

2-absorbing and n-weakly prime submodules

S. Moradi and A. Azizi

2-ABSORBING AND n-WEAKLY PRIME SUBMODULES

S. MORADI AND A. AZIZI

Received 4 May, 2011

Abstract. Let R be a commutative ring with identity, and let n > 1 be an integer. A proper submodule N of an R-module M will be called 2-absorbing [resp. n-weakly prime], if $r, s \in R$ and $x \in M$ with $rsx \in N$ [resp. $rsx \in N \setminus (N:M)^{n-1}N$] implies that $rs \in (N:M)$ or $rx \in N$, or $sx \in N$. These concepts are generalizations of the notions of 2-absorbing ideals and weakly prime submodules, which have been studied in [3,4,6,7]. We will study 2-absorbing and n-weakly prime submodules in this paper. Among other results, it is proved that if $(N:M)^{n-1}N \neq (N:M)^2N$, then N is 2-absorbing if and only if it is n-weakly prime.

2000 Mathematics Subject Classification: 13A10; 13C99; 13E05; 13F05; 13F15

Keywords: n-weakly prime submodule, prime submodule, primary submodule, 2-absorbing submodule, Weakly prime submodule

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we take R as a commutative ring with identity, M as an R-module, and n > 1 is a positive integer.

Let N be a submodule of M. The ideal $\{r \in R | rM \subseteq N\}$ is denoted by (N:M). It is said that a proper submodule N of M is *prime* if for $r \in R$ and $a \in M$ with $ra \in N$, either $a \in N$ or $r \in (N:M)$. If N is a prime submodule of M, then one can easily see that P = (N:M) is a prime ideal of R, and we say N is a P-prime submodule. Prime submodules have been studied extensively in many papers (see, for example, [2], [4], [3]), so studying its generalization can be helpful in the amplification of this theory.

As a generalization of prime submodules, a proper submodule N of M is called weakly prime, if $r, s \in R$ and $x \in M$ with $rsx \in N$ implies that $rx \in N$ or $sx \in N$ (see [3,4,7]).

In this paper, we will introduce and study two generalizations of weakly prime submodules.

© 2012 Miskolc University Press

2. 2-ABSORBING SUBMODULES

According to [6] an ideal I of a ring R is called 2-absorbing, if $abc \in I$ for $a,b,c \in I$ implies that $ab \in I$ or $bc \in I$ or $ac \in I$.

A generalization of weakly prime submodules, which is also a module version of 2-absorbing ideals, is introduced as follows:

Definition 1. A proper submodule N of M will be called 2-absorbing if for $r, s \in R$ and $x \in M$, $rsx \in N$ implies that $rs \in (N : M)$ or $rx \in N$ or $sx \in N$.

Lemma 1 (Theorem 2.1, Theorem 2.4, and Theorem 2.5 in [6]). Let I be a 2-absorbing ideal of R with $\sqrt{I} = J$. Then

- (1) J is a 2-absorbing ideal of R with $J^2 \subseteq I \subseteq J = \{r \in R \mid r^2 \in I\}$.
- (2) $\{(I:r)\}_{r\in J\setminus I}$ is a chain of prime ideals.
- (3) Either J is a prime ideal of R, or $J = P_1 \cap P_2$ with $P_1 P_2 \subseteq I$, where P_1 , P_2 are the only distinct prime ideals of R, which are minimal over I.

For each $r \in R$ and every submodule N of M, we consider $N_r = (N :_M r) = \{x \in M \mid rx \in N\}$.

Part (ii) of the following lemma proves that 2-absorbing submodules are not too far from prime submodules.

Proposition 1. Let N be a 2-absorbing submodule of M with $\sqrt{(N:M)} = J$. Then

- (i) (N:M) and J are 2-absorbing ideals of R. Furthermore $J^2 \subseteq (N:M) \subseteq J = \{r \in R \mid r^2 \in (N:M)\}.$
- (ii) If $(N:M) \neq J$, then for every $r \in J \setminus (N:M)$, N_r is a prime submodule containing N with $J \subseteq (N_r:M)$. Moreover $\{(N_r:M)\}_{r \in J \setminus (N:M)}$ is a chain of prime ideals.
- (iii) Either J is a prime ideal of R, or $J = P_1 \cap P_2$, where P_1, P_2 are the only distinct minimal prime ideals over (N : M) and $P_1P_2 \subseteq (N : M)$.

Proof. (i) Let $s,t,r \in R$ with $str \in (N:M)$. If $sr,tr \notin (N:M)$, then there exist $x,y \in M \setminus N$ such that $srx,try \notin N$.

Since $st(r(x+y)) \in N$ and N is 2-absorbing, $st \in (N:M)$ or $sr(x+y) \in N$ or $tr(x+y) \in N$. If $sr(x+y) \in N$, then since $srx \notin N$, we have $sry \notin N$. So as $st(ry) \in N$ and $try \notin N$, $st \in (N:M)$.

Similarly in case $tr(x + y) \in N$, we get $st \in (N : M)$.

Now since (N:M) is a 2-absorbing ideal, by Lemma 1(1), J is also a 2-absorbing ideal with $J^2 \subseteq (N:M) \subseteq J = \{r \in R \mid r^2 \in (N:M)\}.$

(ii) To prove that N_r is a prime submodule, let $sx \in N_r$, where $s \in R \setminus (N_r : M)$ and $x \in M$. Then by the definition of N_r , $rsx \in N$ and as N is 2-absorbing, $rs \in (N : M)$ or $rx \in N$ or $sx \in N$.

If $rs \in (N:M)$, then $srM \subseteq N$, that is $s \in (N_r:M)$, which is a contradiction. If $rx \in N$, then $x \in N_r$ by the definition of N_r , which completes the proof.

Now suppose $sx \in N$. By part (i), $r^2 \in J^2 \subseteq (N:M)$, so $rM \subseteq N_r$, particularly $rx \in N_r$. Then $(r+s)x \in N_r$, that is $r(r+s)x \in N$, and since N is 2-absorbing, $rx \in N$ or $(r+s)x \in N$ or $r(r+s) \in N$.

If $rx \in N$, then $x \in N_r$, which completes the proof. Also if $(r + s)x \in N$, then from $sx \in N$, again we get $rx \in N$ and so $x \in N_r$.

Now assume $r(r+s) \in (N:M)$. According to part (i), $r^2 \in J^2 \subseteq (N:M)$, hence $rs \in (N:M)$, and so $s \in (N_r:M)$. Whence N_r is a prime submodule of M.

One can easily see that $((N:M):r)=(N_r:M)$. By part (i), $rJ \subseteq J^2 \subseteq (N:M)$, so $J \subseteq ((N:M):r)=(N_r:M)$.

For the proof of the rest of this part note that by part (i), (N:M) is a 2-absorbing ideal. Hence by Lemma 1(2), $\{((N:M):r)\}_{r\in J\setminus (N:M)}$ is a chain of prime ideals and $(N_r:M)=((N:M):r)$.

(iii) By part (i), (N:M) is a 2-absorbing ideal, so the proof is clear by Lemma 1(3).

Let S be a multiplicatively closed subset of R, and W a submodule of $S^{-1}M$ as $S^{-1}R$ -module. We consider $W^c = \{x \in M | \frac{x}{1} \in W\}$.

The proof of the following lemma is easy and we leave it to the reader.

Lemma 2. Let N be an 2-absorbing submodule of M, and S a multiplicatively closed subset of R.

- (i) If $S^{-1}N \neq S^{-1}M$, then $S^{-1}N$ is a 2-absorbing submodule of $S^{-1}M$.
- (ii) If W is a 2-absorbing submodule of a $S^{-1}R$ -module $S^{-1}M$, then W^c is a 2-absorbing submodule of M.

Lemma 3 (Proposition 1 in [9]). Let S be a multiplicatively closed subset of R. If N is a P-prime submodule of M such that $(N:M) \cap S = \emptyset$, then $S^{-1}N$ is a prime submodule of $S^{-1}M$ as an $S^{-1}R$ -module.

Let N be a 2-absorbing submodule of M with $(N:M) \neq \sqrt{(N:M)}$. Then evidently $(N_r:M) = ((N:M):r)$, so

according to Proposition 1(ii), $\mathfrak{P} = \bigcap \{((N:M):r) \mid r \in \sqrt{(N:M)} \setminus (N:M)\}$ is a prime ideal. In this case we say \mathfrak{P} is the prime ideal related to N.

Corollary 1. Let N be a 2-absorbing submodule of M with $(N:M) \neq \sqrt{(N:M)}$ and d im $R < \infty$. Suppose S is a multiplicatively closed subset of R, and \mathfrak{P} is the prime ideal related to N.

- (i) If $S \cap \mathfrak{P} = \emptyset$, then $S^{-1}N$ is a 2-absorbing submodule of $S^{-1}M$.
- (ii) $N_{\mathfrak{P}}$ is a 2-absorbing submodule of the $R_{\mathfrak{P}}$ -module $M_{\mathfrak{P}}$.

Proof. (i) By Lemma 2(i), it is enough to prove that $S^{-1}M \neq S^{-1}N$. According to Proposition 1(ii), $\{(N_r:M)\}_{r \in \sqrt{(N:M)}\setminus (N:M)}$ is a chain of prime ideals, and since $dim\ R < \infty$, this chain has a minimal element, say $(N_{r_0}:M)$. Now since $(N_r:M) = ((N:M):r)$ for each $r \in \sqrt{(N:M)}\setminus (N:M)$, by our assumption we get

 $S \cap (N_{r_0}: M) = S \cap \mathfrak{P} = \emptyset$. Now according to Proposition 1(ii) and Lemma 3, $S^{-1}N_{r_0}$ is a prime submodule of $S^{-1}M$ containing $S^{-1}N$. Hence $S^{-1}N \neq S^{-1}M$. (ii) The proof is clear by part (i).

Lemma 4. Let N be an P-primary submodule of M. Then N is 2-absorbing if and only if $P^2 \subseteq (N:M)$. In particular for every maximal submodule K of M, $(K:M)^2$ is a 2-absorbing ideal of R.

Proof. If N is 2-absorbing, then by Proposition 1(i), $P^2 \subseteq (N:M)$.

For the converse suppose that $rsx \in N$ for some $r, s \in R$ and $x \in M$. If $rx, sx \notin N$, then since N is P-primary, $r, s \in P$ and so $rs \in P^2 \subseteq (N : M)$. Therefore N is 2-absorbing.

Example 1. Let \mathfrak{M} be a maximal ideal of R.

- (a) Evidently, every weakly prime submodule is 2-absorbing. In particular if $\{P_i\}_{i\in\mathbb{N}}$ is a chain of prime ideals, then it is easy to see that for the free R-module $\bigoplus_{i\in\mathbb{N}} R$, the submodule $\bigoplus_{i\in\mathbb{N}} P_i$ is 2-absorbing.
- (b) Let F be a faithfully flat R-module. Then $\mathfrak{M}F$ and \mathfrak{M}^2F are 2-absorbing submodules, particularly if F is a free module, or a projective module over an integral domain.
- (c) Let R be a Noetherian domain which is not a field. If F is a free R-module, then $\mathfrak{M}^k F$ is a primary submodule for $2 < k \in \mathbb{N}$, but it is not 2-absorbing.
- (d) Let R be a Dedekind domain domain which is not a field. If F is a free R-module, then \mathfrak{M}^2F is a 2-absorbing submodule but it is not weakly prime.
- (e) If R is a unique factorization domain and p is an irreducible element of R, then for the free R-module $R \oplus R$, the submodule $N = Rp \oplus Rp^2$ is 2-absorbing, but it is not weakly prime.

Proof. (a) The proof is easy, so it is omitted.

- (b) Since F is faithfully flat, $\mathfrak{M}F$ and \mathfrak{M}^2F are proper submodules of F. Clearly $\sqrt{(N:F)}=\mathfrak{M}$, where $N=\mathfrak{M}^kF$ for $k\in\mathbb{N}$. Then N is a primary submodule, since $\sqrt{(N:F)}$ is a maximal ideal. Evidently $\mathfrak{M}^2\subseteq (\mathfrak{M}^2F:F)$ and $\mathfrak{M}^2\subseteq (\mathfrak{M}F:F)$, so by Lemma 4, the submodules $\mathfrak{M}F$ and \mathfrak{M}^2F are 2-absorbing.
- (c) It is easy to see that in case F is a free module, (IF : F) = I for each ideal I of R. As it was proved in part (b), $\mathfrak{M}^k F$ is a primary submodule. However, if $\mathfrak{M}^k F$ is 2-absorbing, then $\mathfrak{M}^2 \subseteq (\mathfrak{M}^k F : F) = \mathfrak{M}^k \subseteq \mathfrak{M}^2$ according to Lemma 4. Thus $\mathfrak{M}^2 = \mathfrak{M}^k$. Now by Nakayama's lemma, there exists $r \in R$ such that $r\mathfrak{M}^2 = 0$ and $r 1 \in \mathfrak{M}^{k-2}$. Then either r = 0, or $\mathfrak{M} = 0$, and both are impossible.
- (d) Note that for every weakly prime submodule N of a module M, the ideal (N:M) is prime. Although $(\mathfrak{M}^2F:F)=\mathfrak{M}^2$ is not a prime ideal, consequently \mathfrak{M}^2F is not weakly prime.
- (e) A straightforward calculation shows that N is 2-absorbing. But N is not weakly prime, because $p, p(1, 1) \in N$, however $p(1, 1) \notin N$.

Lemma 5 (Lemma 4 in [5]). Let M be a finitely generated R-module and B a submodule of M. If $(B:M) \subseteq P$, where P is a prime ideal of R, then there exists a P-prime submodule N of M containing B.

Let P be a prime ideal of R. For simplification, we denote the submodule $((P^2)_P M_P)^c$ of M by $P^{(2)} M$.

The following corollary supplies abundant examples of 2-absorbing submodules.

Corollary 2. Let P be a prime ideal of R. If one of the following holds, then $P^{(2)}M$ is 2-absorbing.

- (i) $(P^2)_P M_P \neq M_P$.
- (ii) M is finitely generated and $ann(M) \subseteq P$.

Proof. (i) Evidently $(P^2)_P \subseteq ((P^2)_P M_P : M_P)$, so $P_P \subseteq \sqrt{((P^2)_P M_P : M_P)}$, and since P_P is a maximal ideal, $\sqrt{((P^2)_P M_P : M_P)} = P_P$. Therefore $(P^2)_P M_P$ is a P_P -primary submodule of P_P . Then clearly $P^{(2)} M$ is a P_P -primary submodule of P_P . Now the proof is given by Lemma 4, as $P^2 \subseteq (P^{(2)} M : M)$.

(ii) By part (i), it is enough to prove that $(P^2)_P M_P \neq M_P$.

According to Lemma 5, there exists a P-prime submodule N of M. Then by Lemma 3, N_P is a P_P -prime submodule of M_P . Now from $P_PM_P \subseteq N_P$, we get $(P^2)_PM_P \subseteq N_P$. Consequently $(P^2)_PM_P \neq M_P$.

In the following, if

 $\mathcal{A} = \{N | N \text{ is a } P\text{-primary and 2-absorbing submodule of } M\} = \emptyset,$ then we consider $\bigcap \mathcal{A} = M$.

Corollary 3. If P is a prime ideal of R, then

$$P^{(2)}M = \bigcap \{N \mid N \text{ is a } P\text{-primary and } 2\text{-absorbing submodule of } M\}.$$

Proof. Set $A = \{N | N \text{ is a } P\text{-primary and 2-absorbing submodule of } M\}$.

If $P^{(2)}M=M$, then $A=\varnothing$, because if N is a P-primary and 2-absorbing submodule of M, by Lemma 4, $P^2M\subseteq N$. Therefore $M=P^{(2)}M\subseteq (N_P)^c=N$, which is impossible. Hence $A=\varnothing$, and so in this case $\bigcap A=M=P^{(2)}M$.

Now let $P^{(2)}M \neq M$. By Corollary 2(i), $P^{(2)}M$ is 2-absorbing. Also in the proof of Corollary 2(i), we showed that $P^{(2)}M$ is P-primary, so $P^{(2)}M \in \mathcal{A}$. Consequently $\bigcap \mathcal{A} \subseteq P^{(2)}M$.

Now suppose that N' is a P-primary and 2-absorbing submodule of M. Then Lemma 4 implies that $P^{(2)}M \subseteq (N_P')^c = N'$. Consequently $P^{(2)}M = \bigcap A$.

A prime ideal P of R is said to be a divided prime ideal if $P \subseteq Rr$ for every $r \in R \setminus P$.

We consider $T(M) = \{m \in M | \exists 0 \neq r \in R, rm = 0\}$. If M is a nonzero module with T(M) = 0, then it is easy to see that R is an integral domain, and in this case we say M is a torsion-free module.

Theorem 1. Let M be a nonzero finitely generated module and P a divided prime ideal. If $T(M) \subseteq P^2M$, then P^2M is 2-absorbing and

$$P^2M = \bigcap \{N | N \text{ is a P-primary and 2-absorbing submodule of } M\},$$

particularly if M is a torsion-free module.

Proof. First we show that P^2M is a proper submodule of M. If $P^2M = M$, then by Nakayama's lemma, there exists $a \in R$ such that $1 - a \in P^2$ and aM = 0. Since $1 - a \in P$, $a \notin P$ and as P is a divided prime ideal, $1 - a \in P \subseteq Ra$. Thus there exists $t \in R$ with 1 - a = ta. Therefore M = (1 - a)M = taM = 0, which is impossible.

Now by Corollary 3 and Lemma 4, it suffices to show that P^2M is P-primary. Suppose that $rx = s_1t_1y_1 + \cdots + s_nt_ny_n \in P^2M$, where $s_i, t_i \in P$, $y_i, x \in M$, and $r \in R$. If $r \notin P$, then since P is a divided prime, $P \subseteq Rr$, and hence there exist $r_1, \ldots, r_n \in R$ such that $s_i = rr_i \in P$, for $i = 1, \ldots, n$. Thus for each $i, r_i \in P$ and $r(r_1t_1y_1 + \cdots + r_nt_ny_n) = rx \in P^2M$. Hence as $x - (r_1t_1y_1 + \cdots + r_nt_ny_n) \in T(M) \subseteq P^2M$, and $r_1t_1y_1 + \cdots + r_nt_ny_n \in P^2M$, we have $x \in P^2M$, which completes the proof.

According to [1] an ideal I of R is called an n-almost prime ideal if for $a, b \in R$ with $ab \in I \setminus I^n$, either $a \in I$ or $b \in I$. The case n = 2 is called an almost prime ideal and it is due to [8].

Theorem 2. Let R be a Noetherian domain, which is not a field. Then the following are equivalent.

- (i) R is Dedekind domain.
- (ii) If I is a 2-absorbing ideal of R, then I is almost prime or $I = P_1 \cap P_2$ or $I = P^2$, where P, P_1, P_2 are prime ideals of R.

Proof. (i) \Rightarrow (ii) The proof is given by [6, Theorem 3.14].

(ii) \Rightarrow (i) We prove that every localization of R at any nonzero prime ideal has the property introduced in (ii).

Let J be a 2-absorbing ideal of $R_{\mathfrak{P}}$, where \mathfrak{P} is a nonzero prime ideal of R. By Lemma 2, J^c is a 2-absorbing ideal of R, and hence by our assumption, J^c is almost prime or $J^c = P_1 \cap P_2$ or $J^c = P^2$, for some prime ideals P, P_1, P_2 of R.

By [10, Proposition 2.10(ii)], the localization of an almost prime ideal is almost prime if it is a proper ideal. Hence if J^c is an almost prime ideal, then $(J^c)_{\mathfrak{P}} = J \neq R$, and so J is an almost prime ideal of $R_{\mathfrak{P}}$.

If $J^c = P_1 \cap P_2$, then $J = (J^c)_{\mathfrak{P}} = (P_1)_{\mathfrak{P}} \cap (P_2)_{\mathfrak{P}}$, and since J is a proper ideal, at least one of $(P_1)_{\mathfrak{P}}$ or $(P_2)_{\mathfrak{P}}$ is a prime ideal. So in this case either J is a prime ideal or the intersection of two prime ideals.

In case $J^c = P^2$, then $J = (J^c)_{\mathfrak{P}} = (P_{\mathfrak{P}})^2$, and as J is proper, the ideal $(P)_{\mathfrak{P}}$ is prime.

Therefore by considering the localization of R, we may suppose that \mathfrak{M} is the only maximal ideal of R. If $\mathfrak{M} = \mathfrak{M}^2$, then by Nakayama's lemma, $\mathfrak{M} = 0$, that is R is a field. Now let $s \in \mathfrak{M} \setminus \mathfrak{M}^2$, and set $I = \mathfrak{M}^2 + Rs$.

First we prove that every ideal K with $\mathfrak{M}^2 \subset K$ is almost prime. (*)

Evidently $\sqrt{K} = \mathfrak{M}$, and so K is a primary ideal with $\mathfrak{M}^2 \subseteq K$. So by Lemma 4, K is 2-absorbing and the hypothesis in (ii) implies that K is almost prime, or $K = P_1 \cap P_2$ or $K = P^2$, where P, P_1, P_2 are prime ideals of R. If $K = P^2$, then $\mathfrak{M}^2 \subseteq K = P^2$, and so $\mathfrak{M} = P$. Thus $K = \mathfrak{M}^2$, which is impossible. If $K = P_1 \cap P_2$, then $\mathfrak{M}^2 \subseteq P_1$ and $\mathfrak{M}^2 \subseteq P_2$ and so $P_1 = P_2 = \mathfrak{M}$, that is in this case $K = \mathfrak{M}$, so evidently K is (almost) prime.

By (*) in above, I is an almost prime ideal. We will prove that $I^2 = \mathfrak{M}^2$. On the contrary let $a, b \in \mathfrak{M}$ such that $ab \notin I^2$. Thus $ab \in I \setminus I^2$, and since I is almost prime, we have $a \in I$ or $b \in I$ and not both, as $ab \notin I^2$, then suppose $a \in I$ and $b \notin I$. Note that $b^2 \in \mathfrak{M}^2 \subseteq I$. Hence $b(a+b) \in I$. If $b(a+b) \notin I^2$, then $b \in I$ or $a+b \in I$, which is impossible. Hence $b(a+b) \in I^2$, and $ab \notin I^2$, therefore $b^2 \notin I^2$. Then $b^2 \in I \setminus I^2$, and so $b \in I$, which is a contradiction.

Consequently $\mathfrak{M}^2 = I^2 = \mathfrak{M}^4 + \mathfrak{M}^2 s + R s^2 = \mathfrak{M}^2(\mathfrak{M}^2 + R s) + R s^2$. Hence by Nakayama's lemma $\mathfrak{M}^2 = R s^2 \subseteq R s$, and as $s \notin \mathfrak{M}^2$, we have $\mathfrak{M}^2 \subset R s$. Thus again by (*), R s is almost prime. By [8, Lemma 2.6], every principal and almost prime ideal is a prime ideal, hence R s is a prime ideal. Now since $\mathfrak{M}^2 \subseteq R s$, $\mathfrak{M} = R s$, that is \mathfrak{M} is a principal ideal. Therefore R is a discrete valuation domain, in case R is local.

Now for the general case, note that every localization of R is a discrete valuation domain, hence R is a Dedekind domain.

3. *n*-WEAKLY PRIME SUBMODULES

Another generalization of weakly prime submodules is introduced in the following. The following definition is also a generalization and a module version of n-almost prime ideals which was introduced and studied in [1].

Definition 2. Let n > 1 be an integer. A proper submodule N of M will be called n-weakly prime, if for $r, s \in R$ and $x \in M$, $rsx \in N \setminus (N : M)^{n-1}N$ implies that $rs \in (N : M)$ or $rx \in N$ or $sx \in N$.

If we consider R as an R-module, then evidently a proper ideal I of R is n-weakly prime if for $a,b,c \in R$, $abc \in I \setminus I^n$ implies that $ab \in I$ or $bc \in I$ or $ac \in I$.

Remark 1. For any submodule, we have the following implications:

- (1) $Prime \Longrightarrow weakly \ prime \Longrightarrow 2-absorbing \Longrightarrow n-weakly \ prime.$
- (2) *n*-weakly prime \Longrightarrow (n-1)-weakly prime, for each n > 2.

Evidently the zero submodule is n-weakly prime, but it is not necessarily 2-absorbing. The following example introduces non trivial n-weakly prime submodules, which are not 2-absorbing.

Example 2. Let $R = \frac{K[X_1, X_2, X_3, X_4]}{\langle X_1^2, X_2^2, X_3^2, X_4^2, X_1 X_2 X_3, X_1 X_2 X_4, X_1 X_3 X_4, X_2 X_3 X_4 \rangle}$, where K is a field of characteristic 2 and X_1, X_2, X_3, X_4 are independent indeterminates. Consider $M = R \oplus R$ and $I = (\bar{X_1}\bar{X_2} + \bar{X_3}\bar{X_4})$. Then the two submodules N = $\{(x,x) \mid x \in I\}$ and $N' = I \oplus I$ are *n*-weakly prime, but they are not 2-absorbing.

Proof. Evidently (R,\mathfrak{M}) is a local ring with $\mathfrak{M}^3 = 0$, where $\mathfrak{M} = \langle \bar{X}_1, \bar{X}_2, \bar{X}_3, \bar{X}_4 \rangle$. First we prove that $\bar{X}_1 \bar{X}_2 + \bar{X}_3 \bar{X}_4$ is irreducible.

Suppose $fg = \bar{X_1}\bar{X_2} + \bar{X_3}\bar{X_4}$ (*), with f, g non unit. Note that $\mathfrak{M}^3 = 0$, then we can consider $f = a_1\bar{X_1} + a_2\bar{X_2} + a_3\bar{X_3} + a_4\bar{X_4} \in \mathfrak{M}$, and $g = b_1\bar{X_1} + b_2\bar{X_2} + a_3\bar{X_3} + a_4\bar{X_4} \in \mathfrak{M}$ $b_3\bar{X}_3 + b_4\bar{X}_4 \in \mathfrak{M}$, where $a_i, b_i \in K$. From (*) we get:

- (1) $a_1b_2 + a_2b_1 = 1$ (2) $a_1b_3 + a_3b_1 = \circ$ (3) $a_1b_4 + a_4b_1 = \circ$ (4) $a_2b_3 + a_3b_2 = \circ$ (5) $a_2b_4 + a_4b_2 = \circ$ (6) $a_3b_4 + a_4b_3 = 1$

By (2), $\circ = a_1b_4(a_1b_3 + a_3b_1)$ and by (3), $\circ = a_1b_3(a_1b_4 + a_4b_1)$ and so $a_1b_1(a_3b_4-a_4b_3) = 0$. Since the characteristic of K is 2, $-a_4b_3 = a_4b_3$ and so $a_1b_1(a_3b_4 + a_4b_3) = \circ$. Hence by (6), $a_1b_1 = \circ$. Then $a_1 = \circ$ or $b_1 = \circ$. The case $a_1 = b_1 = 0$ is impossible, by (1). If $0 = a_1$ and $0 \neq b_1$, then (2) and (3) imply that $a_3 = \circ = a_4$ and this is a contradiction by (6).

In case $0 \neq a_1$ and $0 = b_1$, then by (2), (3) we get $b_3 = 0 = b_4$, which is a again impossible, according to (6). Consequently $\bar{X}_1\bar{X}_2 + \bar{X}_3\bar{X}_4$ is irreducible.

One can easily see that (N:M) = 0, and so $(N:M)^{n-1}N = 0$. Also it is easy to see that $I \subseteq \mathfrak{M}^2$ and (N':M) = I. Then $I^2 \subseteq \mathfrak{M}^4 = 0$, and thus $(N':M)^{n-1}N' = 0$

To show that N is n-weakly prime, let $(\circ, \circ) \neq rs(a, b) \in N$, where $r, s \in R$ and $(a,b) \in M$. We can assume $0 \neq rsa \in I$. Then for some $h \in R$, $0 \neq rsa = h(\bar{X}_1\bar{X}_2 + i)$ $\bar{X}_3\bar{X}_4$). But since $I\mathfrak{M}\subseteq\mathfrak{M}^3=0,\ h\in R\setminus\mathfrak{M}$. Thus h is unit and so $rsah^{-1}=$ $\bar{X_1}\bar{X_2} + \bar{X_3}\bar{X_4}$ and it is irreducible, therefore r or sa is unit. Hence r or s is unit and so $s(a,b) \in r^{-1}N = N$ or $r(a,b) \in s^{-1}N = N$. This show that N is n-weakly prime. The same argument proves that N' is n-weakly prime.

Now if on the contrary N is a 2-absorbing submodule, then again by Proposition 1(i), (N:M)=0 must be a 2-absorbing ideal and as $0=\mathfrak{M}^3\subseteq (N:M)$, we will have $\mathfrak{M}^2 \subseteq (N:M) = 0$, which is impossible. Thus N is not a 2-absorbing submodule.

If N' is a 2-absorbing submodule, then by Proposition 1(i), (N':M) = I is a 2-absorbing ideal of R and since $0 = \mathfrak{M}^3 \subseteq I$, then $\mathfrak{M}^2 \subseteq I$. Consequently $\bar{X}_1 \bar{X}_2 \in I$ $\mathfrak{M}^2 \subseteq I$. Then for some $h' \in R$, $0 \neq \bar{X_1}\bar{X_2} = h'(\bar{X_1}\bar{X_2} + \bar{X_3}\bar{X_4})$. As $\mathfrak{M}^3 = 0$, h' is unit and since $\bar{X_1}\bar{X_2} + \bar{X_3}\bar{X_4}$ is irreducible, $\bar{X_1}$ or $\bar{X_2}$ is unit, which is impossible.

Evidently $(N:M)^{n-1}N\subseteq (N:M)^2N$, for each submodule N of M for each n > 2. We now introduce a simple criteria for an n-weakly prime submodule to be 2-absorbing.

Theorem 3. Let N be a submodule of M with $(N : M)^2 N \nsubseteq (N : M)^{n-1} N$. Then N is 2-absorbing if and only if it is n-weakly prime.

Proof. Let N be an n-weakly prime submodule. Suppose $rsx \in N$, where $r, s \in R$ and $x \in M$. If $rx, sx \notin N$ and $rs \notin (N:M)$, then we prove that $(N:M)^2N \subseteq (N:M)^{n-1}N$, which is impossible and so N is 2-absorbing.

First we show that the following facts hold:

- (i) $rsx \in (N:M)^{n-1}N$.
- (ii) $rsN \subseteq (N:M)^{n-1}N$.
- (iii) $r(N:M)x, s(N:M)x \subseteq (N:M)^{n-1}N$.
- (iv) $(N:M)^2 x \subseteq (N:M)^{n-1} N$.
- (v) $r(N:M)N, s(N:M)N \subseteq (N:M)^{n-1}N$.
- (i) Since N is n-weakly prime and $rx, sx \notin N$ and $rs \notin (N:M)$, then $rsx \in (N:M)^{n-1}N$.
- (ii) If $rsN \nsubseteq (N:M)^{n-1}N$, then for some $y \in N$ we have $rsy \notin (N:M)^{n-1}N$. So since $rsx \in (N:M)^{n-1}N$, $rs(x+y) \notin (N:M)^{n-1}N$. Hence $rs(x+y) \in N \setminus (N:M)^{n-1}N$ and then $r(x+y) \in N$ or $s(x+y) \in N$ or $rs \in (N:M)$. Thus $rx \in N$ or $sx \in N$ or $rs \in (N:M)$, which is impossible. Consequently $rsN \subseteq (N:M)^{n-1}N$.
- (iii) Let $r(N:M)x \nsubseteq (N:M)^{n-1}N$. Then there exists $t \in (N:M)$ such that $rtx \in N \setminus (N:M)^{n-1}N$. Clearly $r(s+t)x \in N$. We have $r(s+t)x \notin (N:M)^{n-1}N$, otherwise since $rsx \in (N:M)^{n-1}N$, $rtx \in (N:M)^{n-1}N$, which is a contradiction. Then $r(s+t)x \in N \setminus (N:M)^{n-1}N$ and hence $rx \in N$ or $(s+t)x \in N$ or $r(s+t) \in (N:M)$, which implies $rx \in N$ or $sx \in N$ or $rs \in (N:M)$, a contradiction to our assumption. Therefore $r(N:M)x \subseteq (N:M)^{n-1}N$. Similarly $s(N:M)x \subseteq (N:M)^{n-1}N$.
- (iv) Let $a, b \in (N : M)$. If $abx \notin (N : M)^{n-1}N$, then since $rsx \in N$, $(a+r)(b+s)x \in N$. we show that $(a+r)(b+s)x \notin (N : M)^{n-1}N$.

If $(a+r)(b+s)x \in (N:M)^{n-1}N$, then $rsx+rbx+asx+abx \in (N:M)^{n-1}N$, and so by parts (i), (iii), $rsx+rbx+asx \in (N:M)^{n-1}N$. Hence $abx \in (N:M)^{n-1}N$, which is impossible. Thus $(a+r)(b+s)x \notin (N:M)^{n-1}N$. Therefore $(a+r)(b+s)x \in N \setminus (N:M)^{n-1}N$ and so $(a+r)x \in N$ or $(b+s)x \in N$ or $(a+r)(b+s) \in (N:M)$, which implies $rx \in N$ or $sx \in N$ or $sx \in N$ or $sx \in N$, and this is a contradiction. Then $abx \in (N:M)^{n-1}N$ and so $(N:M)^2x \subseteq (N:M)^{n-1}N$.

(v) If for some $b \in (N:M)$ and $y \in N$, $rby \notin (N:M)^{n-1}N$, then $r(s+b)(x+y) \in N$. By parts (i),(ii),(iii), $rsx + rsy + rbx \in (N:M)^{n-1}N$ and since $rby \notin (N:M)^{n-1}N$, then $r(s+b)(x+y) \notin (N:M)^{n-1}N$. Hence $r(x+y) \in N$ or $(s+b)(x+y) \in N$ or $r(s+b) \in (N:M)$. Then $rx \in N$ or $sx \in N$ or $rs \in (N:M)$, which is a contradiction. Consequently $r(N:M)N \subseteq (N:M)^{n-1}N$ and similarity $s(N:M)N \subseteq (N:M)^{n-1}N$.

Now we prove the theorem. Let $a, b \in (N : M)$ and $y \in N$. If $aby \notin (N : M)^{n-1}N$, then obviously $(a+r)(b+s)(x+y) \in N$. If $(a+r)(b+s)(x+y) \in (N : M)^{n-1}N$, then by previous parts aby = (a+r)(b+s)(x+y) - (abx + asx + asy + rbx + abx + asy + rbx + abx + ab

rby + rsx + rsy) $\in (N:M)^{n-1}N$, which is impossible. Thus $(a+r)(b+s)(x+y) \notin (N:M)^{n-1}N$ and so $(a+r)(b+s)(x+y) \in N \setminus (N:M)^{n-1}N$. Hence $(a+r)(x+y) \in N$ or $(b+s)(x+y) \in N$ or $(a+r)(b+s) \in (N:M)$. Therefore $rx \in N$ or $sx \in N$ or $rs \in (N:M)$, which is impossible. Consequently $(N:M)^2N \subseteq (N:M)^{n-1}N$.

Corollary 4. Let n > 3 and M be a nonzero torsion-free Noetherian R-module. Then a submodule is 2-absorbing if and only if it is n-weakly prime.

Proof. Let N be an n-weakly prime submodule. By Theorem 3, it is enough to prove that $(N:M)^{n-1}N \neq (N:M)^2N$. On the contrary suppose that $(N:M)^{n-1}N = (N:M)^2N$. Then by Nakayama's lemma there exists $a \in (N:M)^{n-3}$ such that $(a-1)(N:M)^2N = 0$. As M is torsion-free, we have a=1, or (N:M)=0 or N=0.

If a=1, then N=M, which is impossible. Evidently N=0 is 2-absorbing. Now suppose (N:M)=0. Assume $rsx \in N$, where $r,s \in R$ and $x \in M$. If $rsx \neq 0$, then $rsx \in N \setminus (N:M)^{n-1}N$, and since N is n-weakly prime, the proof is clear in this case

In case rsx = 0, then $rs = 0 \in (N : M)$, or $x = 0 \in N$.

Proposition 2. Let $x \in M$ and $a \in R$.

- (i) If $ann_M(a) \subseteq aM$, then the submodule aM is 2-absorbing if and only if it is n-weakly prime.
- (ii) If $ann_R(x) \subseteq (Rx : M)$, then the submodule Rx is 2-absorbing if and only if Rx is n-weakly prime.

Proof. (i) Let M be an n-weakly prime submodule and $r, s \in R$ and $x \in M$ with $rsx \in aM$. If $rsx \notin (aM:M)^{n-1}aM$, then $rs \in (aM:M)$ or $rx \in aM$ or $sx \in aM$. Therefore assume $rsx \in (aM:M)^{n-1}aM$. Clearly $r(s+a)x = rsx + rax \in aM$. If $r(s+a)x \notin (aM:M)^{n-1}aM$, then $r(s+a) \in (aM:M)$ or $rx \in aM$ or $(s+a)x \in aM$. So as $a \in (aM:M)$, $rs \in (aM:M)$ or $rx \in aM$ or $sx \in aM$.

Now suppose that $r(s+a)x \in (aM:M)^{n-1}aM$. Then since $rsx \in (aM:M)^{n-1}aM$, for some $y \in (aM:M)^{n-1}M$, we have arx = ay and so a(rx-y) = 0. Hence $rx - y \in ann_M(a) \subseteq aM$ and $y \in (aM:M)^{n-1}M = (aM:M)^{n-2}(aM:M)M \subseteq aM$. Thus $rx \in aM$.

(ii) Let Rx be an n-weakly prime submodule and $r, s \in R, y \in M$ with $rsy \in Rx$. Since Rx is n-weakly prime, we may assume $rsy \in (Rx : M)^{n-1}Rx$. Evidently $rs(x+y) \in Rx$. If $rs(x+y) \notin (Rx : M)^{n-1}Rx$, then $rs \in (Rx : M)$ or $r(x+y) \in Rx$ or $s(x+y) \in Rx$. Hence $rs \in (Rx : M)$ or $ry \in Rx$ or $sy \in Rx$.

Now let $rs(x + y) \in (Rx : M)^{n-1}Rx$. Then as $rsy \in (Rx : M)^{n-1}Rx$, $rsx \in (Rx : M)^{n-1}Rx$ and so rsx = tx, for some $t \in (Rx : M)^{n-1} \subseteq (Rx : M)$. Hence $rs - t \in ann(x) \subseteq (Rx : M)$ and thus $rs \in (Rx : M)$.

Example 3. Let R be a unique factorization domain, p an irreducible element of R, and $M = R \oplus R$.

- (a) The submodule $N = p^2 M$ is 2-absorbing.
- (b) The submodule $N = p^3 M$ is neither 2-absorbing, nor 2-weakly prime.
- *Proof.* (a) Consider $ab(c,d) \in N$, where $a,b,c,d \in R$. Then a straightforward calculation shows that $a(c,d) \in N$ or $b(c,d) \in N$ or $p^2 \mid ab$.
- (b) If N is 2-absorbing, then by Proposition $\mathbf{1}(i)$, (N:M) is 2-absorbing and evidently $p^3 \in (N:M)$, therefore $p^2 \in (N:M)$. Then $p^2(1,0) \in N = p^3M$. Hence there exists $t \in R$ with $p^2 = p^3t$. Then pt = 1, which is impossible. Therefore N is not 2-absorbing and by Proposition $\mathbf{2}(i)$, N is not 2-weakly prime.

Recall that the set of zero divisors of M, denoted by Z(M) is defined by $Z(M) = \{r \in R | \exists 0 \neq x \in M, rx = 0\}.$

The following result studies the behavior of *n*-weakly prime submodules under localization. Its proof is not difficult and we leave it to the reader.

Proposition 3. Let S be a multiplicatively closed subset of R.

- (i) If N is an n-weakly prime submodule of M with $S^{-1}N \neq S^{-1}M$, then $S^{-1}N$ is an n-weakly prime submodule of $S^{-1}M$.
- (ii) Let N be an n-weakly prime submodule of M with $Z(\frac{M}{N}) \cap S = \emptyset$. Then $S^{-1}N$ is an n-weakly prime submodule of $S^{-1}M$ and $(S^{-1}N)^c = N$. Moreover $S^{-1}(N:M) = (S^{-1}N:S^{-1}M)$.

We can introduce the concept of n-weak prime as follows:

A proper submodule N of M will be called n-weakly prime, if for $r, s \in R$ and $x \in M$, $rsx \in N \setminus (N : M)^{n-1}N$ implies that $rx \in N$ or $sx \in N$.

Then similar to the proof of Theorem 3, Corollary 4 and Proposition 2 we can prove the following results:

- (1) Let N be a submodule of M with $(N:M)^2N \nsubseteq (N:M)^{n-1}N$. Then N is weakly prime if and only if it is n-weak prime.
- (2) Let n > 3 and M be a nonzero torsion-free Noetherian R-module. Then a submodule is weakly prime if and only if it is n-weak prime.
- (3) Let $a \in R$ with $ann_M(a) \subseteq aM$. Then aM is a weakly prime if and only if it is n-weak prime.

REFERENCES

- [1] D. D. Anderson and M. Bataineh, "Generalizations of prime ideals," *Commun. Algebra*, vol. 36, no. 2, pp. 686–696, 2008.
- [2] A. Azizi, "Intersection of prime submodules and dimension of modules," *Acta Math. Sci., Ser. B, Engl. Ed.*, vol. 25, no. 3, pp. 385–394, 2005.
- [3] A. Azizi, "Weakly prime submodules and prime submodules," *Glasg. Math. J.*, vol. 48, no. 2, pp. 343–346, 2006.
- [4] A. Azizi, "On prime and weakly prime submodules," *Vietnam J. Math.*, vol. 36, no. 3, pp. 315–325, 2008
- [5] A. Azizi and H. Sharif, "On prime submodules," Honam Math. J., vol. 21, no. 1, pp. 1–12, 1999.

- [6] A. Badawi, "On 2-absorbing ideals of commutative rings," *Bull. Aust. Math. Soc.*, vol. 75, no. 3, pp. 417–429, 2007.
- [7] M. Behboodi and H. Koohy, "Weakly prime modules," *Vietnam J. Math.*, vol. 32, no. 2, pp. 185–195, 2004.
- [8] S. M. Bhatwadekar and P. K. Sharma, "Unique factorization and birth of almost primes," *Commun. Algebra*, vol. 33, no. 1, pp. 43–49, 2005.
- [9] C.-P. Lu, "Spectra of modules," Commun. Algebra, vol. 23, no. 10, pp. 3741–3752, 1995.
- [10] S. Moradi and A. Azizi, "Generalizations of prime submodules," vol. preprint.

Authors' addresses

S. Moradi

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran

A. Azizi

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran *E-mail address:* aazizi@shirazu.ac.ir, a_azizi@yahoo.com