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Abstract. Let G = (V, E) be a connected graph with at least three vertices. For vertices u and
v in G, the distance d(u,v) is the length of a shortest ¥ — v path in G. A u — v path of length
d(u,v) is called a u — v geodesic. For subsets A and B of V, the distance d(A4, B), is defined
asd(A,B) =min {d(x,y):x € A,y € B}. A u—v path of length d(4, B) is called an A — B
geodesic joining the sets A, B C V, where u € A and v € B. A vertex x is said to lie onan A— B
geodesic if x is a vertex of an A — B geodesic. A set S C E is called an edge-to-vertex geodetic
set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair
of edges of S. The edge-to-vertex geodetic number gy (G) of G is the minimum cardinality of
its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality gey(G) is an
edge-to-vertex geodetic basis of G. Any edge-to-vertex geodetic basis is also called a gey-set of
G. It is shown that if G is a connected graph of size ¢ and diameter d, then gey(G) <g—d +2.
It is proved that, for a tree T with ¢ > 2, g¢y(T) = g —d + 2 if and only if T is a caterpillar.
For positive integers r,d and [ > 2 with r < d < 2r, there exists a connected graph G with rad
G =r,diam G =d and g¢y(G) = [. Also graphs G for which gey(G) =¢,q—1 or g —2 are
characterized.
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1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and ¢, respectively.
We consider connected graphs with at least three vertices. For basic definitions and
terminologies we refer to [1, 6]. For vertices u and v in a connected graph G, the
distance d(u,v) is the length of a shortest u — v path in G. An u — v path of length
d(u,v) is called an u —v geodesic. A vertex v is said to lie on an x — y geodesic P
if v is a vertex of P including the vertices x and y. A vertex v is an internal vertex
of an x — y path P if v is a vertex of P and v # x,y. An edge e of G is an internal
edge of an x — y path P if e is an edge of P with both its ends internal vertices of
P. An edge e is a pendant edge if one of its ends is of degree 1. For a vertex v of
G, the eccentricity e(v) is the distance between v and a vertex farthest from v.
The minimum eccentricity among the vertices of G is the radius, rad G and the
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maximum eccentricity is its diameter, diam G of G. A double star is a tree of
diameter 3. The neighborhood of a vertex v is the set N(v) consisting of all vertices
u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph
induced by its neighbors is complete.

The closed interval I[x, y] consists of all vertices lying on some x — y geodesic
of G, whilefor S CV, I[S]= |J I[x,y]. AsetS of vertices is a geodetic set if

x,y€S

1[S] =V, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic number of
a graph was introduced in [7] and further studied in [2],[3] and [4]. It was shown
in [7] that determining the geodetic number of a graph is an NP-hard problem. The
forcing geodetic number of graph was introduced and studied in [5]. The connected
geodetic number of graph was studied in [ 1]. The upper connected geodetic number
and forcing connected geodetic number of a graph were studied in [12].

The edge geodetic number of a graph was studied by in [9]. An edge geodetic
set of a connected graph G with at least two vertices is a set S € V such that every
edge of G is contained in a geodesic joining some pair of vertices in S. The edge
geodetic number g1(G) of G is the minimum order of its edge geodetic sets and
any edge geodetic set of order g1(G) is an edge geodetic basis of G.

Consider the graph G given in Figure 1. The sets S = {v3,vs5}and S1 = {v1,v2,v4}
are minimum geodetic set and minimum edge geodetic set of G respectively so that
g(G) =2 and g1(G) = 3. These concepts have many applications in location the-
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FIGURE 1.

ory and convexity theory. There are interesting applications of these concepts to the
problem of designing the route for a shuttle and communication network design. We
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further extend these concepts to the edge set of G and present several interesting
results in [10].

Throughout the following G denotes a connected graph with at least three vertices.

For subsets A and B of V, the distance d(A, B) is defined as d(A,B) = min
{d(x,y):x € A,y € B}. Au—v path of length d(A, B) is called an A — B geodesic
joining the sets A, B, where u € A and v € B. A vertex x is said to lie on an A — B
geodesic if x is a vertex of an A — B geodesic. For A = {u,v} and B = {z,w} with
uv and zw edges, we write an A — B geodesic as uv — zw geodesic and d(A4, B) as
d(uv,zw).

For the graph G given in Figure 2 with A = {v4, vs5} and B = {v1, v2, v7}, the paths
P :vs5,v6,v7 and Q : v4,v3, v3 are the only two A — B geodesics so that d(A4, B) = 2.
A set S C E is called an edge-to-vertex geodetic set if every vertex of G is either
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FIGURE 2.

incident with an edge of S or lies on a geodesic joining a pair of edges of S. The
edge-to-vertex geodetic number g¢,(G) of G is the minimum cardinality of its edge-
to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality g.y(G) is
an edge-to-vertex geodetic basis of G.

For the graph G given in Figure 3, the three v{vg — v3v4 geodesics are P : vy, v2,V3;
0 :v1,v2,v4; and R : vg,vs5,v4 with each of length 2 so that d(vyve,v3vg) = 2.
Since the vertices v, and vs lie on the v{ve — v3v4 geodesics P and R respectively,
S = {v1ve,v3v4} is an edge-to-vertex geodetic basis of G so that g.,(G) = 2. For
the graph G given in Figure 2, S1 = {v1v2,v1v7,v405} and S = {v1v3,v4V5,V6V7}
are two gey-sets of G. Thus there can be more than one gy, -set of G.
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For a connected graph G of size g > 2, it is clear that 2 < g, (G) < ¢. Further,
these bounds for g, (G) are sharp. For the star G = K 4(g > 2), it is clear that the
set of all edges is the unique edge-to-vertex geodetic set so that g.,(G) = ¢. The set
of two end-edges of a path P of length at least 2 is its unique edge-to-vertex geodetic
basis so that g (P) = 2. Thus the star K1 4 has the largest possible edge-to-vertex
geodetic number ¢ and the paths of length at least 2 have the smallest edge-to-vertex
geodetic number 2.

An edge of a connected graph G is called an extreme edge of G if one of its ends
is an extreme vertex of G. An edge e of a connected graph G is an edge-to-vertex
geodetic edge in G if e belongs to every edge-to-vertex geodetic basis of G. If G has
a unique edge-to-vertex geodetic basis S, then every edge in S is an edge-to-vertex
geodetic edge of G.

For the graph G given in Figure 4, S = {ux,zv} is the unique edge-to-vertex
geodetic basis so that both the edges in S are edge-to-vertex geodetic edges of G. For
the graph G given in Figure 5, S1 = {v1v2, v6V7, 0708}, S2 = {v1V2, V5v6, V7Vg} and
S3 = {v1v2,V5V8,v6V7} are the only gey-sets of G so that every gey-set contains the
edge viv,. Hence the edge vy v, is the unique edge-to-vertex geodetic edge of G.
The following theorems from [10] are used in the sequel.

Theorem 1. If v is an extreme vertex of a connected graph G, then every edge-to-
vertex geodetic set contains at least one extreme edge that is incident with v.

Theorem 2. Every pendant edge of a connected graph G belongs to every edge-
to-vertex geodetic set of G.

Theorem 3. For a non-trivial tree T with k end-vertices, g¢,(T) = k and the set
of all pendant edges of T is the unique edge-to-vertex geodetic basis of T.

Theorem 4. For the complete graph K,(p > 4) with p even, ge¢y(Kp) = p/2.

2 if p is even

Theorem 5. For the cycle Cp(p > 4), gev(Cp) = 3 if p is odd
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2. THE EDGE-TO-VERTEX GEODETIC NUMBER AND DIAMETER OF A GRAPH

If G is a connected graph of size ¢ > 2, then 2 < g.,(G) < g. An improved upper
bound for the edge-to-vertex geodetic number of a graph can be given in terms of its
size g and diameter d.

Theorem 6. For a connected graph G with q > 2, gey(G) <g—d +2, where d
is the diameter of G.

Proof. Let u and v be vertices of G for which d(u,v) = d, where d is the diameter
of G and let P : u = vg,v1,v2,...,7 = v be a u —v path of length d. Let e¢; =
vi—1v;i (1 <i <d).Let S = E(G)—{v1v3,v3V3,...,07_2Vg_1}. Let x be a vertex of
G.If x =v;(1 <i <d—1), then x lies on the ¢; — ey geodesic Py : v1,v2,...,Vq7_1.
If x #v;(1 <i <d—1), then x is incident with an edge of S. Therefore, S is an
edge-to-vertex geodetic set of G. Consequently, gey (G) < |S|=¢g—d +2. O

Remark 1. The bound in Theorem 6 is sharp. For the star G = K 4(¢ > 2),d =2
and g¢y(G) = g, by Theorem 3 so that g, (G) =g —d +2.

We give below a characterization theorem for trees.
A caterpillar is a tree for which the removal of all end-vertices leaves a path.
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Theorem 7. Let g > 2. For any tree T with diameter d, gey(T) =q—d +2 if
and only if T is a caterpillar.

Proof. Let P :vp,v1,...,v4_1,V4 be a diametral path of length d. Let ¢; =
v;—1v; (1 <i < d) be the edges of the diametral path P. Let k be the number of
pendant edges of 7' and / be the number of internal edges of T other than ¢;(2 <
i <d—1). Thend —2+1!+k = q. By Theorem 3, g¢(T) = k and 5o gey(T) =
q—d+2—1.Hence g¢y(T) = g—d +2if and only if / = 0, if and only if all internal
vertices of T lie on the diametral path P, if and only if T is a caterpillar. O

The following theorem gives a realization result.

Theorem 8. For each triple d k,q of integers with2 <k <q—d +2,d > 4 and
qg—d+k+1>0, there exists a connected graph G of size q with diam G = d and
gev (G) == k.

Proof. Let 2 <k =q—d +2. Let G be the graph obtained from the path P of
length d by adding g —d new vertices to P and joining them to a cut-vertex of P.
Then G is a tree of size ¢ and diam G = d. By Theorem 3, g¢, (G) =g —d +2 =k.
Now, let2 <k <g—d +2.

Casel.g—d—k+1liseven. Let(¢q—d —k+1)>2.Letn = %. Then
n>1.Let Py :up,u1,...,uy beapath of length d. Add new vertices vy, va,...,Vk_2
and wi,ws,...,w, and join each v;(1 <i < k —2) with u; and also join each
w;i (1 <i <n)withu; and u3 in P;. Now, join w; with u, and we obtain the graph G
in Figure 6. Then G has size ¢ and diameter d. By Theorem 2, all the pendant edges
uvi(l <i <k-—2), upu; and uy_1uy lie in every edge-to-vertex geodetic set of
G.Let S = {ujvy,uqva,...,U1V_o,U1Ug, Ug_1U4} be the set of all pendant edges
of G. Then it is clear that S is an edge-to-vertex geodetic set of G and so g (G) = k.

Case2.g—d—k+1lisodd. Letq—d —k+1>5.Letm = q_g_k.Thenm >2.
Let P :ug,uyq,...,ug be a path of length d. Add new vertices vy, v3,...,V;_o and
w1, W2, ..., Wy and join each v; (1 <i < k —2) with u; and also join each w; (1 <
i < m) with u; and u3 in P;. Now join w; and wj with u, and we obtain the
graph G in Figure 7. Then G has size ¢ and diameter d. Now, as in Case 1, S =

{uqv1,u1v2,..., U1V _o,UoUL, Ug_1Ug} iS an edge-to-vertex geodetic set of G so
that goy(G) = k. Letgq—d—k+1=1.Let P; : ug,uq,...,ug be a path of
length d. Add new vertices v1,v2,...,V;_» and wq and join each v; (1 <i <k —2)

with ¥ and also join w; with u; and u3 in Py, there by obtaining the graph G
in Figure 8. Then the graph is of size ¢ and diameter d. Now, as in Case 1, S =
{urv1,u1v2,..., U1V _o,UoU L, Ug_1Ug} iS an edge-to-vertex geodetic set of G so
that g0, (G) = k.

Now, letq—d —k+1=3.Let P; :ug,uy,...,uy be apath of length d. Add new
vertices v1,V2,03,...,Vk_2,w; and wy and join each v; (1 <i <k —2) with u; and
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also join w; and w, with ¥ and u3 and obtain the graph G in Figure 9. Then G
has size g and diameter d. Now, as in Case 1, S = {u1v{,u1v2,..., U Vf_p, UgU1,
Ug_1Ug} is an edge-to-vertex geodetic set of G so that g.,(G) = k. a

For every connected graph, rad G < diam G <2 rad G. Ostrand [8] showed
that every two positive integers a and b with a < b < 2a are realizable as the radius
and diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended so that the edge-to-vertex geodetic number can also be prescribed.
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Theorem 9. For positive integers r, d and | > 2 with r < d < 2r, there exists a
connected graph G withrad G = r, diam G = d and g.,(G) = [.

Proof. When r =1, we let G = Ky; or G = K, ; according to whether d =
1 or d = 2 respectively. Then the result follows from Theorem 4 and Theorem 3
respectively. Let r > 2. If r =d and [ = 2, let G = Cy;. Then by Theorem 5,
gev(G)=2=1.Letl >3.Let Coy : uy,uz,...,uz,,u; be the cycle of order 2r. Let
G be the graph obtained by adding the new vertices x1,X2,...,Xx;—1 and joining each
xi(1 <i <I—1) with u; and u, of Ca,. The graph G is shown in Figure 10. Tt is
easily verified that the eccentricity of each vertex of G is r so that rad G = diam
G=r.LetS ={uix1,u1x2,...,u1X7_»,usx;_1}. It is clear that S is not an edge-
to-vertex geodetic set of G. However, S U {u,1ur+2} is an edge-to-vertex geodetic
set of G. Since x1,x3,...,x;_1 are the only extreme vertices of G, it follows from
Theorem 1 that g.,(G) = [.

Letr < d.If [ =2, then take G to be any path on at least three vertices. Let [ > 3.
Let Cyr : v1,02,...,02;,v;1 be a cycle of order 2r and let Py_,4q : uo,u1,uz,...,
ug—, be a path of order d —r + 1. Let H be the graph obtained from C5, and ug in
P;j_, 41 by identifying vy in Ca, and ug in Py_, 4 1. Now, add (/ —3) new vertices
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wi,Ws,...,w;_3 to H and join each vertex w; (1 <i <[ —3) to the vertex ugz_,_1
and obtain the graph G of Figure 11. Then rad G = r and diam G =d. Let § =
{Ug_r W1, UGy W2, ..., Ug_r_1W]_3,Ug_r_1U4—y} De the set of pendant edges
of G. By Theorem 2, § is contained in every edge-to-vertex geodetic set of G. It is
clear that S is not an edge-to-vertex geodetic set of G. It is also seen that S U {e},
where e € E(G)— S is not an edge-to-vertex geodetic set of G. However, the set S =
S U{VrVr41,Vr4+1Vr+2} is an edge-to-vertex geodetic set of G so that g.,(G) =
[=242=1. O

Vel &L 1 Lig Hg-p-1 gy

e W) Ve

&

FIGURE 11.

3. GRAPHS G WITH gey(G) =¢q¢,g—1 AND g —2

In the following we characterize graphs G for which g.,(G) =¢,g—1 or g —2.
Let G be a graph. A subset M C E(G) is called a matching of G if no pair of edges
in M are incident. The maximum size of such M is called the matching number of
G and is denoted by «’(G). An edge covering of G is subset K C E(G) such that
each vertex of G is an end of some edge in K. The number of edges in a minimum
edge covering of G, denoted by B'(G), is the edge covering number of G. The well-
known Gallai’s theorem states that if ¢ > 1, then «’(G) + B/(G) = p. Since every



116 A.P. SANTHAKUMARAN AND J. JOHN

edge covering for G is an edge-to-vertex geodetic set, we have the following.
Lemma A. For any graph G, g.,(G) < B'(G) = p—d/(G).

We will make use of this lemma in the sequel. The proofs of the next two theorems
are straightforward.

Theorem 10. If G is a connected graph such that it is not a star, then ge,(G) <
q—1.
Theorem 11. For any connected graph G, ge(G) = q if and only if G is a star.

Theorem 12. Let G be a connected graph which is not a tree. Then gy, (G) <gqg—2
(g=4).

Proof. Since G # C3 and it has atleast one cycle, &’(G) > 2. Thus, by Lemma A,
gev(G) = p—0a'(G) =q—ar(G) =q—2. O

Theorem 13. For any connected graph G with q > 3, gev(G) = g — 1 if and only
if G is either C3 or a double star.

Proof. It G is C3, then g.,(G) =2 = g — 1. If G is a double star, then by Theorem
3, gev(G) = g —1. Conversely, let g0, (G) = g — 1. If G is a tree, then from Lemma
A it follows that &’ (G) < 2. If &’(G) = 1, then G is a star, which is impossible due
to Theorem 11. So &’(G) = 2, which implies that G is a double star. If G is not a
tree, then g.y(G) =q¢—1> p—1. Again by Lemma A, «/(G) = 1, which is the case
only when G = C3. Thus the proof is complete. O

Theorem 14. Let G be a connected graph with q > 4, which is not a cycle and not
a tree and let C(G) be the length of a smallest cycle. Then gey(G) <g—C(G)+ 1
if C(G)is odd, and g¢y(G) <q—C(G)+2if C(G) is even.

Proof. Let C(G) denote the length of a smallest cycle in G and let C be a cycle
of length C(G). We consider two cases.

Case 1. C(G) is odd. First suppose that C(G) = 3. Let C : vy, vs,v3,v1 be acycle
of length 3. Since G is not a cycle, there exists a vertex v in G such that v is not on
C and v is adjacent to vy, say. Let S = E(G)—{v1v2,v1v3}. Then every vertex of
G lies on an edge of S and so S is an edge-to-vertex geodetic set of G set of G. Thus
gev(G) <q—2=q—-C(G)+1.

Next suppose that C(G) > 5. Let C : v1,V2,..., Uk, V41, Vk+2,--->V2k+1,V1 be
a cycle of least length C(G) = 2k + 1. Since G is not a cycle, there exists a ver-
tex v in G such that v is not on C and v is adjacent to vy, say. We claim that
d(vv1,Vg+1Vk+2) = k. Since P : v1,v2,V3,..., V4 is a path of length k on C, it
follows that d(vvy, Vg 4+1Vk+2) < k. If d(Vv1, Vg 4+1Vk42) < k —1, then at least one



ON THE EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH 117

of d(vy,v;) and d(v,v;) fori =k 4+ 1,k + 2 is less than or equal to k — 1. First sup-
pose that d(vy,vg+1) <k —1.Let Q be a v; —vgy shortest path of length at most
k — 1 different from P. Hence there exists at least one vertex of Q that is not on P
and since the length of Q is at most k — 1, it follows that a cycle of length at most
2k — 1 is formed. This is a contradiction to C(G) = 2k + 1. Thus d(vy,vg4+1) = k.
Similarly we can prove that d (v, vg+2) = k.

Next, suppose that d(v,vg41) <k — 1. Since P": v,v1,v2,V3,..., V41 is a path
of length k + 1, it follows that d(v,vg+1) < k + 1. Then, as above, a cycle of length
at most 2k is formed and this is a contradiction. Hence d (v, vg41) =k or k + 1. Sim-
ilarly we can prove that d (v, vg4,) =k ork + 1. Since d (v1,vg41) =d(v1,Vg4+2) =
k, it follows that d (Vv1, Vg1 Vk42) = k.

Now, let S = (E(G)— E(C)) | J{vk+1Vr+2}- Itis clear that the vertices vy, v3, ...,
Uk Vk+35 Vk+4,- - - U2k +1 on the cycle C lie on the vv; —vg 41 Vg 42 geodesic on the
cycle and all the other vertices of G are incident with an edge of S. Thus S is an edge-
to-vertex geodetic set of G and s0 gey (G) <g—C(G) + 1.

Case 2. C(G) is even. First suppose that C(G) = 4. Let C : vq,v2,v3,v4,V1 be
a cycle of length 4. Since G is not a cycle, there exists a vertex v in G such that v
is not on C and v is adjacent to vy, say. Let S = E(G) — {v1va,v1v4}. Then every
vertex of G lies on an edge of S and so S is an edge-to-vertex geodetic set of G. Thus
gev(G) <q—2=q—-C(G)+2.

Next suppose that C(G) > 6. Let C : vy,v2,....Vf, V41, Vk+2,---,V2k, V1 bE A
cycle of least length C(G) = 2k. Since G is not a cycle, there exists a vertex v in G
such that v is not on C and v is adjacent to vy, say. We claim that d(vvq, Vg Vg 41) =
d(vv1,vg41Vk42) =k —1. Since Q : v1,v2,03,...,0% and Q' : V1, Vak, Vog—1,---,
Vk+3,Vk42 are paths of length k — 1 on C, it follows that
d(v1, Vg Vk41) = d(WV1,Vgg1Vi42) < k — 1 If d(vvr,vgvgeqq) < k—2 or
d(Vv1, Vg +1Vk+2) < k — 2, then proceeding as in Case 1, a cycle of length at most
2k —3 or 2k —2 or 2k — 1 is formed as the case may be, contradicting that the least
length of a cycle is 2k. Thus d(vvy, Vg vk +1) = d(VV1, Vg1 Vk+2) =k —1.

Now, if we let S = (E(G) — E(C)) | J{vkVk+1,Vk+1Vk+2}, then the vertices
V2,V3,...,Vk—1 lie on the vv; —vg Vg4 geodesic on C, the vertices Vg 43, Vg 44, - - - »
Upg lie on the vvy — Vg1 Vg+2 geodesic on C and all the other vertices of G are
incident with an edge of S. Thus S is an edge-to-vertex geodetic set of G and so
8ev(G) =q—C(G)+2. u

Theorem 15. If G is a connected graph of size q > 4 and not a tree such that
gev(G) = q—2, then G is unicyclic.

Proof. Let G have more than one cycle. Theng > p+1landso p—1<¢g—2=
gev(G) < p—a/(G), by Lemma A. Hence o/(G) = 1 and so G must be either a star
or the cycle C3, a contradiction. 0
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Denote by J the two classes of graphs given in Figure 12.

(b)

FIGURE 12.

Theorem 16. For a connected graph G, g.x(G) =q—2 (¢ > 4) if and only if G
is C4 or Cs or K1,4—1+ e or caterpillar with d = 4 or the class of graphs given in
family 3 of Figure 12.

Proof. For G = C4 or Cs, the result follows from Theorem 5. For a caterpillar of
diameter 4, the result follows from Theorem 3. For G = K 4—1 + e, it follows from
Theorem 1 that the set of all end edges of G together with e forms an edge-to-vertex
geodetic basis so that g., (G) = g —2. Further, it is easily verified that g, (G) =g —2
for the graphs given in family ¥ of Figure 12.

Now, let G be a connected graph such that g.,(G) = g —2. By Theorem 15, G is
either a tree or unicyclic. If G is a tree, then from Lemma A it follows that &’ (G) < 3.
By Theorems 12 and 13, @’ > 2. So &’ = 3, which implies that G is a Caterpillar of
diameter 4. If G is unicyclic, by Lemma A, «’(G) < 2. Let Ci be the unique cycle
of G. We have k < 5 since otherwise o/(G) > o/(Cy) > 3. Therefore, we have the
following three cases:

Case 1. kK = 5. Then G cannot have any other vertices since otherwise o’(G) > 3.
Therefore G = Cs.

Case 2. k = 4. If G = C4, we are done. So, let G # C4. Because o/(G) < 2, only
one of the vertices of Cy, say v, is of degree more than 2 and moreover all the neigh-
bors of v are of degree 1. Thus G should be a graph like Figure 12(b).

Case 3. k = 3. Since goy(C3) =2 =¢g—1, we have G # C3. Let V(C3) =
{v1,v2,v3}. We note that if u € V(G) — V(C3), then deg u = 1. Otherwise, there
are u,uy € V(G)— V(C3) such that u; is adjacent to both u, and vy, say. Then it
is easily seen that E(G) —{u1v1,v1v2,v103} is a edge-to-vertex geodetic set, which
implies g¢y(G) < g — 3. Further, at least one of the v;s should be of degree 2. Oth-
erwise, E(G)— E(C3) is a edge-to-vertex geodetic set, which is impossible. Thus G
should be either K 4 + e or a graph like Figure 12(a). g
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