),

where 0 < r < i. Then T : C — C is not continuous at x = % and hence T is not a
Lipschitzian mapping. Set C; = [0, 1] and C> = (§,0). In order to prove T : C — C
is a generalized Lipschitzian mapping, we need the following steps: for all x,y € C;
andn > 1,

rx ry rx(1+y)—ry(1+x)
[Tx—Ty| = | - =] | <rfx—y
I+x 14y (1+x)(1+y)
and T T
T2 — T2y = |5 P T Ty < Ple—yl.
=T = | — | < T Do) < Pl

By induction, for all n > 1
T = T"| < Pl y] 4+ P ([x = T"| + [y = T") 4+ P ([x = T"| + [y = T"x]). (1.4)
Forall x,yc C;andn > 1,

|T"x—T"y| =0< |x—y|. (1.5)
Forxe Cyand y € C,,
rx
Tx—Ty|l = —0].
Tx=Ty = |72 0]
By induction, forn € N,
rT"x

Ty = <rT"x < 7"y,
1+T"x
and by a computation
|T"x—T"y| = |T"x—0| (1.6)
<x—=y)+ (O —T"x)+ (T"x—x) +x|
< (e =yl + T = x|+ |y = T"x| + [x +y - 0])
<=yl (=T + [y =T"y[) + " (x = T"y[ + |y — T"x]).
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Thus inequalities (1.4), (1.5) and (1.6) imply that T : C — C is a generalized Lipschit-
zian mapping.

Lemma 4. Let C be a bounded, closed and convex subset of a uniformly convex
Banach space E and T be a uniformly generalized Lipschitzian mapping of C into
itself. Then, for any € > 0, there exists a positive number &(€) such that |[Tx —x|| < €
for all x € [xy,x1] whenever for xo,x1 € C, ||Txo—xo|| < E&(€) and |Tx1 —x1|| < &(e),
where

[X(),xl} = {Ml +(1 —}»)XO 0<A< 1}.

Proof. Fix € > 0 and x € [xp,x;]. Then x = Ax; + (1 — A)xo for some A with
0 <A < 1. We consider two cases, ||x; —xo|| < &; and ||x; —xo|| > €.
If ||x; —xo|| < €1 then it is obvious that ||x — xo|| < €;, where €; = lljr(abjzcc) $. Since
172 = x|| < [|T2 = Txol| + || Txo — xo| +- [lx0 — x|
< allxo — x| +b([| T = x[| + [ Tx0 — x0])
+ (o = Tl + [ Txo — x[]) + [ Tx0 — x0[| + [lxo — ]
< allxo — x| +b([|Tx = x[| + [ Tx0 — x0])
+e(lbe =Tl + [T xo — xo| 4 2{l2x0 — xI[) + [| 70 — xo]| =+ [lx0 — ]|

and so
1+a+2c b+c+1

— o I ey
Thus if || Txo —xo|| < &(€) < 2L then | Tx—x|| <e.

If ||xo — x1]| > €1, let dy denote the diameter of C. For any nonnegative number
0 < A <1, we consider three cases:

Case DIfO<A< Z—(‘), then

ITx—x|| < ||lx0 — Txo]|- (1.7)

Thus similar to above, if §(€) < 11_ JSZK) £, then inequation (1.7) implies || 7x —x|| <&.

Case2)If1—Z—(‘)<7\,§10r0§(1—7\,)<f7(‘),s0

o1 = x[| = (1 =A)[]x1 —xol| < &1,

and similar to above we have ||Tx —x|| < €.
Case 3) If Z—é <A<1-— Z—(‘),y = Tx implies
[y =xoll = [|Tx —xol| < [|Tx = Txol| + [|Tx0 — xo]|.
By inequalities (1.2) and (1.7),
a+b+c I+b+c

—xl < - — T 1T — x0| < - h
Iyl < 1= ey ol = g 1750 —oll < Pl —oll + e,

(1.8)
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where r = 4tbt¢_ and p = 1E0tc  and also

1—(b+c) 1—(b+c)
a+b—+c 1+b+c
— < —|x— —||Tx; — 1.9
<r(1 =) |lx1 — xol| + hE(e).
Set
Y —X0 X1 —y
0=——pandz = . (1.10)
Mot =xofl T (1=2) [ = o]
Then \
rAl|x1 —xol| + hE(e hé(e)d
HZOH < H 1 0” &( ) <r+ {;(2) 0’
M\xl —Xo” El
and similarly
h&(€)dy

llz1]| <r+
et

On the other hand, for A with z% <A<1-— %,
IAz0+ (1 =A)z1|| = llx1 = xoll =1.
[[x1 —xol|

Therefore using uniform convexity of E, we can choose &(€) so small that
|21 =20l < & Thus by x = Ax; + (1 —A)xo and (1.10) we have

[y = x[| = [I(T =2) (y = x0) = A(x1 = y) (1.11)
=M1 =4 [x1 = xol [lz1 = zoll
< E.
Notice that y = T'x, and this means ||Tx —x|| < €. O

Lemma 5 ([20]). Let C be a bounded, closed and convex subset of a uniformly
convex Banach space E and T be a uniformly generalized Lipschitzian mapping of C
into itself. If {x;} is a sequence of C such that xj — xo and xj — Tx; — 0, then xq is
a fixed point of T.

Proof. Since ||(I —T)xj|| = €j — 0, for each j we assume €; <&(g;_;) <€,
where &(€) for any € > 0 is the constant described in the conclusion of Lemma
4. Hence if x € Co{x; : j > k} then ||x — Tx|| < &-_;. Since Co{x;: j >k} is
weakly compact, xo € Co{x; : j >k}, k =1,2,3,--- and hence ||xg — Txo| < €,
j=1,2,3,---. This implies ||Txo — xo|| = 0. O

Let C be a bounded, closed and convex subset of a Banach space E and {7,,} be a
sequence of uniformly generalized Lipschitizian self-mappings of C, such that the set

F of common fixed points of {7, } is nonempty. Let k,, = % for T, and k,, > 1

for all n > 1. For a given x; € C, we define the sequence {x,} by x,1 = T,x, for
n>1.
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Lemma 6. Let E be a normed linear space and C be a nonempty closed and convex
subset of E. Let T : C — C be a uniformly generalized Lipschitzian mapping. Let
{xn} be defined by x4\ = Tyxp. If lim ||x, — T"x,|| =0 and lim ||x, —x,+1]] =0,

n—-yo0 n—>o0

then lim ||x, — Tx,|| = 0.
n—>oo0

Proof. Let r, = ||T"x, — x,||. Since T is a uniformly generalized Lipschitzian
mapping,
1= Tt | < onr = T gt |4 [ Tt = T |

< Pt al[ X = T x|+ 0([[ X041 = Txpa |
F 1T 01 = T i) + et = T o |
+ 1T %011 = Txpsa ]
< Fut Fallxnpr = T || + BT %01 — X |
st = Tt |+ 1T o1 = X )
+e(lner = T i |+ 1T X1 = Xt |+ st — Tt ),

and

1+b+c n a+b+c H
—_— —|x
I—(b+co) " T 1= (btc) "

Now we obtain ||x,+1 — 7"x,11|| as

H)Cn_H —T.Xn_t,_]” < —T"xn_HH. (112)

st = T n et | < [ =T 11 = X | 177201 = T
<1t [xr =2l + @l = xall 4 BT — x|

F 7"t = X []) - e([Pensr = Tl + (|70 11 = xal])-

So
1+b+c 14+a+2c
HTn'xn-‘rl_xn-l-IH < 17(b+6)rn 1*(b+C)Hxn+l_an' (113)
By relations (1.12) and (1.13),
1+b+c a+b+c
Hxn+1 —Txpi1 H < mrn-s-l + m”Tnxn-i-l —Xn+1 H
1+b+c n a+b+c ( 1+b+c
— 7,
“1—(b+co) """ T 1=(b+c) 1—(b+c) "
1+a+2c
+m|lxnﬂ—xnll)-
This completes the proof. U

In the next section, based on [19] and [22], a modified version of the iterative
process for three generalized Lipschitizian mappings is presented. Then the existence
of a common fixed point for these three maps is proved.
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2. AN ITERATIVE APPROXIMATION OF THREE GENERALIZED LIPSCHITIZIAN
MAPPINGS

In this section, we prove, if T; : C — C, i = 1,2, 3, are three generalized Lipschit-
zian mappings, then the sequence {x,} which is defined by equation (2.1) converges
to ¢ € ;- F(T;) in the uniformly convex Banach space.

The result presented in this section generalizes and improves the corresponding
results, in [5, 19] and [22].

Let C be a nonempty subset of real Banach space E and T; : C — C,i=1,2,3, be
three generalized Lipschitizian mappings. Consider the following iterative sequence
{x,} which is defined by

x1 €C,
1 & j
Uy = ) ;}Tlxn,
| 2.1)
Zn = (1= X)Xy + Aty n>1,
Yn = (1= Bu)xn +PuT3'zn n>1,
(X1 = (1= 0) X + 0 T5'yn > 1,

where 0 < o, B, Ay < 1. We prove, if T; : C — C, i = 1,2,3, are three generalized
Lipschitzian mappings, then the sequence {x,} which is defined by equation (2.1)
converges to g € ﬂ?:  F(T;), in a uniformly convex Banach space.

Theorem 2. Let E be a uniformly convex Banach space, satisfying Opial’s con-
dition and C be a nonempty, closed and convex subset of E. T; : C — C are three
generalized Lipschitizian mappings for i = 1,2,3 satisfying

177 = Ty ]| < apllbe =yl + B, (e = Txll + 1Ty = yID) + e (e = Tyl + 1 % = 1)

f?rallx,y €Candn> 1, where ki, = % and {k.} C [1,0) fori=1,2,3 satisfy
ki — 1 as n — eo. Also Yyr_j(Makpky — 1) < oo where M, = max{kj,1 < j < n}.
Let {x,} be the sequence defined by (2.1). If the following statements hold
(I) F=NL F(T) #0
(II) 0 <liminf, .0, <limsup, . 0, <1
(I1I) 0 < liminf, B, <limsup,_,..B, <1
(Iv) 0 < liminf,—e A, < limsup,_ A, <1
then
(1) lim ||x, — q|| exists, forall g € F.
n—soo
(2) lim ||x, —uy||=0and lim |x,—Tix,||=0 (i=2,3).
n—-o0 n—->o0
(3) The sequence {x,} is weakly convergent to a common fixed point of
T; (i=1,2,3).
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Proof. Forany g € F andi=1,2,3, we get
1750 = gl < apllxn = gl + B T — 25| + €, (I T30 — gl + [l — )
< |10 — gl + b, (| T"x0 — gl + |0 — gl]) + ¢, (1T x0 — gl + [0 — gl]),
and so . S
a, + b, +c;,
1= (b, +c)
In order to find a bound for ||x,+1 — ¢||, we need to compute ||u, — g/, ||z, — ¢|| and

lyn — ¢q|| as follows:
(i) Suppose 1 < j < n, by inequality (2.2)

17" xn = gl < bn = gll = &yl — gll- (2:2)

l n
|un — g < m(”xn —q||+ Zk}'”xn —ql) < Mallx. —4ql|- (2.3)
=

(ii) The definition of z, in (2.1) implies
1z = qll =l (1 = An)xn + Ayt — q| (2.4)
<1 =)0 = qll + AN [0 — |
<(IT+AMa— 1)) llxa — 4

<Nnllxn — 4.
(iii) The definition of y, in (2.1) implies
lyn —aqll = [[(1 = Bn)xn +BrT5'z0 — 4| (2.5)

< (1=Ba)[lxa = gl + Bukz llzn — gl
< (1+Balkana — 1)l — g
< ka2 — 4.
By (i), (i) and (iii) one can have
X1 = gll = [[(1 = &) (xn — q) + 0 (T5'yn — 9) | (2.6)
< (1 = 0t) [l — gl + ki |yn — g
< (1= 0)||xn — gll + kom0 — 4
< (1 o (ko — 1)) v — -
Since ¥ (Mak2k} — 1) < oo, Lemma 1 and inequality (2.6) imply nli_n>1°o lx, — gl =7r
exists. Furthermore,
Tim [ — gl = Tim [[(1 = ) (5 — q) + 0 (T, — )| =
Also, by (2.5)
timsup | T3y, — || < limsup(k3|lyn — g1

n—po0 n—-y o0



898 A.RAZANI

< limsup(kk2n,|1x, — ql|)

n—po0

< lim [jx,—q| =r
— 00

Lemma 2 shows that lim ||7}"y, — x,| = 0. Furthermore, by (2.6)
n—-yoo

(X1 = gll = [l — gl + Ol — 4]
o,k3

<llyn—dll, 2.7
and by taking the limit n — oo in (2.7), we get
lim ||x, — ¢|| <liminf ||y, —q]|.
—00 n—-y0
By (2.5),
limsup ||y, — gl < limsup(knalle —gl)) = lim |, — - (2.8)
n—-yoo n—ee

n—->soo
Notice that (2.7) and (2.8) show
lim [lx, —g|| = lim |y, —q| =r.
n—-soo n—-voo
Thus
limsup |[(1 = Bn) (xn — ) + Pu(T3'z0 — g)[| = limsup [y, — g =r.
n—-yo0

n—soo

On the other hand, (2.4) implies

limsup || 73z, — q| < limsup(k;|[zx — ]|)

n—-yoo n—->oo
< limsup(k;Ma s — g]1)
n—->oo
< lim |lx, —ql| =1,
n—soo
and Lemma 2 shows that lim ||7}'z, —x,|| = 0. Using the same technique, we have
n—-yoco
lim ||z, —g||=rand lim |ju, —x,| = 0.
n—-yoo n—-yoo
Now, we prove ||x, — T5'x,|| — 0. From (2.1),
llzn — Xull = || (1 = Xp)xp + Aty — Xn|| = An||ttn — X0 || —> O, as n — oo.
Notice that ||x, — T'x, || < ||xn — T3'zn|| + | T5'zn — T5'Xa ||, where
175" 20 — To'xa|| < ar21||zl1 — | +br21(||Zn = 13z + 11550 — xal]) (2.9)
+C%(||T2nzn_xn|| + 1 75"%0 — zal])
< a,21||x,, — | +b;21(||zn —xXnl| + 11220 — X || + (| T3 50 — X ])
+ (132 = + [ = 2 + [l — T3 )
< (ap + 05+ ) |xn = zall + (0 + ) (1320 — Xl + T30 —25a]]).
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Since
10 = T3l | < 1 = T3'2a | + (a5 + b3+ €2) 60 — 2|
+ (B + ) (17320 — | + 1|30 — 0]
and
[ben = T3l < K llzn — %l -+ (1K) s — T3zl (2.10)

by inequality (2.10), ||x, — T3'x,|| — 0.

Similarly, |jx, — T3'x,|| — 0. Therefore, by Lemma 6, ||x, — Tix,|| — O as
n —» oo, fori=2,3.

Since lim ||x, — ¢l exists and by the boundedness of {x,}, there exists a sub-

n—-yoo

sequence {x,} of {x,} such that x,; — x. Lemma 5 shows x € F. Notice w,,({x, }) is

a singleton. To do this, suppose there exists another subsequence {x,;} of {x, } which

is weakly convergent to some z # x such that z € F. The existence of lim ||x, — ¢||
n—yoo

implies the existence of lim ||x, —x|| and lim ||x, — z||. Since E satisfies the Opial’s
n—oo n—oo
condition, we have
lim ||x, —x|| = lim |[x — x| < lim ||x% —z|| = lim ||x, — 2],
n—oo k—soo k—soo n—oo
and
lim 26, — 2| = 1lim [lx,; — 2l < Tim [}x,; — x| = lim [, —x[],
n—oo J—roo J—roe n—o0
which leads to a contradiction, and wy,({x, }) is a singleton. Therefore by Lemma 3
{x,} is weakly convergent to x. O
With respect to Theorem 2, the following example is presented.

Example 2. Let E =R, C = [0,00). Assume {x,} is the sequence defined by

(2.1), where Tix = 155, 12X = 1505 and T3x = 15050+ Also o, = Jﬁ, B, = Jﬁ and
Ay = 5, We have
1 & x,
Up = —— Y ——
n+1j;)1001
dn+1 n
a =5t G
3n+1 +( n ) 1 )
= ——-X, B —
= 1 a1 o007
2n+1 +( n ) 1 )
Xpi] = X )
S 1 T 317 00007

Let x; = 1, then by iteration we can have
x10 =0.03842,--- | x20 = 0.00074, - - - ,x30 = 0.00001, - - -

This shows x, — 0. Thus 0 is a common fixed point of 71,7, and 73 or

{0} =N, F(T).
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