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Abstract. Let R be a commutative ring with identity, and let » > 1 be an integer. A proper
submodule N of an R-module M will be called 2-absorbing [resp. n-weakly prime], if r,s € R
and x € M with rsx € N [resp. rsx € N\ (N : M)~ N]implies that rs € (N : M) orrx € N,
or sx € N. These concepts are generalizations of the notions of 2-absorbing ideals and weakly
prime submodules, which have been studied in [3,4, 6,7]. We will study 2-absorbing and n-
weakly prime submodules in this paper. Among other results, it is proved that if (N : M)" "IN #
(N : M)2N, then N is 2-absorbing if and only if it is n-weakly prime.
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1. INTRODUCTION

Throughout this paper all rings are commutative with identity and all modules are
unitary. Also we take R as a commutative ring with identity, M as an R-module, and
n > 1 is a positive integer.

Let N be a submodule of M. The ideal {r € R|rM C N} is denoted by (N : M).

It is said that a proper submodule N of M is prime if for r € R and a € M with
ra € N, eithera e N orr € (N : M). If N is a prime submodule of M, then one
can easily see that P = (N : M) is a prime ideal of R, and we say N is a P-prime
submodule. Prime submodules have been studied extensively in many papers (see,
for example, [2], [4], [3]), so studying its generalization can be helpful in the ampli-
fication of this theory.

As a generalization of prime submodules, a proper submodule N of M is called
weakly prime, if r,s € R and x € M with rsx € N implies that rx € N or sx € N
(see [3,4,7D.

In this paper, we will introduce and study two generalizations of weakly prime
submodules.

(© 2012 Miskolc University Press
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2. 2-ABSORBING SUBMODULES

According to [0] an ideal / of a ring R is called 2-absorbing, if abc € I for
a,b,c € I impliesthatab € [ orbc € I orac € 1.

A generalization of weakly prime submodules, which is also a module version of
2-absorbing ideals, is introduced as follows:

Definition 1. A proper submodule N of M will be called 2-absorbing if for r,s €
Rand x € M, rsx € N implies thatrs € (N : M)orrx € N or sx € N.

Lemma 1 (Theorem 2.1, Theorem 2.4, and Theorem 2.5 in [6]). Let I be a 2-
absorbing ideal of R with /I = J. Then
(1) J is a 2-absorbing ideal of R with J2C I CJ ={reR|r?>ecl}.
(2) {( :r)}req\1 is a chain of prime ideals.
(3) Either J is a prime ideal of R, or J = Py N P, with Py P, C I, where Py, P>
are the only distinct prime ideals of R, which are minimal over I.

For each r € R and every submodule N of M, we consider N, = (N :ppr) ={x €
M|rx e N}.

Part (ii) of the following lemma proves that 2-absorbing submodules are not too
far from prime submodules.

Proposition 1. Let N be a 2-absorbing submodule of M with /(N : M) = J.
Then

(1) (N : M) and J are 2-absorbing ideals of R. Furthermore
J2C(N:M)CJ={reR|r’c(N:M)).

(i) If (N : M) # J, then for everyr € J\ (N : M), N, is a prime submodule
containing N with J € (Ny : M'). Moreover {(Ny : M) },c j\(N:M) is a chain
of prime ideals.

(ii1) Either J is a prime ideal of R, or J = P1 N Py, where Py, P, are the only
distinct minimal prime ideals over (N : M) and P1 P, C (N : M).

Proof. (i) Let s,t,r € Rwithstr € (N : M). If sr,tr ¢ (N : M), then there exist
X,y € M\ N suchthat srx,try ¢ N.

Since st(r(x + y)) € N and N is 2-absorbing, st € (N : M) or sr(x +y) € N
ortr(x+y)e N.If sr(x +y) € N, then since srx ¢ N, we have sry ¢ N. So as
st(ry) e N andtry ¢ N,st € (N : M).

Similarly in case tr(x + y) € N, we get st € (N : M).

Now since (N : M) is a 2-absorbing ideal, by Lemma 1(1), J is also a 2-absorbing
ideal with J2C (N :M)C J ={reR|r>c(N: M)}

(ii) To prove that N, is a prime submodule, let sx € N,, where s € R\ (N, : M) and
x € M. Then by the definition of N,, rsx € N and as N is 2-absorbing, rs € (N : M)
orrx € Norsx €N.

Ifrse (N : M), thensrM C N, thatis s € (N, : M), which is a contradiction. If
rx € N, then x € N, by the definition of N,, which completes the proof.
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Now suppose sx € N. By part (i), 72 € J2 C (N : M), so rM < N,, particularly
rx € Ny. Then (r + 5)x € N, that is r(r + s)x € N, and since N is 2-absorbing,
rxe Nor(r+s)xeNorr(r+s)eN.

If rx € N, then x € N,, which completes the proof. Also if (r + s)x € N, then
from sx € N, again we get rx € N and so x € N,.

Now assume 7 (r +5) € (N : M). According to part (i), 72 € J?> € (N : M), hence
rs € (N :M),andso s € (N, : M). Whence N, is a prime submodule of M.

One can easily see that (N : M) :r) = (N, : M). By part (i), 7J CJ2C (N : M),
SOJC((N:M):r)y=(N,: M).

For the proof of the rest of this part note that by part (i), (N : M) is a 2-absorbing
ideal. Hence by Lemma 1(2), {((N : M) : r)},ej\(n:Mm) is a chain of prime ideals
and (N, :M)=((N:M):r).

(iii) By part (i), (N : M) is a 2-absorbing ideal, so the proof is clear by Lemma
1(3). 0

Let S be a multiplicatively closed subset of R, and W a submodule of S™!M as
S~!R-module. We consider W¢ = {x € M|¥ € W}.
The proof of the following lemma is easy and we leave it to the reader.

Lemma 2. Let N be an 2-absorbing submodule of M, and S a multiplicatively
closed subset of R.
G) If STIN # S7IM, then STIN is a 2-absorbing submodule of S™' M.
(i) If W is a 2-absorbing submodule of a S™' R-module S™'M, then W€ is a
2-absorbing submodule of M.

Lemma 3 (Proposition 1 in [9]). Let S be a multiplicatively closed subset of R. If
N is a P-prime submodule of M such that (N : MYNS = @, then SN is a prime
submodule of S™YM as an S™! R-module.

Let N be a 2-absorbing submodule of M with (N : M) # /(N : M). Then evid-
ently (N, : M)=((N:M):r),so

according to Proposition 1(ii), B=N{((N: M) :r)|re J(N: M)\(N : M)}
is a prime ideal. In this case we say 3 is the prime ideal related to N.

Corollary 1. Let N be a 2-absorbing submodule of M with (N : M) # /(N : M)
and dim R < oo. Suppose S is a multiplicatively closed subset of R, and *B is the
prime ideal related to N.

G) If SNP = @, then STIN is a 2-absorbing submodule of S~ M.
(ii) Nw is a 2-absorbing submodule of the Ry-module My.

Proof. (i) By Lemma 2(i), it is enough to prove that S ™! M # S~™!N. According to
Proposition 1(ii), {(N; : M)}, . JNBDO\(N:M) 1s a chain of prime ideals, and since
dim R < oo, this chain has a minimal element, say (N, : M). Now since (N, :
M)=((N:M):r)foreachr € /(N : M)\ (N : M), by our assumption we get
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SN(Np: M) =S5NP = 3. Now according to Proposition 1(ii) and Lemma 3,
S~!Ny, is a prime submodule of S™! M containing S™!N. Hence S™!N # S~ M.
(i1) The proof is clear by part (i). Il

Lemmad. Let N be an P-primary submodule of M. Then N is 2-absorbing if and
only if P2 C (N : M). In particular for every maximal submodule K of M, (K : M )?
is a 2-absorbing ideal of R.

Proof. If N is 2-absorbing, then by Proposition 1(i), P2 C (N : M).

For the converse suppose that rsx € N forsomer,s € Randx € M. If rx,sx ¢ N,
then since N is P-primary, r,s € P and so rs € P2 C (N : M). Therefore N is 2-
absorbing. U

Example 1. Let 9t be a maximal ideal of R.

(a) Evidently, every weakly prime submodule is 2-absorbing. In particular if
{P;}ien is a chain of prime ideals, then it is easy to see that for the free
R-module @;cn R, the submodule @; <N P; is 2-absorbing.

(b) Let F be a faithfully flat R-module. Then 9 F and 92 F are 2-absorbing
submodules, particularly if F is a free module, or a projective module over
an integral domain.

(c) Let R be a Noetherian domain which is not a field. If F is a free R-module,
then 9 F is a primary submodule for 2 < k € N, but it is not 2-absorbing.

(d) Let R be a Dedekind domain domain which is not a field. If F is a free R-
module, then 92 F is a 2-absorbing submodule but it is not weakly prime.

(e) If R is a unique factorization domain and p is an irreducible element of R,
then for the free R-module R @ R, the submodule N = Rp @ Rp? is 2-
absorbing, but it is not weakly prime.

Proof. (a) The proof is easy , so it is omitted.

(b) Since F is faithfully flat, 9 F and 901> F are proper submodules of F. Clearly
V(N : F) =M, where N = 9% F for k € N. Then N is a primary submodule, since
V(N : F)is amaximal ideal. Evidently 9t € (M2 F : F) and M2 € (MF : F), so
by Lemma 4, the submodules 9 F and 92 F are 2-absorbing.

(c) It is easy to see that in case F is a free module, (I F : F) = I for each ideal /
of R. As it was proved in part (b), MEF isa primary submodule. However, if mk F
is 2-absorbing, then M2 C (MK F : F) = Mk < M2 according to Lemma 4. Thus
M2 = M. Now by Nakayama’s lemma, there exists 7 € R such that 7912 = 0 and
r—1¢€9k—2 Then either r = 0, or M = 0, and both are impossible.

(d) Note that for every weakly prime submodule N of a module M, the ideal
(N : M) is prime. Although (M2 F : F) = 9M? is not a prime ideal, consequently
92 F is not weakly prime.

(e) A straightforward calculation shows that N is 2-absorbing. But N is not
weakly prime, because p.p(1,1) € N, however p(1,1) ¢ N. a
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Lemma 5 (Lemma 4 in [5]). Let M be a finitely generated R-module and B a
submodule of M. If (B : M) C P, where P is a prime ideal of R, then there exists a
P -prime submodule N of M containing B.

Let P be a prime ideal of R. For simplification, we denote the submodule
(P%)pMp)¢ of M by PO M.

The following corollary supplies abundant examples of 2-absorbing submodules.

Corollary 2. Let P be a prime ideal of R. If one of the following holds, then
P@M is 2-absorbing.

(i) (P?)pMp # Mp.
(ii) M is finitely generated and ann(M') C P.

Proof. (i) Evidently (P?)p € ((P?)pMp : Mp),so Pp  \/((P2)pMp : Mp),
and since Pp is a maximal ideal, \/((PZ)P Mp : Mp) = Pp. Therefore (P2)p Mp
is a Pp-primary submodule of Mp. Then clearly P® M is a P-primary submodule
of M. Now the proof is given by Lemma 4, as P2 C (P@ M : M).

(ii) By part (i), it is enough to prove that (P2)p Mp # Mp.

According to Lemma 5, there exists a P-prime submodule N of M. Then by

Lemma 3, Np is a Pp-prime submodule of Mp. Now from PpMp C Np, we get
(P2)pMp C Np. Consequently (P2)pMp # Mp. Il

In the following, if
A ={N|N isa P-primary and 2-absorbing submodule of M } = &,
then we consider (| A = M.
Corollary 3. If P is a prime ideal of R, then

PNy = ﬂ{N |N is a P-primary and 2-absorbing submodule of M }.

Proof. Set A ={N|N isa P-primary and 2-absorbing submodule of M }.

If POM = M, then A = &, because if N isa P -primary and 2-absorbing sub-
module of M, by Lemma 4, P2M C N. Therefore M = POM C (Np)* =N,
which is impossible. Hence 4 = @, and so in this case (A =M = PO M.

Now let PO M £ M. By Corollary 2(i), P@ M is 2-absorbing. Also in the
proof of Corollary 2(i), we showed that POMis P -primary, so P@M e A. Con-
sequently (A € PO M.

Now suppose that N’ is a P-primary and 2-absorbing submodule of M. Then
Lemma 4 implies that P@ M C (N p)¢ = N'. Consequently PO M =N A. O

A prime ideal P of R is said to be a divided prime ideal if P € Rr for every
re R\ P.

We consider T(M) ={m € M|30 #r € R, rm = 0}. If M is a nonzero module
with T(M) = 0, then it is easy to see that R is an integral domain, and in this case
we say M is a torsion-free module.



80 S. MORADI AND A. AZIZ1

Theorem 1. Let M be a nonzero finitely generated module and P a divided prime
ideal. If T(M) C P2M, then P%2M is 2-absorbing and

P2M = m{N |N is a P-primary and 2-absorbing submodule of M },
particularly if M is a torsion-free module.

Proof. First we show that P2 M is a proper submodule of M. If P2M = M, then
by Nakayama’s lemma, there exists a € R such that 1 —a € P? and aM = 0. Since
l—ae P,a¢ P andas P isadivided prime ideal, 1 —a € P C Ra. Thus there exists
t € Rwith 1 —a =ta. Therefore M = (1 —a)M = taM = 0, which is impossible.

Now by Corollary 3 and Lemma 4, it suffices to show that P2M is P-primary.
Suppose that rx = s1t1y1 + -+ SplpVn € P2M, where s;,t; € P, yi,x € M, and
r € R. If r ¢ P, then since P is a divided prime, P C Rr, and hence there ex-
ist r1,...,rn € Rsuch that s; = rr; € P, fori = 1,...,n. Thus for each i, r; € P
and r(rit1y1 + -+ rntyyn) = rx € P2M. Hence as x — (rit1 y1 + -+ Intnyn) €
T(M)C P?M, and rit1y1 + -+ rnutnyn € P2M, we have x € P?>M, which com-
pletes the proof. (|

According to [1] an ideal / of R is called an n-almost prime ideal if for a,b € R
with ab € I\ I", either a € I or b € I. The case n = 2 is called an almost prime
ideal and it is due to [&].

Theorem 2. Let R be a Noetherian domain, which is not a field. Then the follow-
ing are equivalent.

(1) R is Dedekind domain.
@11) If I is a 2-absorbing ideal of R, then I is almost prime or I = P1 N P or
I = P2, where P, Py, P, are prime ideals of R.

Proof. (i) = (ii) The proof is given by [0, Theorem 3.14].

(i1) = (i) We prove that every localization of R at any nonzero prime ideal has the
property introduced in (ii).

Let J be a 2-absorbing ideal of Ry, where ‘B is a nonzero prime ideal of R. By
Lemma 2, J€ is a 2-absorbing ideal of R, and hence by our assumption, J € is almost
prime or J¢ = Py N Py or J¢ = P2, for some prime ideals P, Py, P, of R.

By [10, Proposition 2.10(ii)], the localization of an almost prime ideal is almost
prime if it is a proper ideal. Hence if J¢ is an almost prime ideal, then (J€)p = J #
R, and so J is an almost prime ideal of Ry;.

If J¢= PyN Py, then J = (J)p = (P1)p N (P2)y, and since J is a proper ideal,
at least one of (Pq)q or (P2)y is a prime ideal. So in this case either J is a prime
ideal or the intersection of two prime ideals.

Incase J¢ = P2, then J = (J€)q = (Py)?, and as J is proper, the ideal (P)y is
prime.
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Therefore by considering the localization of R, we may suppose that 9J7 is the only
maximal ideal of R. If 9t = 92, then by Nakayama’s lemma, )t = 0, thatis R is a
field. Now let s € 9\ M2, and set [ = M? + Rs.

First we prove that every ideal K with 912 C K is almost prime. (%)

Evidently ~/K = 9, and so K is a primary ideal with 9> C K. So by Lemma
4, K is 2-absorbing and the hypothesis in (ii) implies that K is almost prime, or
K = PN Pyor K= P2 where P, P, P, are prime ideals of R. If K = P2, then
M2 C K = P2, and so M = P. Thus K = M?, which is impossible. If K = P; N P,
then M2 C P; and M2 C P, and so P; = P, = 9N, that is in this case K = 9N, so
evidently K is (almost) prime.

By (%) in above, I is an almost prime ideal. We will prove that /2 = 92, On
the contrary let a,b € 9 such that ab ¢ I?. Thus ab € I \ I?, and since I is almost
prime, we have a € I or b € I and not both, as ab ¢ 12, then suppose a € I and
b ¢ I. Note that b> € M2 C I. Hence b(a +b) € I.If b(a +b) ¢ I?, thenb € I or
a+b € I, which is impossible. Hence b(a +b) € 12, and ab ¢ 1?2, therefore b2 ¢ I2.
Then b2 € 1 \ 7 2 and so b € I, which is a contradiction.

Consequently 9% = 12 = 9* + M2s + Rs? = M?(MM? + Rs) + Rs?. Hence by
Nakayama’s lemma 9? = Rs? C Rs, and as s ¢ 912, we have 92 C Rs. Thus again
by (*), Rs is almost prime. By [8, Lemma 2.6], every principal and almost prime
ideal is a prime ideal, hence Rs is a prime ideal. Now since M2 C Rs, M = Rs, that
is 91 is a principal ideal. Therefore R is a discrete valuation domain, in case R is
local.

Now for the general case, note that every localization of R is a discrete valuation
domain, hence R is a Dedekind domain. O

3. n-WEAKLY PRIME SUBMODULES

Another generalization of weakly prime submodules is introduced in the follow-
ing. The following definition is also a generalization and a module version of n-
almost prime ideals which was introduced and studied in [1].

Definition 2. Let n > 1 be an integer. A proper submodule N of M will be called
n-weakly prime, if for r,s € Rand x € M, rsx € N\ (N : M) 1IN implies that
rse(N:M)orrxe Norsx eN.

If we consider R as an R-module, then evidently a proper ideal I of R is n-weakly
prime if for a,b,c € R, abc € I \ 1" implies thatab € [ orbc € [ orac € I.

Remark 1. For any submodule, we have the following implications:
(1) Prime = weakly prime =— 2 —absorbing =—>n—weakly prime.
(2) n-weakly prime = (n — 1)-weakly prime, for each n > 2.

Evidently the zero submodule is n-weakly prime, but it is not necessarily 2-absor-
bing. The following example introduces non trivial n-weakly prime submodules,
which are not 2-absorbing.
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K[X1,X2,X3,X4]
Example 2. Let R = where
P (X1%,X2%,X3°%,X4°, X1 X2 X3, X1 X2X4,X1 X3 X4,X2X3X4)’

K is a field of characteristic 2 and X 1,X 2, X 3, X4 are independent indeterminates.
Consider M = R® R and I = (X1 X, + X3X4) Then the two submodules N =
{(x,x)|x €l}and N' = I & I are n-weakly prime, but they are not 2-absorbing.

Proof. Evidently (R, ) is alocal ring with 9013 = 0, where 9 = (X1, X2, X3, X4).
First we prove that X; X» + X 3 X4 is irreducible.

Suppose fg = X1X> +X3X4 (%), with f, g non unit. Note that 90t = 0, then
we can consider [ = a1 X1+ axXo+azXs+asXs €M, and g= b1 X1+b X+
b3X3+bsX4 € M, where a;,b; € K. From (x) we get:

(D aiba+azby =1 (2)aibs+azby =o (3)aibs+asb; =o
(4) azbz +azby =o (5)azbs+ashy =0 (6)azbs+asbs =1

By (2), o = ai1bs(a1bs + azby) and by (3), o = aibsz(a1bs + asby) and so
ai1b1(azbg — asbz) = o. Since the characteristic of K is 2, —a4b3z = asb3 and so
a1b1(azbg + asbs) = o. Hence by (6), ajh; = o. Then a; = o or by = o. The case
a1 = by = o is impossible, by (1). If o = aq and o # by, then (2) and (3) imply that
as = o = a4 and this is a contradiction by (6).

In case o # a; and o = by, then by (2), (3) we get b3 = o = b4, which is a again
impossible, according to (6). Consequently X1 X, + X3 X is irreducible.

One can easily see that (N : M) =0, and so (N : M)"~!N = 0. Also it is easy to
see that / €92 and (N': M) = 1. Then I2 CM* =0, and thus (N': M)" "IN’ =
0.

To show that N is n-weakly prime, let (o,0) # rs(a,b) € N, where r,s € R and
(a,b) € M. We can assume o # rsa € I. Then for some i € R, o # rsa = h(X1 X+
X3X4) But since /9 € M3 =0, h € R\ M. Thus £ is unit and so rsah™! =
X1 X2+ X 3X4 and it is irreducible, therefore r or sa is unit. Hence r or s is unit
and so s(a,b) € r"'N = N or r(a,b) € s~ N = N. This show that N is n-weakly
prime. The same argument proves that N’ is n-weakly prime.

Now if on the contrary N is a 2—absorbing submodule, then again by Proposition
1G), (N : M) = 0 must be a 2—absorbing ideal and as 0 = 9> C (N : M), we
will have 92 C (N : M) = 0, which is impossible. Thus N is not a 2-absorbing
submodule.

If N’ is a 2—absorbing submodule, then by Proposition 1(i), (N’ : M) =1 is a
2—absorbing ideal of R and since 0 = 93 C I, then M2 C 1. Consequently X1X; €
M2 C 1. Then for some i’ € R, 0 # X1 Xp = h'(X1 X2+ X3X4). As I3 =0, h' is
unit and since X X5 + X3 X4 is irreducible, X; or X5 is unit, which is impossible.

OJ

Evidently (N : M)*~!N C (N : M)?N, for each submodule N of M for each
n > 2. We now introduce a simple criteria for an n-weakly prime submodule to be
2-absorbing.
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Theorem 3. Let N be a submodule of M with (N : M)?>N & (N : M)"~'N. Then
N is 2-absorbing if and only if it is n-weakly prime.

Proof. Let N be an n-weakly prime submodule. Suppose rsx € N, where r,s € R
and x € M. If rx,sx ¢ N and rs ¢ (N : M), then we prove that (N : M)>N C (N :
M)~ N, which is impossible and so N is 2-absorbing.

First we show that the following facts hold:

(i) rsx € (N : M)""IN.
(i) rsN S (N : M)""IN.
(i) (N : M)x,s(N : M)x € (N : M)""IN.
(iv) (N:M)>x C(N: M)""IN.
(v) r(N : M)N,s(N : M)N € (N : M)""IN.

(i) Since N is n-weakly prime and rx,sx ¢ N andrs ¢ (N : M), then rsx € (N :
M)"IN.

() IfrsN & (N : M)"~1 N, then for some y € N we have rsy ¢ (N : M)" 1 N. So
since rsx € (N : M) "IN, rs(x+y) ¢ (N : M)" ' N.Hence rs(x +y) € N\ (N :
M)""IN andthenr(x+y)e Nors(x+y)e Norrse€ (N : M). Thusrx € N or
sx € N orrs € (N : M), which is impossible. Consequently rsN < (N : M)" "I N.

(iii) Let 7(N : M)x € (N : M)*~!N. Then there exists ¢ € (N : M) such that
rtx e N\ (N : M)""IN.Clearly r(s +¢)x € N. We have r (s +1)x ¢ (N : M)"~!N,
otherwise since rsx € (N : M)""IN, rtx € (N : M)*~! N, which is a contradiction.
Thenr(s+1)x € N\ (N : M)" !N andhencerx € N or (s+t)x € Norr(s+1) €
(N : M), which implies rx € N or sx € N or rs € (N : M), a contradiction to our
assumption. Therefore r(N : M)x € (N : M)*~!N. Similarly s(N : M)x € (N :
M)'IN.

(iv)Leta,b € (N : M).If abx ¢ (N : M)"~!N, then since rsx € N, (a +r)(b +
s)x € N. we show that (a +r)(b +s)x ¢ (N : M)""IN.

If (a+r)(b+s)x €(N:M)""IN, thenrsx +rbx+asx+abx e (N: M)""IN,
and so by parts (i), (iii), rsx + rbx +asx € (N : M)*~!N. Hence abx € (N :
M)"~!N, which is impossible. Thus (a + r)(b + s)x ¢ (N : M)*~!N. Therefore
(@+r)b+s)x e N\ (N : M)"'N and so (a+r)x € N or (b+s)x € N or
(a+r)(b+s)e (N : M), whichimpliesrx € N orsx € N orrs € (N : M), and this
is a contradiction. Then abx € (N : M)" "N and so (N : M)?x € (N : M)~ N.

(v) If for some b € (N : M) and y € N, rby ¢ (N : M)""IN, then r(s +b)(x +
y) € N. By parts (i),(ii),(iii), rsx +rsy +rbx € (N : M)""'N and since rby ¢
(N :M)*"IN, thenr(s+b)(x+y) ¢ (N : M)*"'N. Hence r(x + y) € N or (s +
by(x+y)eNorr(s+b)e(N:M). Thenrxe Norsxe Norrse (N : M),
which is a contradiction. Consequently 7(N : M)N € (N : M)"~!N and similarity
s(N:M)N C (N :M)"IN.

Now we prove the theorem. Leta,b € (N : M)and y € N.Ifaby ¢ (N : M)""N,
then obviously (@ +7)(b+s5)(x+y) e N.If (a+r)(b+5)(x+y) € (N : M)""IN,
then by previous parts aby = (a +r)(b + s)(x + y) — (abx +asx +asy +rbx +
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rby +rsx +rsy) € (N : M)*~1N, which is impossible. Thus (a + r)(b + s)(x +
y)¢ (N :M)" 'N andso (a+r)(b+s)(x+y) e N\ (N : M)*"'N. Hence (a +
r)Y(x+y)eNor(b+s)(x+y)eNor(a+r)b+s)e(N:M). Thereforerx € N
orsx € N orrs € (N : M), which is impossible. Consequently (N : M)?2N < (N :
M) IN. O

Corollary 4. Let n > 3 and M be a nonzero torsion-free Noetherian R-module.
Then a submodule is 2-absorbing if and only if it is n-weakly prime.

Proof. Let N be an n-weakly prime submodule. By Theorem 3, it is enough to
prove that (N : M)""'N # (N : M)>N. On the contrary suppose that
(N :M)""IN = (N : M)>N. Then by Nakayama’s lemma there exists a € (N :
M)"=3 such that (a —1)(N : M)>?N = 0. As M is torsion-free, we have a = 1, or
(N:M)=0o0r N =0.

Ifa =1, then N = M, which is impossible. Evidently N = 0 is 2-absorbing. Now
suppose (N : M) = 0. Assume rsx € N, where r,s € R and x € M. If rsx # 0, then
rsx € N\ (N : M)""'N, and since N is n-weakly prime, the proof is clear in this
case.

Incase rsx =0,thenrs =0 (N : M),orx =0€ N. |

Proposition 2. Let x € M and a € R.

(1) Ifannpy(a) C aM, then the submodule aM is 2-absorbing if and only if it
is n-weakly prime.

(i) Ifanng(x) € (Rx : M), then the submodule Rx is 2-absorbing if and only
if Rx is n-weakly prime.

Proof. (i) Let M be an n-weakly prime submodule and r,s € R and x € M with
rsxcaM. Ifrsx ¢ (@M : M)"1aM, thenrs e (aM :M)orrx eaM orsx €aM.
Therefore assume rsx € (aM : M)~ 'aM. Clearly r(s +a)x = rsx +rax € aM.If
r(s+a)x ¢ @M : M) 'aM, thenr(s+a) e (aM:M)orrx €aM or (s+a)x €
aM.Soasae€ (@M : M), rse(aM :M)orrx €aM orsx € aM.

Now suppose that r(s + a)x € (aM : M)"“'aM. Then since rsx € (aM :
M)*~laM, forsome y € (aM : M)"~'M, wehavearx =ay andsoa(rx—y) =0.
Hence rx —y € annyr(a) CaM and y € (aM : M)" "M = (aM : M)*"%(aM :
MM CaM. Thusrx e aM.

(ii) Let Rx be an n-weakly prime submodule and r,s € R,y € M with rsy € Rx.
Since Rx is n-weakly prime, we may assume rsy € (Rx : M)"~! Rx. Evidently
rs(x+y)e Rx.Ifrs(x+y) ¢ (Rx : M)" "' Rx, thenrs € (Rx: M) orr(x+y) €
Rxors(x+y)e Rx.Hencers € (Rx: M)orry € Rx orsy € Rx.

Now let rs(x +y) € (Rx : M)""'Rx. Then as rsy € (Rx : M)" "' Rx, rsx €
(Rx : M)""'Rx and so rsx = tx, for some t € (Rx : M)"~! C (Rx : M). Hence
rs—t eann(x) C (Rx: M) andthusrs € (Rx : M). U

Example 3. Let R be a unique factorization domain, p an irreducible element of
R,and M = R R.
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(a) The submodule N = p?M is 2-absorbing.
(b) The submodule N = p3M is neither 2-absorbing, nor 2-weakly prime.

Proof. (a) Consider ab(c,d) € N, where a,b,c,d € R. Then a straightforward
calculation shows that a(c,d) € N or b(c,d) € N or p? | ab.

(b) If N is 2-absorbing, then by Proposition 1(i), (N : M) is 2-absorbing and
evidently p3 € (N : M), therefore p% € (N : M). Then p%(1,0) € N = p3>M. Hence
there exists ¢ € R with pZ = p3t. Then pt = 1, which is impossible. Therefore N is
not 2-absorbing and by Proposition 2(i), N is not 2-weakly prime. O

Recall that the set of zero divisors of M, denoted by Z (M) is defined by Z(M) =
{reRII0#xe M, rx =0}.

The following result studies the behavior of n-weakly prime submodules under
localization. Its proof is not difficult and we leave it to the reader.

Proposition 3. Let S be a multiplicatively closed subset of R.

() If N is an n-weakly prime submodule of M with STYN # S™'M, then
STIN is an n-weakly prime submodule of S™'M.

(ii) Let N be an n-weakly prime submodule of M with Z(%) NS = @. Then
SN is an n-weakly prime submodule of S~'M and (ST'N)¢ = N. More-
over STY(N : M) = (STIN : S~ M).

We can introduce the concept of n-weak prime as follows:

A proper submodule N of M will be called n-weakly prime, if for r,s € R and
xeM,rsx e N\ (N :M)"" !N implies that rx € N or sx € N.

Then similar to the proof of Theorem 3, Corollary 4 and Proposition 2 we can
prove the following results:

(1) Let N be a submodule of M with (N : M)?>N & (N : M)*~'N. Then N is
weakly prime if and only if it is n-weak prime.

(2) Let n > 3 and M be a nonzero torsion-free Noetherian R-module. Then a
submodule is weakly prime if and only if it is n-weak prime.

(3) Leta € R with annps(a) € aM. Then aM is a weakly prime if and only if
it is n-weak prime.
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