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Abstract. The authors examine properties of positive solutions of the third order half-linear neut-
ral difference equation

∆(an∆(bn(∆zn)
α))+qnyα

n+1 = 0,
where zn = yn + pnyσ(n). They show that the positive solutions are in fact Kneser type solutions
and they provide upper and lower bounds that yield the rate of convergence to zero for such
solutions. Examples are provided to illustrate the main results.
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1. INTRODUCTION

In this paper, we are concerned with the asymptotic properties of solutions of the
third order neutral difference equation

∆(an∆(bn(∆zn)
α))+qnyα

n+1 = 0, n ≥ n0 ≥ 0, (1.1)

where zn = yn + pnyσ(n), α is the ratio of odd positive integers, and the following
conditions are assumed to hold throughout:
(H1) {an}, {bn}, and {qn} are positive real sequences for all n ≥ n0;
(H2) {pn} is a nonnegative real sequence with 0 ≤ pn ≤ p < 1;
(H3) {σ(n)} is a sequence of integers such that σ(n)≥ n for all n ≥ n0;
(H4) ∑

∞
n=n0

1
an

=+∞ and ∑
∞
n=n0

1
b1/α

n
=+∞.

By a solution of equation (1.1), we mean a nontrivial real sequence {yn} defined
for all n ≥ n0 and satisfying equation (1.1). A solution {yn} of equation (1.1) is
said to be oscillatory if it is neither eventually positive nor eventually negative, and
nonoscillatory otherwise.

Oscillatory and asymptotic properties of solution of equation (1.1) and its spe-
cial cases have been an active area of investigation in recent years; see for example
[2–5,7–19] and the references contained therein. The well known discrete version of
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Kiguradze’s theorem [1] can be used to describe the structure of the solution space
for the nonoscillatory solutions. For example, for the ordinary difference equation
(see [13])

∆
2((∆yn)

α)+qnyα
n+1 = 0, n ≥ n0, (1.2)

the set K of all positive solutions has the decomposition

K = K0 ∪K2

where

yn ∈ K0 if and only if yn > 0, ∆yn < 0, ∆((∆yn)
α)> 0, ∆

2((∆yn)
α)< 0, (1.3)

and

yn ∈ K2 if and only if yn > 0, ∆yn > 0, ∆((∆yn)
α)> 0, ∆

2((∆yn)
α)< 0. (1.4)

A positive solution {yn} of equation (1.2) is said to be of the Kneser type if
{yn} ∈ K0. In the study of the asymptotic behavior of the nonoscillatory solutions,
many results were directed at obtaining criteria for K2 =∅, that is, showing that the
only possible nonoscillatory solutions are the Kneser type ones. We will also say
that equation (1.2) has property (A) if every positive solution {yn} belongs to K0 and
limn→∞ yn = 0.

The aim of this paper is to conduct an analogous study for equation (1.1). That
is, we wish to give sufficient conditions for the nonoscillatory solutions to be of
the Kneser type. In addition, we wish to obtain upper and lower bounds for such
solutions. These estimates allow us to determine the rate of convergence of Kneser
type solutions to zero. The results presented in this paper are new and complement
those in [4–8, 11–19].

2. MAIN RESULTS

We begin with the following lemma that gives the basic properties of nonoscillat-
ory solutions of equation (1.1). We present it for the case of positive solutions but
clearly analogous statements hold for the negative solutions. As a part of this lemma,
we define classes of solutions of equation (1.1) that are analogous to the sets K0 and
K2 for equation (1.2).

Lemma 1. Assume that {yn} is a positive solution of equation (1.1). Then the
corresponding sequence {zn} belongs to one of the following classes:

S0 =
{

zn : zn > 0, ∆zn < 0, ∆(bn(∆zn)
α)> 0, ∆

2(an∆(bn(∆zn)
α))< 0

}
S2 =

{
zn : zn > 0, ∆zn > 0, ∆(bn(∆zn)

α)> 0, ∆
2(an∆(bn(∆zn)

α))< 0
}

eventually.

Proof. The proof is similar to that of [16, Lemma 2.1] and so we omit the details.
□
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We will say that the neutral difference equation (1.1) has property (A), if every pos-
itive solution {yn} satisfies limn→∞ yn = 0 and the corresponding sequence
{zn} ∈ S0.

In the following, we first present sufficient conditions for the equation (1.1) to have
only Kneser type solutions. Our approach will be to first obtain some properties that
solutions of equation (1.1) that belong to the class S2 must satisfy, and use these facts
to obtain sufficient conditions for the class S2 to in fact be empty. Then we give upper
and lower estimate for such solutions.

To simplify our notation we let:

An =
n−1

∑
s=N

1
as
, Bn =

n−1

∑
s=N

1

b1/α
s

,

Cn =
n−1

∑
s=N

As

b1/α
s

, En =

(
1− pn

Cσ(n)

Cn

)
> 0,

Qn =

[
1
bn

∞

∑
s=n

1
as

∞

∑
t=s

qt

]1/α

, φn =
n−1

∏
s=N

(1+Qs),

Rn = (1− p)
φn

b1/α
n

(
∞

∑
s=n

1
as

∞

∑
t=s

qt

φα
t+1

)1/α

,

where N ≥ n0.

Lemma 2. Let {yn} be a positive solution of equation (1.1) with the corresponding
sequence {zn} ∈ S2 for n ≥ N ≥ n0 and assume that

∞

∑
n=N

1
an

∞

∑
s=n

qsEα
s+1Bα

s+1 = ∞. (2.1)

Then:
(i) { zn

Cn
} is decreasing for all n ≥ N;

(ii) {b1/α
n ∆zn

A1/α
n

} is decreasing for all n ≥ N;

(iii) { zn

Bn
} is increasing for all n ≥ N.

Proof. Let {yn} be a positive solution of equation (1.1) with the corresponding
sequence {zn} ∈ S2 for all n ≥ N. Since an∆(bn(∆zn)

α) is decreasing, we have

bn(∆zn)
α ≥

n−1

∑
s=N

as∆(bs(∆zs)
α)

as
≥ Anan∆(bn(∆zn)

α), n ≥ N.

From the last inequality, we obtain

∆

(
bn(∆zn)

α

An

)
=

An∆(bn(∆zn)
α)−bn(∆zn)

α 1
an

AnAn+1
≤ 0
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for all n ≥ N ≥ n0. Thus, {bn(∆zn)
α

An
} is decreasing for all n ≥ N, so (ii) holds and

zn ≥
n−1

∑
s=N

A1/α
s b1/α

s ∆zs

A1/α
s

≥ b1/α
n ∆zn

A1/α
n

Cn, n ≥ N. (2.2)

Hence,

∆

(
zn

Cn

)
=

Cn∆zn − zn
A1/α

n

b1/α
n

CnCn+1
≤ 0,

which implies that { zn
Cn
} is decreasing for all n ≥ N, so (i) holds.

Since b1/α
n ∆zn is positive and strictly increasing for any n ≥ N, it is easy to see that

for all n ≥ N1 ≥ N,

zn ≤ zN1 +b1/α
n ∆zn

n−1

∑
s=N1

1

b1/α
s

= zN1 −b1/α
n ∆zn

N1−1

∑
s=N

1

b1/α
s

+b1/α
n ∆zn

n−1

∑
s=N

1

b1/α
s

. (2.3)

We claim that b1/α
n ∆zn → ∞ as n → ∞. If this is not the case, then b1/α

n ∆zn → 2d < ∞

as n → ∞ From the definition of zn and using the fact that { zn
Cn
} is decreasing, we have

yn ≥ zn

(
1− pn

Cσ(n)

Cn

)
= Enzn.

Summing equation (1.1) from n to ∞ and using the last inequality, we obtain

∆(bn(∆zn)
α)≥ 1

an

∞

∑
s=n

qsEα
s+1zα

s+1.

Now b1/α
n ∆zn → 2d as n → ∞ implies b1/α

n ∆zn > d for n large enough, which in turn
implies zn > dBn. Combining the last two inequalities and summing once more, we
obtain

(2d)α ≥ dα
∞

∑
n=N1

1
an

∞

∑
s=n

qsEα
s+1Bα

s+1,

which contradicts (2.1). Thus, b1/α
n ∆zn → ∞ as n → ∞ as we claimed.

Hence, in view of (2.3) and (H4), we obtain

zn ≤ b1/α
n ∆znBn, n ≥ N.

From the last inequality, we see that

∆

(
zn

Bn

)
=

Bn∆zn − zn

b1/α
n

BnBn+1
≥ 0
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eventually, and we conclude that { zn
Bn
} is increasing. Therefore (iii) holds and this

completes the proof of the lemma. □

Lemma 3. Assume that (2.1) holds and let {yn} be a positive solution of equation
(1.1) with the corresponding sequence {zn} ∈ S2 for all n ≥ N. Then

Enzn ≤ yn ≤ zn for n ≥ N. (2.4)

Proof. From the definition of zn, we have zn ≥ yn for all n ≥ N. Furthermore,

yn ≥ zn − pnzσ(n) ≥ Enzn

where we have used the fact that { zn
Cn
} is decreasing for all n ≥ N. This completes the

proof of the lemma. □

Next, we obtain sufficient condition for all nonoscillatory solutions of (1.1) to be
of the Kneser type.

Theorem 1. If condition (2.1) holds and

lim
n→∞

sup

{
1

An+1

n

∑
s=N

qsEα
s+1Cα

s+1As+1 +
Cα

n+1

Bα
n+1

∞

∑
s=n+1

qsEα
s+1Bα

s+1

}
> 1, (2.5)

then S2 =∅.

Proof. Let {yn} be a positive solution of equation (1.1), with the corresponding
sequence {zn} ∈ S2 for all n ≥ N. Using (2.4) in equation (1.1), we obtain

∆(an∆(bn(∆zn)
α))+qnEα

n+1zα
n+1 ≤ 0, n ≥ N. (2.6)

Summing inequality (2.6) from n to ∞, we have

∆(bn(∆zn)
α)≥

n−1

∑
s=N

1
as

(
∞

∑
t=s

qtEα
t+1zα

t+1

)
. (2.7)

From (2.7), it follows that

bn(∆zn)
α ≥

n−1

∑
s=N

1
as

(
∞

∑
t=s

qtEα
t+1zα

t+1

)
=

n−1

∑
s=N

1
as

n−1

∑
t=s

qtEα
t+1zα

t+1 +
n−1

∑
s=N

1
as

∞

∑
t=n

qtEα
t+1zα

t+1

=
n−1

∑
s=N

qsEα
s+1As+1zα

s+1 +An

∞

∑
s=n

qsEα
s+1zα

s+1.

Using (2.2), in the last inequality, we obtain

An+1zα
n+1

Cα
n+1

≥
n

∑
s=N

qsAs+1Eα
s+1zα

s+1 +An+1

∞

∑
s=n+1

qsEα
s+1zα

s+1. (2.8)
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In view of the monotonicity properties (i) and (iii) in Lemma 2, (2.8) yields

1 ≥ 1
An+1

n

∑
s=N

qsAs+1Eα
s+1Cα

s+1 +
Cα

n+1

Bα
n+1

∞

∑
s=n+1

qsEα
s+1Bα

s+1.

Taking the limsup as n → ∞ on both sides of the last inequality leads to a contradic-
tion of (2.5). This completes the proof of the theorem. □

Next, we wish to obtain estimates for the Kneser solutions. We begin with a
lemma.

Lemma 4. Let {yn} be a positive solution of equation (1.1) with the corresponding
sequence {zn} ∈ S0 for n ≥ N. Then:

(i) (1− p)zn ≤ yn ≤ zn for all n ≥ N;
(ii) {znφn} is increasing for all n ≥ N.

Proof. Assume that {yn} is a positive solution of equation (1.1) with the corres-
ponding sequence {zn} ∈ S0. Then zn is positive, zn ≥ yn, and

yn = zn − pnyσ(n) ≥ (1− p)zn, n ≥ N ≥ n0,

so (i) is proved.
It easy to see that zn ∈ S0 implies

lim
n→∞

bn(∆zn)
α = 0;

otherwise we would eventually have ∆zn > 0 contradicting zn ∈ S0. Similarly,

lim
n→∞

an∆(bn(∆zn)
α) = 0.

A summation of equation (1.1) then yields

an∆(bn(∆zn)
α) =

∞

∑
s=n

qsyα
s+1 ≤

∞

∑
s=n

qszα
s+1 ≤ zα

n+1

∞

∑
s=n

qs.

Summing once more, we obtain

bn(∆zn)
α ≥−zα

n+1

∞

∑
s=n

1
as

∞

∑
t=s

qt ,

or
∆zn ≥−zn+1Qn.

Hence,
∆(znφn) = φn∆zn + zn+1∆φn ≥ zn+1(∆φn −φnQn) = 0

since {φn} is a solution of the difference equation (∆φn −Qnφn) = 0. Therefore,
{znφn} is increasing and this completes the proof of the lemma. □
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Theorem 2. Assume that conditions (2.1) and (2.5) hold. If {yn} is a positive
solution of equation (1.1), then there are positive constants C1 and C2 such that

C1ψ1(n)≤ yn ≤C2ψ2(n), (2.9)

where

ψ1(n) =
1
φn

and ψ2(n) =
n−1

∏
s=N

(1−Rs).

Proof. Assume that {yn} is a positive solution of equation (1.1). Then, by The-
orem 1, {yn} is a Kneser type solution. From Lemma 4, we have that {znφn} is
increasing for all n ≥ N. Therefore,

yn ≥
(1− p)

φn
znφn ≥

(1− p)
φn

zNφN =C1ψ1(n).

On the other hand, summing equation (1.1) from n to ∞ and applying Lemma 4 (i),
we have

an∆(bn(∆zn)
α) =

∞

∑
s=n

qsyα
s+1 ≥ (1− p)α

∞

∑
s=n

qszα
s+1 ≥ (1− p)α

φ
α
n+1zα

n+1

∞

∑
s=n

qs

φα
s+1

.

Again summing the last inequality and applying Lemma 4 (ii) gives

−bn(∆zn)
α ≥ (1− p)α

φ
α
n zα

n

∞

∑
s=n

1
as

∞

∑
t=s

qt

φα
t+1

or
∆zn

zn
≤−Rn, n ≥ N.

Summing the last inequality from N to n−1, we obtain

yn ≤ zn ≤C2ψ2(n).

This proves the theorem. □

From Theorem 2 we deduce the following result for the half-linear difference equa-
tion (1.2).

Corollary 1. Assume that
∞

∑
n=N

(
∞

∑
s=n

sαqs

)
= ∞ (2.10)

and

lim
n→∞

sup

{
1

n+1

n

∑
s=N

(s+1)α(s+2)αqs +(n+2)α
∞

∑
s=n+1

(s+1)αqs

}
> 2α. (2.11)

Then every positive solution {yn} of equation (1.2) is decreasing and satisfies estim-
ates of the form (2.9) with p = 0 in Rn.
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3. EXAMPLES

In this section, we present two examples to illustrate the significance of our main
results.

Example 1. Consider the third order difference equation

∆
3yn +

10
n(n+1)(n+2)

yn+1 = 0, n ≥ 1. (3.1)

A simple calculation shows that conditions (2.10) and (2.11) are satisfied, so by Co-
rollary 1, positive nonoscillatory solutions of equation (3.1) are of the Kneser type
and a positive solution {yn} satisfies the estimates

C1

n
≤ yn ≤

C2

n
for some positive constants C1 and C2. Therefore, equation (3.1) has property (A).

Example 2. Consider the third order neutral difference equation

∆

(
1

n+2
∆

2
(

yn +
1
2

y2n

))
+

3β

n(n+1)(n+2)(n+3)
yn+1 = 0, n ≥ 1. (3.2)

Again calculations show that conditions (2.1) and (2.5) hold if β > 6. Therefore, all
positive nonoscillatory solutions of equation (3.2) are of the Kneser type and The-
orem 2 provides estimates for a positive solution {yn} to be of the form

C1

nβ
≤ yn ≤

C2

n
for some positive constants C1 and C2. We also see that (3.2) has property (A).

4. CONCLUSIONS

In this paper, we give conditions for all positive solutions of a third order half-
linear neutral difference equation to be of the Kneser type and we derive upper and
lower bounds for them. We also wish to point out that the results obtained in Lemmas
2 and 3 are new and complement those in [4, 5, 7, 8, 11–19].
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