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1. EXPONENTIAL OPERATORS

For x ∈ (0,∞) one of the exponential operators introduced in [11, (3.11)] is defined
as

(Qn f )(x) =
∫

∞

0
φn(x, t) f (t)dt, (1.1)

where the kernel is given by

φn(x, t) =
√

n
2π

1
t
√

t
exp
(n

x
− nt

2x2 −
n
2t

)
.

These operators satisfy the partial differential equation

x3 ∂

∂x
[(Qn f )(x)] = n(Qnψx (t) f )(x),

where ψx (t) = t − x. As per our knowledge these operators have not been studied
by researchers in the last four decades due to their complicated behaviour. Very re-
cently in [6] the author estimated moments using the concept of moment generating
function and established some of the approximation properties of these operators. In
the past several years the convergence estimation of many well-know operators is an
active area of research amongst researchers. Many known operators have been ap-
propriately modified and their approximation behaviours have been discussed. In
this direction some summation-integral operators were introduced and studied in
[4, 10, 15]. For the statistical convergence, we refer the readers to [13], concern-
ing difference between two operators [7], simultaneous approximation [9], Bézier
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bases with shape parameter [16] and moment estimations of a generalized class of
Szász–Mirakyan–Durrmeyer operators [8].

The convergence rate on functions of bounded variation is also an important area
of research in the recent past decades, we mention here some of the work done
earlier on different operators viz. Bézier variant of the Baskakov-Kantorovich oper-
ators [1], exponential operators connected with p(x) = 2x3/2 [2], MKZ operators [3],
Baskakov-Durrmeyer type operators [4], Baskakov Bézier operators [5], nonlinear
integral operators [12], Bézier variant of the Bleimann–Butzer–Hahn operators [14],
Kantorovich variant of the Bleimann, Butzer and Hahn operators [18], Szász–Bézier
integral operators [17], general family of operators of Durrmeyer type [15] etc. Also
some better bounds to have different basis were established in [19].

We estimate in the present article the rate of convergence for the operators Qn
on functions of bounded variation, by using the optimum upper bound of the basis
function.

2. AUXILIARY LEMMAS

Lemma 1. If we denote νn,m(x) = (Qn(ψ
m
x (t))(x),m = 0,1,2, · · · , then following

[[6, Remark 1]], we have

νn,m(x) =

[
∂m

∂Fm

{
exp

(
n
x

(
1−
√

n−2x2F
n

)
− xF

)}]
F=0

.

Some of the central moments of the operators are given by

νn,0(x) = 1, νn,1(x) = 0, νn,2(x) =
x3

n
.

Also, for each x ∈ (0,∞), we get νn,m(x) = Ox(n−[(m+1)/2]), where [α] represents the
integral part of α.

Lemma 2. Let x ∈ (0,∞) and the kernel φn(x, t) is defined in (1.1), then we have

ηn(x,y) =
∫ y

0
φn(x, t)dt ≤ x3

n(x− y)2 , 0 < y < x

1−ηn(x,z) =
∫

∞

z
φn(x, t)dt ≤ x3

n(z− x)2 , x < z < ∞.

Lemma 3. For each x ∈ (0,∞), we have∫ x

0
φn(x, t)dt ≤ 1

2
+

√
x

2
√

2πn
.

Proof. Simple analysis leads us to∫ x

0
φn(x, t)dt =

√
n

2π

∫ x

0

1
t
√

t
exp
(n

x
− nt

2x2 −
n
2t

)
dt
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=

√
n

2πx

∫ 1

0

2
t2 exp

[
− n

2x

(
t − 1

t

)2
]

dt

=

√
n

2πx

[∫ 1

0

(
1+

1
t2

)
exp

[
− n

2x

(
t − 1

t

)2
]

dt

− exp
(

2n
x

)∫ 1

0

(
1− 1

t2

)
exp

[
− n

2x

(
t +

1
t

)2
]

dt
]

=

√
n

2πx

[∫ 0

−∞

exp
(
− n

2x
z2
)

dz+ exp
(

2n
x

)∫
∞

2
exp
(
− n

2x
z2
)

dz
]

≤
√

n
2πx

[∫ 0

−∞

exp
(
− n

2x
z2
)

dz+ exp
(

2n
x

)∫
∞

2

z
2

exp
(
− n

2x
z2
)

dz
]

=

√
n

2πx

[
1
2

(
2xπ

n

)1/2

+
x

2n

]
=

1
2
+

√
x

2
√

2πn
.

Thus the desired result follows. □

3. RATE OF CONVERGENCE

Theorem 1. Let f be a function of bounded variation on each finite subinterval
of (0,∞) satisfying the growth condition f (t) = O(eγt) as t →+∞. Then, for n large,
there holds ∣∣∣∣(Qn f )(x)− 1

2
( f (x+)+ f (x−))

∣∣∣∣
≤

√
x

2
√

2πn
| f (x+)− f (x−)|+ 2x+1

n

n

∑
k=1

vx+k
x−k
( fx)

+
xeγx

n
+

√
x√
n

(
exp
(

2γx+
x3(2γ)2

2n
+

x5(2γ)3

2n2 + · · ·
))1/2

,

where x−k = x− x/
√

k, x+k = x+ x/
√

k and

fx(t) =

 f (t)− f (x−), 0 < t < x
f (t)− f (x+), x < t < ∞

0, t = x.

Proof. Let x ∈ (0,∞), starting with∣∣∣∣(Qn f )(x)− 1
2
( f (x+)+ f (x−))

∣∣∣∣
≤ 1

2
| f (x+)− f (x−)|.|(Qnsign(t − x))(x)|+ |(Qn fx)(x)|.
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Using the constant preservation of the operators i.e (Qne0)(1) = 1, we have

(Qnsign(t − x))(x) =
(∫

∞

x
−
∫ x

0

)
φn(x, t)dt

= 2
[

1
2
−

∫ x

0
φn(x, t)dt

]
.

Thus by Lemma 3, we have

|(Qnsign(t − x))(x)| ≤
√

x√
2πn

.

Next we estimate (Qn fx)(x) as follows:

(Qn fx)(x) =
∫

∞

0
φn(x, t) fx(t)dt

=

(∫ x−n

0
+
∫ x+n

x−n
+
∫

∞

x+n

)
φn(x, t) fx(t)dt

=: e1 + e2 + e3.

First, integrating by parts

e1 =
∫ x−n

0
fx(t)dt(ηn(x, t))

= fx(x−n )ηn(x,x−n )−
∫ x−n

0
ηn(x, t)dt( fx(t)).

Since | fx(y)| ≤ vx
y( fx), we have

|e1| ≤ vx
x−n
( fx)ηn(x,x−n )+

∫ x−n

0
ηn(x, t)dt(−vx

t ( fx)).

Applying Lemma 2, and in the next step integrating by parts, we get

|e1| ≤ 2vx
x−n
( fx)+

x3

n

∫ x−n

0

1
(x− t)2 dt(−vx

t ( fx))

=
x3

n

[
1
x2 vx

0( fx)+2
∫ x−n

0

1
(x− t)3 vx

t ( fx)dt
]

=
x3

n

[
1
x2 vx

0( fx)+
1
x2

n

∑
k=1

vx
x−k
( fx)

]

≤ 2x
n

n

∑
k=1

vx
x−k
( fx).



THE CONVERGENCE OF EXPONENTIAL OPERATORS 685

Next for t ∈ [x−n ,x
+
n ] and by fact

∫ x+n
x−n

dt(ηn(x, t))≤ 1, we conclude that

|e2| ≤
1
n

n

∑
k=1

vx+k
x−k
( fx).

Finally

e3 =

(∫ 2x

x+n
+
∫

∞

2x

)
φn(x, t)dt

=: e31 + e32.

Arguing analogously as in estimate of e1, we have

|e31| ≤
2x
n

n

∑
k=1

vx+k
x ( fx).

Using the growth fx(t) = O(eγt), t → ∞, applying Lemma 1 and [6, Lemma 1], we
have

|e32| ≤
∫

∞

2x
φn(x, t)(eγx + eγt)dt

≤ eγx

x2

∫
∞

0
φn(x, t)(t − x)2dt +

1
x

∫
∞

0
φn(x, t)eγt |t − x|dt

=
eγx

x2 .νn,2(x)+
1
x
.
(
νn,2(x).Qn(e2γt ,x)

)1/2

=
xeγx

n
+

√
x√
n

(
exp
(

2γx+
x3(2γ)2

2n
+

x5(2γ)3

2n2 + · · ·
))1/2

.

Collecting the estimates of e1,e2,e3, we get the desired result. □
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