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Abstract. The novelty of our paper is to establish results on asymptotic stability of mild solu-
tions in pth moment to Riemann-Liouville fractional stochastic neutral differential equations
(for short Riemann-Liouville FSNDEs) of order α ∈ ( 1

2 ,1) using a Banach’s contraction map-
ping principle. The core point of this paper is to derive the mild solution of FSNDEs involving
Riemann-Liouville fractional time-derivative by applying the stochastic version of variation of
constants formula. The results are obtained with the help of the theory of fractional differential
equations, some properties of Mittag-Leffler functions and asymptotic analysis under the as-
sumption that the corresponding fractional stochastic neutral dynamical system is asymptotically
stable.
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1. INTRODUCTION

Over the years, many results have been investigated on the theory and applications
of stochastic differential equations (SDEs) [14, 27, 29]. The deterministic models
often oscillate due to noise. Certainly, the extension of these models is essential to
consider stochastic models, in which the connected parameters are considered as ap-
propriate Brownian motion and stochastic processes. The modeling of most problems
in real-world problems is described by stochastic differential equations rather than
deterministic equations. Thus, it is of great importance to design stochastic effects in
the study of fractional-order dynamical systems. In particular, fractional stochastic
differential equations (FSDEs) which are a generalization of differential equations by
the use of fractional and stochastic calculus are more popular due to their applications
in modeling and mathematical finance. Recently, FSDEs are intensively applied to
model mathematical problems in finance [11, 42], dynamics of complex systems in
engineering [45] and other areas [15, 22]. Most of the results on fractional stochastic
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dynamical systems are limited to prove existence and uniqueness of mild solutions
using fixed point theorem [3, 5, 16, 19, 31, 36, 41].

Several outcomes have been investigated on the qualitative theory and applica-
tions of fractional stochastic functional differential equations (FSDEs) [2,13,38,40].
For instance, Mahmudov and McKibben [21] studied the approximate controllability
of fractional evolution equations involving generalized Riemann-Liouville fractional
derivative in Hilbert spaces. Moreover, the stability theory for stochastic differential
equations has been considered by means of exponential functions which lead to attain
more efficient consequences in [23]. Especially, Cao and Zhu [6] considered pth ex-
ponential stability of impulsive stochastic functional differential equations based on
vector Lyapunov function. Based on average dwell-time method, Razumikhin-type
technique and vector Lyapunov function, some novel stability method are obtained
for impulsive stochastic functional differential systems. On a study of different types
of stability studies for FSDEs can be found in [1, 4, 10, 17, 24, 30, 44].

Results on the asymptotic behavior of solutions of fractional differential equations
with Caputo and Riemann-Liouville fractional time-derivative are relatively scarce in
the literature. Mahmudov [20] derived an explicit solution formula to linear inhomo-
geneous delayed Langevin equation involving two Riemann-Liouville fractional de-
rivatives and studied existence and uniqueness, and Ulam-Hyers stability of solutions.
In [8], Cong et al. investigate the asymptotic behavior of solutions of the perturbed
linear fractional differential system. Cong et al. [7] proved the theorem of linear-
ized asymptotic stability for fractional differential equations. More precisely, they
showed that an equilibrium of a nonlinear Caputo fractional differential equation is
asymptotically stable if its linearization at the equilibrium is asymptotically stable.
There are only a few papers related to asymptotic stability of solutions of fractional
stochastic differential equations which can be found in [34, 39]. Sakthivel et al. [35]
studied existence and asymptotic stability in pth moment of a mild solution to a class
of nonlinear fractional neutral stochastic differential equations with infinite delays in
Hilbert spaces. The same asymptotic stability in pth moment of a mild solutions of
nonlinear impulsive stochastic differential equations and impulsive stochastic partial
differential equations with infinite delays was discussed in [32] and [33], respectively.

To the best of our knowledge, the asymptotic stability of mild solutions for frac-
tional stochastic neutral differential equations with Riemann-Liouville fractional de-
rivative are an untreated topic in the present literature. Due to lack of asymptotic sta-
bility of mild solutions to Riemann-Liouville FSNDEs, this motivates us to establish
new results on the asymptotic analysis of fractional stochastic differential equations
with Riemann-Liouville fractional time-derivative involving matrix coefficients.

Therefore, the plan of this paper is systematized as below: Section 2 is a prepar-
atory section where we recall some basic notions and results from fractional calcu-
lus and fractional differential equations. Then we resort the setting for main res-
ults of the theory and we impose certain assumptions, definitions of stability and
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asymptotic stability in pth moment of mild solutions to Riemann-Liouville FSNDEs
stochastic analysis. In Section 3, first we verify the continuity of operator in pth
moment on [0,∞). Then we show global existence and uniqueness of mild solution
under various assumptions by a Banach’s contraction mapping principle. Section
4 is devoted to proving asymptotic stability of mild solutions to Riemann-Liouville
FSNDEs. With the help of properties of Mittag-Leffler functions, we show that Ψ

is well-defined. Finally, we study asymptotic stability in pth of Riemann-Liouville
FSNDEs of fractional-order α ∈ (1

2 ,1). Section 5 is for the conclusion and future
work by providing several open problems.

To conclude this introductory section, we introduce the norm of the matrix which
are used throughout the paper. For any constant matrix A = (ai j) n×n ∈ Rn×n, the
norm of the matrix A, according to the maximum norm on Rn is

∥A∥= max
1≤i≤n

n

∑
j=1

|ai j|.

Throughout this paper, we assume that p ≥ 2 is an integer.

2. MATHEMATICAL PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

We embark on this section by briefly presenting some necessary facts and defin-
itions from fractional calculus and special functions which are used throughout the
paper.

2.1. Fractional Calculus

Definition 1 ([25, 28]). The Riemann–Liouville integral operator of fractional or-
der α > 0 is defined by

Iα
0+g(t) =

1
Γ(α)

∫ t

0
(t − r)α−1g(r)dr, for t > 0.

The Riemann–Liouville derivative operator of fractional order α > 0 is defined by

Dα
0+g(t) =

dn

dtn

(
In−α

0+ g(t)
)
, where n−1 < α ≤ n.

Definition 2 ([9, 28, 37]). Suppose that α > 0, t > 0. The Caputo derivative oper-
ator of fractional order α is defined by:

CDα
0+g(t) = In−α

0+

(
dn

dtn g(t)
)
, where n−1 < α ≤ n.

In particular, for α ∈ (0,1)

Iα

0+
CDα

0+ f (t) = f (t)− f (0).
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The Riemann–Liouville fractional integral operator and the Caputo fractional de-
rivative have the following property for α ≥ 0 [18, 28]:

Iα
0+(

CDα
0+g(t)) = g(t)−

n−1

∑
k=0

tkg(k)(0)
Γ(k+1)

.

The relationship between the Riemann–Liouville and Caputo fractional derivatives is
as follows:

CDα
0+g(t) = Dα

0+g(t)−
n−1

∑
k=0

tk−αg(k)(0)
Γ(k−α+1)

, α ≥ 0.

Lemma 1. The relationship between Riemann-Liouville fractional derivative and
integral as below:

(i) If f ∈C(0,T ], then for any point t ∈ (0,T ]
RLDα

0+
(

Iα
0+ f (t)

)
= f (t).

(ii) If f ∈C(0,T ] and I1−α

0+ f (t) ∈C(0,T ], then for any point t ∈ (0,T ]

Iα
0+

(
RLDα

0+ f (t)
)
= f (t)−

I1−α

0+ f (t)|t=0

Γ(α)
tα−1.

The Mittag-Leffler function is a generalization of the exponential function, first
proposed as a single parameter function of one variable by using an infinite series
[26]. Extensions to two or three parameters are well known and thoroughly studied
in textbooks such as [12].

Definition 3. We consider the matrix Mittag-Leffler functions with one and two
parameters which are defined by

Eα(tαA) =
∞

∑
k=0

Aktkα

Γ(kα+1)
,

Eα,β(t
αA) =

∞

∑
k=0

Aktkα

Γ(kα+β)
.

Throughout this paper, we define

Λ
s
α

:= {λ ∈ C\{0} : |arg(λ)|> απ

2
}.

For any matrix A ∈ Rn×n, the set spec(A) is the spectrum of A, i.e

spec(A) := {λ ∈ C : λ is an eigenvalue of the matrix A} .
It is well-known that the trivial solution of linear time-invariant fractional differential
equation is asymptotically stable if and only if the spectrum spec(A) of the matrix
A ∈ Rn×n satisfies the condition

spec(A)⊂ Λ
s
α.
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In our further consideration, we will use the following result.

Lemma 2 ([43]). Let A ∈ Rn×n and suppose that spec(A)⊂ Λs
α. Then the follow-

ing statements are valid.
• There exists t0 > 0 and a positive constant M̃ which depends on parameters

t0,α,A such that

tα−1∥Eα,α(tαA)∥ ≤ M̃
tα+1 , ∀t ≥ t0.

• The quantity

t1−α

∫ t

0
(t − τ)α−1∥Eα,α((t − τ)αA)∥τ

α−1dτ

is bounded on [0,∞), i.e.

sup
t≥0

t1−α

∫ t

0
(t − τ)α−1∥Eα,α((t − τ)αA)∥τ

α−1dτ < ∞.

Variation of constants method. The first step in our approach is to use the frac-
tionally modified version of the variation of constants method which is established in
[9, Theorem 7.2 and Remark 7.1] in order to obtain the solution of (2.5) by applying
stochastic version of variation of constants formula in Section 3. Namely, the solu-
tion of a single inhomogeneous Riemann-Liouville fractional differential equation of
the form {

RLDα
0+y(t) = Ay(t)+h(t), t > 0;

Ik−α

0+ y(t)|t=0 = bk, k = 1,2, . . . ,n,
(2.1)

where n−1 < α ≤ n and A ∈Rn×n constant matrix. The problem (2.1) was analytic-
ally solved in [37] by successive iteration method. However, with the help of Laplace
transform, one can obtain the same solution directly and more quickly. Indeed, taking
into account initial conditions and using the inverse Laplace transform, problem (2.1)
can be expressed in the form:

y(t) =
n

∑
k=1

bktα−kEα,α−k+1(Atα)+
∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α)h(τ)dτ.

The following results play a necessary role on proofs of main results in Section 3.
Suppose that α1,α2 > 1 and 1

α1
+ 1

α2
= 1. If | f (t)|α1 , |g(t)|α2 ∈ L1(Ω), then

| f (t)g(t)| ∈ L1(Ω) and∫
Ω

| f (t)g(t)|dt ≤
(∫

Ω

| f (t)|α1dt
) 1

α1
(∫

Ω

|g(t)|α2dt
) 1

α2
, (2.2)

where L1(Ω) represents the Banach space of all Lebesgue measurable functions
f : Ω → R with

∫
Ω
| f (t)|dt < ∞. Especially, when α1 = α2 = 2, the inequality (2.2)
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reduces to the Cauchy-Schwartz inequality(∫
Ω

| f (t)g(t)|dt
)2

≤
∫

Ω

| f (t)|2dt
∫

Ω

|g(t)|2dt. (2.3)

Let n ∈ N, q > 1 and xi ∈ R+, i = 1,2, . . . ,n. Then, the following inequality holds
true

∥
n

∑
i=1

xi∥q ≤ nq−1
n

∑
i=1

∥xi∥q.

In particular, when q = 2, we use the following inequality within the estimations in
this paper:

∥
n

∑
i=1

xi∥2 ≤ n
n

∑
i=1

∥xi∥2. (2.4)

2.2. Statement of Main Results

Let Rn be endowed with the standard Euclidean norm ∥ · ∥. For each t ≥ [0,T ] let
Ξt := Lp(Ω,FT ,P) denote the space of all Ft measurable integrable random vari-
ables with values in Rn.

We consider Riemann-Liouville fractional stochastic neutral differential equations
of order α ∈ (1

2 ,1) has the following form on [0,T ]:{
Dα

0+ (X(t)+g(t,X(t))) = AX(t)+b(t,X(t))+σ(t,X(t))dWt
dt ,

I1−α

0+ (X(t)+g(t,X(t))) |t=0 = ρ.
(2.5)

The coefficients g,b,σ : [0,T ]×Rn → Rn are measurable and bounded functions,
A ∈ Rn×n and the initial condition ρ in integral form is an F0-measurable. Let
(Wt)t≥0 denote a standard scalar Brownian motion on a complete probability space
(Ω,F ,F,P) with filtration F := {Ft}t≥0.

Let H be the Banach space of all Rn-valued Ft-adapted process ξ satisfying the
following norm defined by

∥ξ∥p
H := sup

t≥0
E∥t1−α

ξ(t)∥p < ∞.

Let us recall the definition of mild solution to Riemann-Liouville FSNDEs (2.5).

Definition 4. A stochastic process {X(t), t ∈ [0,T ]} is called a mild solution of
(2.5) if

• X(t) is adapted to {Ft}t≥0 with
∫ t

0 ∥X(t)∥p
Hdt < ∞ almost everywhere;

• X(t) ∈ H has continuous path on t ∈ [0,T ] a.s. and satisfies the following
Volterra integral equation of second kind for each t ∈ [0,T ]:

X(t) =
tα−1ρ

Γ(α)
−g(t,X(t))+

1
Γ(α)

∫ t

0
A(t − τ)α−1g(τ,X(τ))dτ
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+
1

Γ(α)

∫ t

0
(t − τ)α−1b(τ,X(τ))dτ+

1
Γ(α)

∫ t

0
(t − τ)α−1

σ(τ,X(τ))dWτ.

(2.6)

Applying variation of constants formula for deterministic Riemann-Liouville frac-
tional differential equations and then adapting this formula for stochastic case, for
each ρ ∈ Rn, we obtain

X(t) = tα−1Eα,α(tαA)ρ−g(t,X(t))−
∫ t

0
A(t − τ)α−1Eα,α((t − τ)αA)g(τ,X(τ))dτ

+
∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)b(τ,X(τ))dτ

+
∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)σ(τ,X(τ))dW (τ). (2.7)

Theorem 1 (Coincidence of between the notion of integral equation and mild solu-
tion). The integral equation (2.6) and the mild solution (2.1) of Riemann-Liouville
FSNDEs coincide each other.

Proof. Using martingale representation and Itô’s isometry, this theorem can be
proved in a similar way shown in [3] by assuming p ≥ 2. □

We impose the following assumptions on (2.5):

Assumption 2.1. Let A∈Rn×n be constant matrix and suppose that spec(A)⊂Λs
α.

Assumption 2.2. The coefficients g,b,σ satisfy global Lipschitz continuity: there
exists Lg,Lb,Lσ > 0 such that for all x,y ∈ Rn , t ≥ 0,

∥b(t,x)−b(t,y)∥ ≤ Lb∥x− y∥, ∥g(t,x)−g(t,y)∥ ≤ Lg∥x− y∥,

∥σ(t,x)−σ(t,y)∥ ≤ Lσ∥x− y∥.

Assumption 2.3. b(·,0) is Lp integrable i.e.
∫ T

0 ∥b(τ,0)∥pdτ < ∞, and σ(·,0) is
essentially bounded i.e.

ess sup
τ∈[0,T ]

∥σ(τ,0)∥< ∞.

Assumption 2.4. We impose the following condition on measurable functions
g,b,σ which are used on certain estimations in Section 3.

g(t,0) = 0, b(t,0) = 0, σ(t,0) = 0.

Assumption 2.5. The following condition will be used in Section 3 to derive
asymptotic stability results.

Θ := 4p−1
(

Lp
g∥A∥pMp

(
B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1
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+Lp
bMp

(
B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1

+CpLp
σMpT p(α−1)+ p

2 (B(2α−1,2α−1))p/2
)
< 1,

where Cp =
(

p(p−1)
2

)p/2
, M := supt∈[0,T ] ∥Eα,α(tαA)∥ and B is the beta function.

Definition 5. Let p ≥ 2 be an integer. Equation 2.5 is said to be stable in pth
moment if for arbitrarily given ε > 0 there exists a δ > 0 such that

sup
t≥0

E(∥X(t)∥p)< ε, when ∥ρ∥< δ. (2.8)

Definition 6. Let p ≥ 2 be an integer. Equation 2.5 is said to be asymptotically
stable in pth moment if it is stable in pth moment and for any ρ ∈ Rn it holds

lim
t→∞

sup
t≥T

E(∥X(t)∥p) = 0. (2.9)

Now let us state the following well-known lemma (Da Prato and Zabczyk, 1992)
which will be used in the sequel of the proofs of the main results.

Lemma 3. Let p ≥ 2, t > 0 and let Φ be an Rn-valued predictable process such

that E
t∫

0
∥Φ(τ)∥pdτ < ∞. Then

sup
τ∈[0,T ]

E
∥∥∥∥∫ τ

0
Φ(u)dW (u)

∥∥∥∥p

≤
(

p(p−1)
2

)p/2(∫ t

0
(E∥Φ(τ)∥p)2/p dτ

)p/2

.

3. EXISTENCE AND UNIQUENESS OF RIEMANN-LIOUVILLE FRACTIONAL
STOCHASTIC NEUTRAL DIFFERENTIAL EQUATIONS

In this section, to show global existence and uniqueness results for Riemann-
Liouville FSNDEs (2.5), we state and prove the following theorem.

Theorem 2. Suppose that Assumptions 2.2-2.4 hold. Then for any ρ ∈ Rn, there
exists a unique mild solution of (2.5).

Proof. To prove the asymptotic stability it is sufficient to show that the operator Ψ

has a fixed point in H. To show this result, we use the contraction mapping principle.
Associated with the fixed point problem, we define an operator Ψ : H → H for

t ∈ [0,T ] by

(ΨX)(t) = tα−1Eα,α(tαA)ρ−g(t,X(t))−
∫ t

0
A(t − τ)α−1Eα,α((t − τ)αA)g(τ,X(τ))dτ

+
∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)b(τ,X(τ))dτ
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+
∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)σ(τ,X(τ))dW (τ). (3.1)

First, we verify mean square continuity of Ψ on [0,T ]. Let X ∈ H, t1 ≥ 0 and r be
sufficiently small and show that

E∥(t1 + r)1−α(ΨX)(t1 + r)− t1−α

1 (ΨX)(t1)∥p

≤ 5p−1
5

∑
i=1

E∥(t1 + r)1−αIi(t1 + r)− tα
1 Ii(t1)∥p. (3.2)

Note that

E∥(t1 + r)1−αI1(t1 + r)− t1−α

1 I1(t1)∥p

= E∥
[
(t1 + r)1−α(t1 + r)α−1Eα,α((t1 + r)αA)− t1−α

1 tα−1
1 Eα,α(tα

1 A)
]

ρ∥p

= E∥ [Eα,α((t1 + r)αA)−Eα,α(tα
1 A)]ρ∥p. (3.3)

The strong continuity of Eα,α(tαA) implies that the right-hand-side of (3.3) goes to
zero as r → 0.

By Assumptions 2.2 and 2.4, we get

E∥(t1 + r)1−αI2(t1 + r)− t1−α

1 I2(t1)∥p

= E∥(t1 + r)1−αg(t1 + r,X(t1 + r))− t1−α

1 g(t1,X(t1))∥p

≤ 2p−1E∥(t1 + r)1−αg(t1 + r,X(t1 + r))− (t1 + r)1−αg(t1 + r,X(t1))∥p

+2p−1E∥(t1 + r)1−αg(t1 + r,X(t1))− t1−α

1 g(t1,X(t1))∥p

≤ 2p−1Lp
gE∥(t1 + r)1−α (X(t1 + r)−X(t1))∥p

+2p−1E∥(t1 + r)1−αg(t1 + r,X(t1))− t1−α

1 g(t1,X(t1))∥p → 0, as r → 0.
(3.4)

In view of the Hölder’s inequality and Assumptions 2.2 and 2.4, we have

E∥(t1 + r)1−αI3(t1 + r)− t1−α

1 I3(t1)∥p

= E∥
∫ t1+r

0
A(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)g(τ,X(τ))dτ

−
∫ t1

0
At1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)g(τ,X(τ))dτ∥p

≤ 2p−1E∥
∫ t1+r

0
A
[
(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]
g(τ,X(τ))dτ∥p

+2p−1E
∥∥∥∥∫ t1+r

t1
At1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)g(τ,X(τ))dτ

∥∥∥∥p
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≤ 2p−1E
(∫ t1+r

0
∥A∥

[
τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]
∥τ

1−αg(τ,X(τ))∥dτ

)p

+2p−1E
(∫ t1+r

t1
∥A∥t1−α

1 τ
α−1(t1 − τ)α−1∥Eα,α((t1 − τ)αA)∥∥τ

1−αg(τ,X(τ))∥dτ

)p

≤ 2p−1Lp
g∥A∥p

(∫ t1+r

0
∥τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)∥
p

p−1 dτ

)p−1 ∫ t1+r

0
E∥τ

1−αX(τ)∥pdτ

+2p−1Lp
g∥A∥p

(∫ t1+r

t1
t

p(1−α)
p−1

1 ((t1 − τ)τ)
p(α−1)

p−1 ∥Eα,α((t1 − τ)αA)∥
p

p−1 dτ

)p−1

∫ t1+r

t1
E∥τ

1−αX(τ)∥pdτ. (3.5)

Thus, the right-hand-side of above inequality tends to zero as r → 0.
Next, we consider

E∥(t1 + r)1−αI4(t1 + r)− t1−α

1 I4(t1)∥p

= E∥
∫ t1+r

0
(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)b(τ,X(τ))dτ

−
∫ t1

0
tα
1 (t1 − τ)α−1Eα,α((t1 − τ)αA)b(τ,X(τ))dτ∥p

≤ 2p−1E∥
∫ t1+r

0

[
(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]
b(τ,X(τ))dτ∥p

+2p−1E
∥∥∥∥∫ t1+r

t1
t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)b(τ,X(τ))dτ

∥∥∥∥p

≤ 2p−1E
(∫ t1+r

0
∥τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)∥∥τ
1−αb(τ,X(τ))∥dτ

)p

+2p−1E
(∫ t1+r

t1
τ

α−1(t1 − τ)α−1∥Eα,α((t1 − τ)αA)∥∥τ
1−αb(τ,X(τ))∥dτ

)p

≤ 2p−1Lp
g

(∫ t1+r

0
∥τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)∥
p

p−1 dτ

)p−1 ∫ t1+r

0
E∥τ

1−αX(τ)∥pdτ

+2p−1Lp
g

(∫ t1+r

t1
((t1 − τ)τ)

p(α−1)
p−1 ∥Eα,α((t1 − τ)αA)∥

p
p−1 dτ

)p−1 ∫ t1+r

t1
E∥τ

1−αX(τ)∥pdτ.

(3.6)
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Therefore, the right-hand-side of the above inequality tends to zero as r → 0 and ε is
sufficiently small.

Further, we have

E∥(t1 + r)1−αI5(t1 + r)− t1−α

1 I5(t1)∥p

= E∥
∫ t1+r

0
(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)σ(τ,X(τ))dW (τ)

−
∫ t1

0
t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)σ(τ,X(τ))dW (τ)∥p

≤ 2p−1E∥
∫ t1+r

0

[
(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]
σ(τ,X(τ))dW (τ)∥p

+2p−1E
∥∥∥∥∫ t1+r

t1
t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)σ(τ,X(τ))dW (τ)

∥∥∥∥p

≤ 2p−1CpE
(∫ t1+r

0

[
τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]2
∥τ

1−α
σ(τ,X(τ))∥2dτ

)p/2

+2p−1CpE
(∫ t1+r

t1
τ

2α−2(t1 − τ)2α−2∥Eα,α((t1 − τ)αA)∥2∥τ
1−α

σ(τ,X(τ))∥2dτ

)p/2

≤ 2p−1CpLp
σ

(∫ t1+r

0

[
τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
]2

E∥τ
1−αX(τ)∥2dτ

)p/2

+2p−1CpLp
σ

(∫ t1+r

t1
τ

2α−2(t1 − τ)2α−2∥Eα,α((t1 − τ)αA)∥2E∥τ
1−αX(τ)∥2dτ

)p/2

≤ 2p−1CpLp
σ

(∫ t1+r

0

[
τ

α−1(t1 + r)1−α(t1 + r− τ)α−1Eα,α((t1 + r− τ)αA)

− τ
α−1t1−α

1 (t1 − τ)α−1Eα,α((t1 − τ)αA)
] 2p

p−2
dτ

) p−2
2

∫ t1+r

0
E∥τ

1−αX(τ)∥pdτ

+2p−1CpLp
σ

(∫ t1+r

t1

(
(t1 − τ)2α−2∥Eα,α((t1 − τ)αA)∥2) p

p−2 dτ

) p−2
2

∫ t1+r

t1
E∥τ

1−αX(τ)∥pdτ. (3.7)

As r → 0 the right-hand-side of the above inequality tends to zero. Thus, by taking
into (3.3)-(3.7) account Ψ is continuous in pth moment on [0,T ].

Next, to prove the global existence and uniqueness of solutions, we will show that
the operator Ψ has a unique fixed point. Indeed for any X ,Y ∈ H, we have

sup
t∈[0,T ]

E∥t1−α(ΨX)(t)− t1−α(ΨY )(t)∥p
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≤ 4p−1 sup
t∈[0,T ]

E∥t1−αg(t,(ΨX)(t))− t1−αg(t,(ΨY )(t))∥p

+4p−1 sup
t∈[0,T ]

E∥
∫ t

0
At1−α(t − τ)α−1Eα,α((t − τ)αA)[g(τ,X(τ))−g(τ,Y (τ))]dτ∥p

+4p−1 sup
t∈[0,T ]

E∥
∫ t

0
t1−α(t − τ)α−1Eα,α((t − τ)αA)[b(τ,X(τ))−b(τ,Y (τ))]dτ∥p

+4p−1 sup
t∈[0,T ]

E∥
∫ t

0
t1−α(t − τ)α−1Eα,α((t − τ)αA)[σ(τ,X(τ))−σ(τ,Y (τ))]dW (τ)∥p

≤ 4p−1Lp
g sup

t∈[0,T ]
E∥t1−α(ΨX)(t)− t1−α(ΨY )(t)∥p

+4p−1Lp
g∥A∥p

(
sup

t∈[0,T ]

∫ t

0

(
t1−α(t − τ)α−1

τ
α−1∥Eα,α((t − τ)αA)∥

) p
p−1 dτ

)p−1

× sup
t∈[0,T ]

E∥t1−αX(t)− t1−αY (t)∥p

+4p−1Lp
b

(
sup

t∈[0,T ]

∫ t

0

(
t1−α(t − τ)α−1

τ
α−1∥Eα,α((t − τ)αA)∥

) p
p−1 dτ

)p−1

× sup
t∈[0,T ]

E∥t1−αX(t)− t1−αY (t)∥p

+4p−1Cp sup
t∈[0,T ]

E
[∫ t

0
∥t1−α(t − τ)α−1

τ
α−1Eα,α((t − τ)αA)[τ1−α

σ(τ,X(τ))

− τ
1−α

σ(τ,Y (τ))]∥2
X dτ

] p
2

≤ 4p−1Lp
g∥ΨX −ΨY∥p

H

+4p−1Lp
g∥A∥pMp

(
sup

t∈[0,T ]

∫ t

0

(
t1−α(t − τ)α−1

τ
α−1∥

) p
p−1 dτ

)p−1
∥X −Y∥p

H

+4p−1Lp
bMp

(
sup

t∈[0,T ]

∫ t

0

(
t1−α(t − τ)α−1

τ
α−1) p

p−1 dτ

)p−1
∥X −Y∥p

H

+4p−1CpLp
σMp

(
sup

t∈[0,T ]

∫ t

0
t2−2α(t − τ)2α−2

τ
2α−2dτ

)p/2
∥X −Y∥p

H

≤ 4p−1Lp
g∥ΨX −ΨY∥p

H +4p−1Lp
g∥A∥pMp

(
B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1∥X −Y∥p
H

+4p−1Lp
bMp

(
B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1∥X −Y∥p
H

+4p−1CpLp
σMpT p(α−1)+ p

2 (B(2α−1,2α−1))p/2 ∥X −Y∥p
H .

Thus,

∥ΨX −ΨY∥p
H ≤ Θ

1−4p−1Lp
g
∥X −Y∥p

H ,



ASYMPTOTIC STABILITY 515

where

Θ := 4p−1
[
Lp

g∥A∥pMp
(

B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1

+Lp
bMp

(
B
(

pα−1
p−1

,
pα−1
p−1

))p−1

T pα−1

+CpLp
σMpT p(α−1)+ p

2 (B(2α−1,2α−1))p/2
]
.

Therefore, by Assumption 2.4, Ψ is a contraction mapping and hence there exists
a unique fixed point, which is a mild solution of (2.5) on [0,T ]. □

4. ASYMPTOTIC STABILITY ANALYSIS OF RIEMANN-LIOUVILLE FRACTIONAL
NEUTRAL DIFFERENTIAL EQUATIONS

We assume that D is a space of all Rn-valued Ft-adapted process ϕ satisfying the
following norm defined by

∥ϕ∥p
D = sup

t≥0
E∥ϕ(t)∥p.

where ϕ is continuous in t such that E∥ϕ(t)∥p → 0 as t → 0. It is clear that D is a
Banach space with respect to the norm ∥ · ∥D .

Theorem 3. Let p ≥ 2 be an integer and suppose that Assumptions 2.1- 2.4 hold.
Then, the mild solution of (2.5) is asymptotically stable in the pth moment.

Proof. First, we show that Ψ(D)⊂ D . Let X ∈ D . We have

E∥(ΨX)(t)∥p ≤ 6p−1E∥tα−1Eα,α(tαA)ρ∥p +6p−1E∥g(t,X(t))∥p

+6p−1E
∥∥∥∥∫ t

0
A(t − τ)α−1Eα,α((t − τ)αA)g(τ,X(τ))dτ

∥∥∥∥p

+6p−1E
∥∥∥∥∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)b(τ,X(τ))dτ

∥∥∥∥p

+6p−1E
∥∥∥∥∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)σ(τ,X(τ))dW (τ)

∥∥∥∥p

. (4.1)

Now we estimate the terms on the right-hand-side of (4.1). By Assumption 2.1 and
according to Lemma 2 (i), first we have

6p−1E∥tα−1Eα,α(tαA)ρ∥p → 0, as t → ∞.

For X(t) ∈ D and for any ε > 0, there exists a t1 > 0 such that E∥X(t)∥p ≤ ε for
t ≥ t1. Therefore,

6p−1E∥g(t,X(t))∥p = 6p−1E∥g(t,X(t))−g(t,0)+g(t,0)∥p

≤ 6p−1E∥g(t,X(t))−g(t,0)∥p
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≤ 6p−1Lp
gE∥X(t)∥p → 0, as t → ∞.

For the fourth term, by Assumptions 2.2 and 2.4:

6p−1E
∥∥∥∥∫ t

0
A(t − τ)α−1Eα,α((t − τ)αA)g(τ,X(τ))dτ

∥∥∥∥p

≤ 6p−1E
(∫ t

0
∥A∥(t − τ)α−1∥Eα,α((t − τ)αA)∥∥g(τ,X(τ))∥dτ

)p

≤ 6p−1Lp
g∥A∥p

∥∥∥∥∫ t

0

(
(t − τ)α−1∥Eα,α((t − τ)αA)∥

) p
p−1 dτ

∥∥∥∥p−1 ∫ t

0
E∥X(τ)∥pdτ

≤ 6p−1Lp
g∥A∥p

(∫ t

0

(
τ

α−1∥Eα,α(τ
αA)∥

) p
p−1 dτ

)p−1 ∫ t

0
E∥X(τ)∥pdτ → 0, as t → ∞.

Similarly, applying Hölder inequality, Assumptions 2.2 and 2.4, we also have

6p−1E
∥∥∥∥∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)b(τ,X(τ))dτ

∥∥∥∥p

≤ 6p−1E
(∫ t

0
(t − τ)α−1∥Eα,α((t − τ)αA)∥∥b(τ,X(τ))∥dτ

)p

≤ 6p−1Lp
b

(∫ t

0

(
τ

α−1∥Eα,α(τ
αA)∥

) p
p−1 dτ

)p−1 ∫ t

0
E∥X(τ)∥pdτ → 0, as t → ∞.

For the sixth term of (4.1), we arrive at

6p−1E
∥∥∥∥∫ t

0
(t − τ)α−1Eα,α((t − τ)αA)σ(τ,X(τ))dW (τ)

∥∥∥∥p

≤ 6p−1CpE
(∫ t

0
(t − τ)2α−2∥Eα,α((t − τ)αA)∥2∥σ(τ,X(τ))∥2dτ

)p/2

≤ 6p−1CpLp
σ

(∫ t

0

[
(t − τ)2α−2∥Eα,α((t − τ)αA)∥2] p

p−2 dτ

) p−2
2

∫ t

0
E∥X(τ)∥pdτ

≤ 6p−1CpLp
σ

(∫ t

0

[
τ

2α−2∥Eα,α(τ
αA)∥2] p

p−2 dτ

) p−2
2

∫ t

0
E∥X(τ)∥pdτ → 0, as t → ∞.

Now we are in a position to prove asymptotic stability of the mild solution of (2.5).
To do so, as the first step, we have to prove the stability in pth moment. Let ε > 0 be
given and choose δ > 0 such that δ < ε satisfies

6p−1MpT p(α−1)
δ+6p−1

[
Lp

g +Lp
g∥A∥pMp

(
p−1

pα−1

)p−1

T pα−1

+Lp
bMp

(
p−1

pα−1

)p−1

T pα−1 +CpLp
σMp

(
T 2α−1

2α−1

)p/2 ]
ε < ε.
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If X(t) = X(t,ρ) is a mild solution of (2.5) with ∥ρ∥p < δ, then (ΨX)(t) = X(t)
satisfies E∥X(t)∥p < ε for every t ≥ 0. If there exists t̂ such that E∥X(t̂)∥p = ε and
E∥X(τ)∥p < ε for τ ∈ [0, t̂]. Then,

E∥X(t̂)∥p ≤ 6p−1MpT p(α−1)
δ

+6p−1
[
Lp

g +Lp
g∥A∥pMp

(
p−1

pα−1

)p−1

T pα−1

+Lp
bMp

(
p−1

pα−1

)p−1

T pα−1 +CpLp
σMp

(
T 2α−1

2α−1

)p/2 ]
ε < ε,

which contradicts to the definition of t̂. Therefore, the mild solution of (2.5) is asymp-
totically stable in pth moment. □

Remark 1. In particular, if we replace Riemann-Liouville fractional derivative with
Caputo one when p= 2, we have already proved the existence and uniqueness of mild
solution to Caputo FSNDEs in [3]. By the help of [3], Theorem 3 can be adapted with
regard to the appropriate conditions as follows:

Theorem 4. Suppose that Assumptions 2.2-2.5 hold. Then, Caputo FSNDEs are
mean square asymptotically stable if

4
(

L2
g∥A∥2M2 T 2α−1

2α−1
+L2

bM2 T 2α−1

2α−1
+L2

σM2 T 2α−1

2α−1

)
< 1.

5. CONCLUSION

In this paper, we have studied asymptotic stability of solutions in pth moment
to Riemann-Liouville FSNDEs with fractional order α ∈ (1

2 ,1). For this class of
systems, we can easily derive mean square asymptotic stability under appropriate
conditions by assuming p = 2. Also, we can continue the research in the direction
by extending this study to the case that p = p(x) is a variable continuous function
which greater or equals than 2. To do so, stochastic integration in Lp(x) space should
be investigated and Lemma 3 should be adapted to the case p = p(x) for further
research on asymptotic stability, so we leave this as an open problem for future work.

The main contribution of our results is that we have opened the possibility for a
cooperative investigation to solve several issues, for instance, combining the methods
of this paper to study the control theory, one may solve controllability of nonlinear
case of our problem in finite and infinite dimensional spaces and one can also discuss
finite-time stability of semiliniear fractional stochastic differential equations.
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