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1. INTRODUCTION

Let M be an abelian additive group whose elements are denoted by a,b,c,--- and
let I another abelian additive group whose elements are y, 8,«,---. Suppose that
ayb is defined to be an element of M and that yap is defined to be an element of I”
for every a, b,y and . If the products satisfy the following three conditions:

(1) (a+b)yc =ayc+byc,ala+ p)b =aab+apb,ay(b+c)=ayb+ayc,

(i) (ayb)Bc = a(ybB)c = ay (bfc),

(iii) aab = 0 for all a,b € M implies & = 0,
then M is called a I'—ring in the sense of Nabusawa [7].

Barnes approached I"-ring in a different way compared to that of Nobusawa and
he defined the concept of I'-rings.

Let M and I'" be additive abelian groups. If there exits a mapping of M x I" x M
to M (the image of (a,y,b) a,b € M, y € I' is denoted by (ayb)) satisfying for all
a,bceM,a,Bel:

(1) (a+b)yc =ayc+byc,a(a+ p)b =aab+afb,ay(b+c)=ayb+ayc,

(i) (ayb)Bc = ay (bpc).
then M is called a I'—ring in the sense of Barnes [2].

Throughout the present paper, the symbol (I', M) 5, that stands for M is the I"—ring
in the sense of Nabusawa, and the symbol (I, M) p that stands for M is the I"—ring
in the sense of Barnes. In [5], we have shown that for all (I, M) p there exists I'" as
an additive group such that (I"’, M) ;. Therefore, if I"—ring in the sense of Barnes,
then I'’—ring in the sense of Nabusawa.

Let M be a I'—ring in the sense of Nabusawa. A right (resp. left) ideal of M is an
additive subgroup of U suchthat UI'M C U (resp. MI'U C U). If U is both a right
and left ideal of M, then we say that U is an ideal of M. An ideal P of a I'—ring
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M is said to be prime if for any ideals A and B of M, AI'B C P implies A C P or
B € P. Anideal P of a I'-ring M is said to be semiprime if for any ideal U of M,
UI'U € P implies U € P. A I'-ring M is said to be semiprime if the zero ideal is
semiprime. This definition is given as ”A I"-ring M is said to be prime if aI’'b = 0
with a,b € M, implies a = 0 or » = 0 and semiprime a"a = 0 with a € M, implies
a = 0”1in [4, Theorem 2.2.23].

Let (I'1, M) and (I3, M>) be two gamma rings, ¢ : [} — [ and 6 : M7 — M
be two functions. Then an ordered pair (¢, #) of mappings is called a homomorphism
of (I't, My) into (I>, M>) if it satisfies the following properties:

(1) 8 : M1 — M, is group homomorphism,

(i) ¢ : I'1 — I is group homomorphism,

(iil) 0 (xay) =0 (x)p ()0 (y),forall x,ye M,a € I',

iv) p(axB)=¢(@)0 (x)p(B),forallx e M, a,B € I.

A homomorphism (¢, ) of a gamma ring (I}, M) into a gamma ring (I3, M3) is
called a monomorphism if ¢ and 6 are one-one.

Let M be a I'-ring. A commutative additive group N is called a right gamma M -
module ( or right I"M -module) if for all n,n1,n, € N,m,my,mp € M ando,B € T,

(i) nam € N,

(i) (ny +nz)am = njam +npam,

(iii) n (e + B)m = nam +nPfm,

(iv) na (my +my) = namy +noms.

Let N; and N, be two right gamma M -modules. Then 6 is called a right gamma
M -module homomorphism ( or right I" M -module homomorphism) of Ny into N5 if
it satisfies the following properties:

(1) 8 : N — N, is group homomorphism,

(11)0 (xam) = 0 (x)am, forallx e Ny,me M,ax e I'.

A great deal work has been done on I"-ring in the sense of Barnes and Nabusawa,
the results can be compared to those of in the ring theory since 1964. On the other
hand, it will be seen that rings of quotients play crucial role in the study of generalized
identities in prime and semiprime rings. The study of two-sided rings of quotients
was initiated by W. S. Martindale [6] for prime rings and extented for semiprime rings
by S. A. Amitsur in [1]. The concept of centroid of a prime I"-ring was defined and
researched in [9], [8], [10] and [11]. In [4], it was defined the rings of quotients of a
prime I"-ring and researched the some properties of it. In this paper, we investigate
the rings of quotients of a semiprime I -ring. It was first constructed by [12] for
rings. We extend these results for semiprime I"-rings.

Throughout the present paper, M will a I"'-ring in the sense of Nabusawa and the
symbol (I, M) stands for the (I, M) .
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2. RESULTS

Definition 1. Let M be a I"-ring. If there exists e € M and § € I" such that for
all x € M eéx = x, then (6, e) is said to be strong left identity element of (I, M).
Similarly, if there exists e € M and § € I" such that for all x € M x§e = x, then
(8, e) is said to be strong right identity element of (I, M). If (8, ) is both a right and
left strong identity element of (I, M), then we say that (3,e) is an strong identity
element of (I, M).

Definition 2. Let M be a I'-ring. A right ideal J of M is said to be dense if
given any 0 # m; € M, my € M there existsm € M, y € I" such that m;ym # 0 and
maym € J. One defines a dense left ideal in an analogous fashion. The collection of
all dense right ideal of M will be denoted by D(I", M).

Let M be a I"-ring. For a subset S of M,
rr(S)={ceM|Syc=(0),Vyel}
is called the right annihilator of S. A left annihilator /- (S) can be defined similarly.
Let N be a I'M — module. For any submodule J of N and any subset S € N we
Set S:)p={ceM|SyccJ,Vyel}.
In particular, for any a € M
(@:J)p={ceMlayceJ,Vyel}.

Theorem 1. Let M be a semiprime I'-ring, U,V € D(I"M) and f : U — M be
a right I' M —module homomorphism. Then

i) fTY(V)y={ceU|f(c)eV}ie DI M).

ii)la:U)r e DUI',M) foralla € M.

i) unv eD(,M).

iv) If W is a right ideal of M and U C W, then W € D(I',M).

v)IrU)=(©0)=rrU).

vi) If W is a right ideal of M and (a : W) € D(I',M) for all a € M, then W €
D(I''M).

vi)UI'V e D(I',M).

Proof. i) Clearly, f~1 (V) is a right ideal of M. Let m; # 0, m> € M. By the
dense right ideal U of M, we get m1y'm’ # 0 and mpy'm’ € U for some m’ € M,
y' € I'. Since f (may'm’) € M and V € D(I', M), we see that there exists m” € M,
y” € I' such that (m1y’m’)y"m"” # 0 and f (mpyy'm’)y”"m” € V. Using f is right
I"'M —module homomorphism, we have

f (mz)//m,) )///m” — f ((mz,y/m/) ,y//m//) — f (mzy/ (m/y//m//)) .
Setting m = m’y”m"”, we conclude that myy’m # 0 and f (myy’m) € V. That is,
miy'm # 0 and may’'m € f~1(V) for some m € M, y' € I'. Thus, f~1(V) €
D(I, M).
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ii) Consider the map Aqy : M — M, Agy (m) = aym, Ym € M,Vy € I'. One
easily checks that A,y is right I"M —module homomorphism. We have

Agy (U)={ceM|lay(c)eU, forally eI}
={ceMlayceU, forally e '}
=(@:U)r

According to (i), we find that (a : U)p € D(I, M).
iii) If 7 is the inclusion map U — M, then

itwvy=unv.

Now apply (i), we conclude that U NV € D(I, M).

iv) Let W be aright ideal of M, U € W and m # 0, mp € M. Since U is a dense
right ideal of M, we obtain that mym # 0 and mpym € U forsomem e M,y € I'.
Using U € W, we get myym % 0 and mpaym € W. Thatis W € D(I',M).

v) We assume that Uyc = (0) for some 0 % ¢ € M, for all y € I'. Setting m =
¢ = my, we arrive that there exists o« € I, m € M such that 0 % cam € U. Hence

(cam)y (cam) € (Uyc)am = (0) forall y € I,

and so
(cam) I" (cam) = (0).

By the semiprimeness of (I, M), we have cam = 0. It contradicts cam # 0. Hence
rr (U) =(0).

Next we suppose [ (U) # (0). We see that there exists 0 % ¢ € M such that
cyU = (0) for all y € I'. On the other hand, cam # 0 for some o« € I, m € M.
Indeed, if cam =0 for all « € I', m € M, then ¢I"c = (0), and so ¢ = 0 by the
semiprimeness of (I, M'). But we know that ¢ 7 0.

Setting m; = cam # 0, my = m, we have (cam)y’m’ # 0 and my’'m’ € U for
some m’' € M, y’' € I'. But

(cam)y'm’ = ca(my'm') € cI'U = (0)

and a contradiction is reached. So we must have /- (U) = (0).

vi) Let my # 0, mp € M. Using U € D(I', M), we see that there exists m’ €
M, y’ € I' such that myy’'m’ # 0 and myy’m’ € U. By the hypothesis, we have
(may'm’ :W)p € D(I'M). By (v), we get I ((mpy’m’: W)p) = (0). Hence
myy'm’ #0, weobtainmyy'm’ ¢ lp (may'm’ : W) ). Thatis (myy’'m’) y"m” #0
for some m” € (mpy’'m’ : W), y” € I'. Therefore,

(ml)//m/) )///m// — mly/ (m/,y//m//) ;é 0
and (mzy/m/) y//m// — mzy/(m/)///m//) c W

Setting m = m’y”’m”, we conclude that there exists m € M, y’ € I' such that

my1y'm # 0 and myy'm € W. Thus W is a dense right ideal of M.
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vii) Let m; # 0, mp € M. By (ii), we have (m» : U) € D(I", M). Using (v), we
getlp ((my :U)p)=(0). Weobtainmy ¢l ((m3 : U) ). Then we have myy’'m’ #
0 for some m’ € (my :U)p, y' € I'. On the other hand, we see that there exists
m” € V,y"” € I' such that (myy'm’)y"m"” # 0. Indeed, if (m,y'm’)y"m"” = 0, for
allm” e V,y"” € I' thenmyy’'m’ € I (V). Also, we know that [ (V') = (0). Hence
we get mqy’m’ = 0. This is a contradiction.

Setting m = m’y”’m”, we obtain that myy’'m # 0
and may'm = myy’ (m'y"m"”) = (mpay’m’)y"’'m” € UI' V. Therefore,

ULV e D(I,M). 0

Corollary 1. Let M be a semiprime I'-ring and U be a right ideal of M. Then
UeD(I M) ifandonly iflr ((a:U)p) = (0) foralla € M.

Proof. f U € D(I"M), then (a:U)p € D(I',M) for all a € M by Theorem
1(ii). By Theorem 1(v), we have I ((a : U) ) = (0) for all @ € M. Conversely, let
my #0,my € M. Since m; # 0, we getmy ¢l ((mp:U)p). Thus, myym # 0 for
somem € (my:U)p,y eI Thatis, m;ym # 0 and maym € U for some m € M,
yel.WegetU e D(I',M). This completes the proof. O

We are now in a position to construct the desired gamma ring of quotients of M.
Let M be a semiprime I"-ring. Consider the set

R={(/:U)|U e DUI""M)}
f U — M is aright I'M -module homomorphism
We define (f;U) ~ (g; V) if there exists W C U NV such that W € D(I", M) and
f = g on W. By [3], one easily checks that "~ ” is an equivalence relation and we

let [ f; U] denote the equivalence class determined by (f;U) € R. Let Q be the set
of all equivalence classes. We define addition on Q as follow:

[f:U]l+[g:V]=[f+gUNV]

First of all we note that by Theorem 1(ii), U NV € D(I",M). Using similar argu-
ments as in [3], we can prove that Q is a abelian additive group.

In a similar fasion, let (M, I") be a semiprime gamma ring. The collection of all
dense left ideal of (M, I") will be denoted by D(M, I').

N={(r;2)|2e DM,TI'), t:82 — I isaleft M I"-module homomorphism }

We will show that I" is a left M I'-module. Indeed, since (M,I") is a gamma
ring, I" is abelian additive group. Also, for all y,y1,v> € I, m,m1,m, € M and
o,aq1,ay €T,

() amy el

(i) am (y1 +y2) = amy1 +amya,

(iii) & (my +ma)y = amyy +amyy,

(iv) (a1 +ax)my = aymy +aymy.

On the other hand, £2 is selected to be left M I'-module.
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We define (t;£2) ~ (0; A) if there exists [T C £2N A such that [T € D(M,I") and
7 =0 on [1.” ~” is an equivalence relation. Let [t; £2] denote the equivalence class
determined by (t;$2) € R and A denote the set of all equivalence classes. We define
addition of equivalence classes as follow:

[1:R2]+[0; Al =[t+0;2NA]

In similar fasion, one easily checks that A is abelian additive group.
Let 7 : £2 — I" be a left M I'-module homomorphism. Define

A A
T: MM — M by T (myn) =mzt(y)nforallm,ne M, y € £2.

Now we define multiplication of equivalence classes as follow:

LU e 2)[g: V] = [f%‘g;ég)—l (U)]

where [f;U],[g;V] € Q and [1; 2] € A. We will show that multiplication is well
defined. For any [ f1;U1],[f2;:U2].[g1:V1].[g2: V2] € O and [11;821],[12:§22] € A,
we get

([f1: Ul [r1s821], (g Val) = ([ f2: Uz [12: §22] L [g25 V2)) -
Then
[f1:Ur] = [f2: V2], [r1:821] = [12:£22], [g1: Vil = [g2: V2],
and so
(f1:U1) ~ (f2:U2), (11;821) = (12;522), (81:V1) ~ (g2:V2).

Hence, there exists Wy, W, € D(I',M) such that Wy C Uy NU,, W C ViNV,,
fi=foonWi,gr=gronWrand IT € D(M,I")suchthat [T C 21 N$2,, 11 =12
on I1.

Set W = gl_1 (W1 IIM) N W,. Using the same techniques in Theorem 1(vii),
we prove that WiITM € D(I',M). By Theorem 1(i), we have g;! (Wi [IM) €
D(I', M). Also g7 (Wi ITM) N W, € D(I", M) by Theorem 1(iii).

A A
Now, we will show that W C (rlgl)_l Up)n (rzgz)_l (U,). Let x be any ele-
ment of W = gl_1 (Wi IM) N W,. Thatis, g1(x) € WiIIM and x € W,. Taking
g1 (x) by wiym, where w; € Wi,y € [1, m € M, we get

g1 (x) = 11 (g1 () = 11 (wyym) = wy Ty () m.

On the other hand, g1 (x) = g2(x) for x € W>, there by obtain

A A A A
1282 (x) = 12(82 (%)) = 12 (g1 (%)) = 2 (w1ym) = wita (y) m.
For wy € Wi C Uy NU,, we conclude that

A A
7181 (x) = w1 (Y)m € Uy and 1282 (x) = wit2 (y) m € Us.
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A A A
Hence, we find that x € (71g1) ™' (U1) and x € (1282) "' (U») ,ie., x € (t121) " (U1)N
A
(1282)" " (U2).
A A
Moreover, we prove that fit1g1 = fo12g2 on W. Let x € W. We know that

g1 (x) € WiII M. Replacing g (x) by wyym, where w; € Wy, y € I[1, m € M, we
have

A A A
(f/1it181) (x) = fi(11 (g1 (%)) = fi(T1 (wiym)) = fi(witi (y)m).
Using wy € Wi C Uy and £ is aright I’ M -module homomorphism, we get

Si(witi (Y)m) = fi(wi)T1 (y) m.

Since fi = f> on Wi and 11 = 15 on I1, we obtain that

A
Siw)t (y)m = foa(w)ra(y)m = fr(wita(y)m) = fa(r2 (wiym)).
Appliying x € W, and g1 = g» on W,, we conclude that

(fata) (wiym) = fa(f2 (g1 (1)) = (fatrg2) (x).

A A
Hence we find that 17121 = f272g€2 on W, and also
Therefore,

A A _ A A —
[flﬁgl: (t1g1) 7" (Ul)] = [fzfzgz:(fzgz) ! (Uz)]-
As aresult multiplication is well defined. Also, forall [ f;U],[g;V]€ Q and [7;£2] €
A, we get[f;U][r;2][g;: V] € Q. Indeed, we defined that
A A A
[£:U][r:R][g:V] = |:frg; (tg)! (U)] by Theorem 1(i), we have (tg)~! (U) e
D(I',M). It is clear that f ? g is aright I"M -module homomorphism. Thus,
[f;U][r;R2][g; V] € Q forall [f;U],[g;V] € Q and [r;82] € A.

Now we will show that (A, Q) is a gamma ring.
a)i)Forall [f;U],[g:V].[h: K] € Q and [1;82] € A,

[/ U+ [g: VD [ 2] K] = [f +&:U N V][ 2] [h; K]

“[r+o®ménrwn V)}

2t 2 A wyn Gt (V)]

= [t @]+ [t )]
= [£:U)[e: 2] K] + [g: V] [: Q) h: K.
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il) Forall [ f;U],[g;V] € Q and [1;82],[0; A] € A,
/U] 2]+ [o: AD [g: V= [f:Ullr +0:820 A][g; V] 2.1
A A
~|fetns T @)
and
/U]l 2][g: VI+[f:U]lo; Allg: V] (2.2)
= [f?g; (Tg)™ (U)} + [f?rg; @) (U)} (2.3)
= [f?g +f0g:(Te) " (U)N@Gg) ! (U)] .
We will show that (2.1) and (2.3) are equivalent. Let W = (?g)_1 o)n (ég)_1 )

and x € W. Then x € (?g)_1 (U)and x € (cArg)_1 0),1ie., (?g) (x)eU
and (ég) (x) € U. Thus (?g) (x)+ (ég) (x) € U and so (? —i—é)g(x) e U. That s,

xe((z —ﬁo) g) 1 (U). Hence
WS (o)) )N e )N G W),

Moreover, for all w e W

A A A A A
(f(r+0)g)(w)=(fr8)(w)+(fog)(w) =(ftg+ fog)(w).
iii) Forall [ f;U],[g;V].[h; K] € Q and [7;82] € A,
[f5U][:R2]([g: V] +[h: K]) = [f;U][r: 2] [g + h; V N K]

_ f%‘<g+h>;(%‘<g+h>>—1(v)}

[ e+ oGt wyn (U)]

_[ 2 (U)] + [f?h; (Th)! (U)]
=[/:U][r;2][g: VI+[f:U][r;: 2] [h; K].

A A
Selected W = (7g)~ 1 (U)N (th)~! (U), above equality is proved in anagous way.
b)i) Forall [f;U].[g:V].[h:K] € Q and [t;82].[0; A] € A,

(LUl @1 [g: V]) o Al K] = [f?g; Go (U)} o Al K] (2.4)
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- [(f?g)éh; @) '(Tg)! (U)} :

[f:Ul[:21(g: V1[o: Allh: K]) = [f:U][r:£2] [géh; @h)™! (V)] (23)
- [f%‘<g§h); (g8 (U)]

We will prove that (2.4) and (2.5) are equivalent. Let W = (cArh)_l(?g)_1 )
and x € W. Then (6h) (x) € (tg)' (U) and so (£g)(@h)(x) € U. Finally, x €
(Z(gah) "L (U). Thus W < (@h)~L(F2)~ 1 (U) N (T (g6h)~' (U), and also

(f22)8h) (w) = (f2(gah)) (w), forall w € W.
ii) Forall [f;U],[g:V],[h; K] € Q and [7;82],[0; A] € A,

([f:U][r:82][g: VD [o: Al [h; K] = f?g;(?g)_1 (U)} [o; Al[h; K]

_ (2 endn G (U)}

= | f(Tg0)h: (Tgom) ! (U)]

A A A _

= [f:Ul[7g0:(g0) ™" ()] [h: K]

= [/:U]([r:2][g: V][o: AD [1: K].
Similar to the above can be shown.

c)Let[f:U][t;:2][g; V] =[0;M] forall [f;U],[g;:V] € Q and [r;§2] € A. For
[Ip; M] € Q, where Ipg : M — M, is an identity right I" M -module homomorphism,
we get
[T M][x: 2] [Ty M] = [0; M],

and so

[IM%‘IM;@M)—I (M)] = [0; M].

A
Let W = MQM. We first prove that MQ2M < M N (tIy)~ ' (M). For any x =
myn € MM, where m,n € M, y € §2, we have

(TIn) (x) = (TIng) (myn) = T (Ing (myn)) = T (myn) = mz (y)n.

A A
Thus we get (T I37) (x) € M, and so x € (tIp)~' (M). On the other hand, we know
A
that x € M. Hence x e M N (t1p)" 1 (M).
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Now, for all w = myn, where m,n e M, y € §2,

A A
It Iy (W) = Ipgt Iy (myn) = 0(myn).

That is
mt(y)n =0, forallm,n e M and y € £2.

Since (I, M) is gamma ring, we have 7 (y) = 0, for all y € £2, and so, T = 0. That
is, [t: 2] = [0; I'].

So, we see that (A, Q) is a gamma ring and we call it the maximal right gamma
ring of quotients of (I, M).

Theorem 2. Let (M, I") be a semiprime gamma ring. The collection of all dense
left ideal of (M, I") will be denoted by D(M,I"), 2, A€ DIM,")yandt:2 — T
be a left M I"' —module homomorphism. Then

Dt i (A)={ye|t(y)e Aye DIM,T).

ii)(:82)y € DIM,T") foralla € T.

iii) 2N Ae DM, T).

iv) If I is a left ideal of I and 2 C I1, then I1 € D(M, T").

v) Iy (£2) =(0) =rm (£2).

vi) If IT is a left ideal of I and (o : I1)yy € D(M,T") for all a € I, then II €
D(M,TI).

vii) 2MA € D(M, T").

Proof. The procedures in Theorem 1 can be exactly applied in set D(M, ") and
the same results are obtained. U

One can construct the maximal left gamma ring of quotient of (M, I") using the
following operations. Now we can define multiplication of equivalence classes as
follow:

A A
[ 211f: U] [0 4] = [rfa;(fa)‘l (9)}

where ]A‘ :rur — T, ]A‘(ymﬂ) =yf(m)Band[f;U] € Q and [t;£2],[0; A] € A.
We will prove that multiplication is well defined. For any
[t1;21], [12;§22],[01; A1), [02; A2] € A and [ f1;U1], [ f2;Uz] € Q, we get
([ri:821]. [f1: Uil [o1: A]) = ([12:£22] . [ f2: U2] 02 A2))
Then
[t1:821] = [r2:822], [/1:U1] = [f2: V2], [01; A1), [02; A2]
and so

(t1;821) = (12;822), (f1:U1) ~ (f2:U2), (01; A1) = (02; A2).
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Therefore, there exists I1y, [T, € D(M,I") such that [Ty C 21 N2, [T, € A1 N
Ay,71 =12 0on [ly, 01 =05 on Il and W € D(I',M) such that W C U; N Uy,

f1 = f2 onW.
Let IT = 01_1 (I'WII) N . Using Theorem 2(vii), we show that ' W Il €

D(M,T"). By Theorem 2(i), we see that o7 ! (W I1y) € D(M,I"). Hence
01_1 (r'WIl))N Il € D(M,I') by Theorem 2(iii).

A A
Now, we will show that IT C (flcrl)_1 (£21)N (fzaz)_1 (£22). Let « be any ele-
ment of [T = 01_1 (I'WII) N II,. Thatis 01 («) € I'W Il and « € I1,. Replacing
o1 (@) by ywp1, where 81 € IT1, w € W, y € I, yields that

A A A
(fio1) (@) = fi (o1 (@) = fr(ywp1) = y/f1 (W) p1.

On the other hand, 01 (¢) = 03 (@) for « € 15, we get

A A A A
(f202) (@) = f2 (02 (@) = f2 (01 (@) = f2(ywP1) =y f2(w)B1.
For 1 € Iy C £21 N £2;,, we see that

A A
(f101) (@) = yf1 () B1 € 21 and (f202) (@) = y/2(w) 1 € $22.
Hence, we arrive that @ € (]élcrl)_l (£217) and @ € (jézaz)_l (£22),1i.e.,

A A
@ € (f1o1)"H(21) N (fr02) 7! (Aﬂz)- 4

Moreover, we show that t; fio01 = 12 f202 on I1. Let o € I1. We obtain that
o1 (a) € 'WII;. Substituting ywp; for o1 (), where B1 € [Ty, we W, y € T,
we have

A A A
(t1 f101) (@) = 711(f1 (01 (@))) = 71 (f1 (YwPB1)) = t1(¥f1 (W) B1).

Using 81 € I11 C £21 and 1 is a left M I"'-module homomorphism, we arrive that

1(yf1(w)B1) = yfi(w)t1 (B1).

Since 11 = 1o on [Ty and f; = f> on W, we find that

A
vf1(w) 71 (B1) = vf2(w) 2 (B1) = 2(yf2 (W) B1) = ©2(f2 (YwP1)).

Using o € 1, and 01 = 03 on 1, we see that

A A A
(12 f2) (YwB1) = 12(f2 (01 (@))) = (12 f202) ().
A A
Thus, we conclude that 7 fi01 = 12 f202 on I1, and so

A A A A
[Tlf101§(f1(71)_1 (91)] = [fzfzaz;(fszz)_l (92)] .
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Consequently, multiplication is well defined. It is clearly that [7; 2][f; U] [0; A] € A
forall [f;U] € Q and [t;82],[0; A] € A.

Now we will show that (Q, A) is a gamma ring.

a)i)Forall [f;U] € Q and [r;82],[0; A],[6; X] € A,

([r; 2]+ [o; AD [ [ U][8; X] = [t +0;82 N A][ /3 U][6; X]

B A A
=|(t+0) f8:(f8)7! (QﬂA)]

- A A A A
_[rs4ots: P @0 (e (A)}

- A A A A
_[eFs:re (9)} n [af& (75! (A)}
= [v;2][f;U][8; X1+ [o:; A [f;U][8; X].
ii)Forall [f:U].[g:V] € Q and [t;£2],[0: A] € A,
[ 2]([f:Ul+[g: VDo Al = [t;2][f +g:UNV][o; A (2.6)

A A
_ [r(f+g)o;<<f+g)o)-1 (:2)],
and
[0;2][f:U]lo; Al + [r: 2] [g: V][o: A] (2.7)
A A A A
_ [rfa: (fo)! (9)] + [rga; (g0)"! (9)} 2.8)
A 4 A A
_ [rfo e (Fo) (@) (g0)! (:2)] .

We will show that (2.6) and (2.8) are equivalent. Let IT=( f o)~ ! (.Q) N (ga) L)
and o € I1. Then « € (fa) 1(.Q) and o € (ga) 1(.Q) ie., (fcr)(a) € Q2 and
(ga) () e £2. Thus (fa) (o) + (ga) (o) € £2, and so (f + g)a (o) € £2. That is
ae((f —i—g)a) 1(£2). Then
4 1 2 -1 A
Ic(f+go) (2)N(fo)  (£2)N(go) (£2).

Moreover, for all @ € IT
A A A A A
(T(f +8)o)(a) =(rfo) (@) +(1g0) (@) = (r fo +180) ().
iii) Forall [ f;U] € Q and [r;£2],[0: A].[8;: X] € A,
[:2][/:Ul([o; Al + [8; X)) = [r: 2] [/ U] o +6; AN X]
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- A A »
_[:F+8:(Fe+8) (9)}

[ A A A A
=|tfo+efE(fo)T (@N ()T (9)}

[ A A A A
~|croGort@ |+ | Fauda @)
= [0:Q2][f:U]lo; Al + [z: 2] f: U][8: X].
Set IT = (]A‘o)_1 (£2)Nn (]A‘S))_1 (£2), application of similar arguments yields the
above equality.

b)i)Forall [f;U],[g;V] € O and [1;£2],[0; A],[§;: X] € A,

A A
([t: 211 f:Ullo; AD [g: V][6: 2] = [ffa; (fo)™! (9)] [g:V]6: 2] (29)

A A
_ [(rfo)§8; @5 (Fo)! (9)] .

[ 211F: U1 (o3 Allg: VI[8: 5D = [2: 21 1f: U] [o?& @51 (A)] (2.10)
A A
_ [rf(o?a);<f(o§8))—l (9)]

We will prove that (2.9) and (2.10) are equivalent. Let [T = (?8)_1(?0)_1 (£2)
and o € IT. Then (88) (@) € (7o)~ (£2). and so (70)(56) (@) € 2. Hence, & €
(F(088) 1 (2). Thus 1T € (#8)7 (Fo)™ (2) N (F(088) " (£2). and also

4 A 4 4
((tfo)gd)(a) =(tf(0gd))(a), forall « € 1.
ii) Forall [f;U],[g:V] € Q and [t;82],[0; A],[8;: 2] € A,

- A A
([z:211f;Ullo: A [g: V1[8;: 2] = |t fo;(fo) ™! (9)} [g:V][8; X]

A A
|« Fo)85: 3y (For! (9)]

A A
= | 2(fog)s:(fogs)! (9)]

4 A Ay
=[r:R2][fog:(og)” (U)][6; ¥]
= [0:Q2]([f:U]lo: Al[g: VD [S: XT.
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Using similar arguments as above, we can prove.

c) Let [t;2][f;Ullo; Al = [0; "] for all [ f;U] € Q and [r;£2],[0; A] € A. For
[Ip;T") € A, where I : I — I' is an identity left M I'-module homomorphism, we
see that

Ur; T/ UIUr: 1 =1[0:17],

and so

A A
[lrflr;(flr)_l (F)] =[0;I].

A
Set IT = I'UT". We first prove that TUI' € I' N\ (f 1)~ ' (I'). For any y = aup €
I'UrI whereu € U, o, B € I', we arrive at

A A A A
(f1Ir)(y)=(fIr)(eup) = f (U (eup)) = f (aup) = af (u) .
We have (]A’Ip) (y)erl,andsoy € (]A‘Ip)_1 (I"). On the other hand, we get y € I".

A
Asaresulty e N (f1p)~ 1 (I).
Now, forall y =auff € FT'UI’ whereu e U, o, € T,

A A
IrfIr(y)=Ir fIr (euB)=0(aup).
That is
af (u)B=0, forallue U,a,B €T.

Since (M, I") is gamma ring, we get f (1) =0, for all u € U, and so f = 0. That is
[f:U]=[0; M].

We arrive that (Q, A) is a gamma ring and we call it the maximal left gamma ring
of quotient of (M, I").

We proceed by showing that (A, Q) is characterized by certain reasonable proper-
ties that any gamma ring of quotient should have.

Remark 1. Let M be a I'-ring, ¢ € I'e € M. If (g,e) is the strong right identity
element of (I, M), then (e, €) is the strong left identity element of (M, I").

Proof. Assume that (g, e) is the strong right identity element of (I, M). Thus we
get xee = x forallx €e M. Forany y € I', x,y € M, we have

x(eey —y)y =x(eey)y—xyy = (xee)yy —xyy =xyy—xyy =0
and so
M (cey —y)M = (0).
Since (I, M) is gamma ring, we get

cey =y forally eI
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Using similar arguments as above, we can prove the followings:

Remark 2. Let M be a I'-ring, ¢ € I'e € M. If (g,e) is the strong left identity
element of (I, M), then (e, ¢) is the strong right identity element of (M, I").

Let (&, e) is the strong right identity element of (1", M) . For a fixed element a in M,
consider a mapping A4. : M — M defined by A4 (x) = aex for all x € M. Tt is easy
to prove that the mapping A, is a right I"M —module homomorphism. Moreover,
forallm e M,

A(a—i—b)a (m)=(a+b)em =asm+bem = Age (M) + Apg (M) = (Age + Ape) (M),
and so

Matb)e = (Aae + Apg) . (2.11)
Now consider a mapping jieg : I" — I" defined by g (o) = aef foralla € I' is a
left M I'—module homomorphism. Indeed, we shown that I" is a left M I"—module.

i)Foralla,y € I',

Mep (@ +y) = (x+y)ep =aep +yep.

ii) Forall o,y € I" and m € M,

Mep (amy) = (amy)ef = am(yep) = ampep ().

Thus, g is a left M I"'—module homomorphism.
Using arguments as above, we can prove the followings:

Ke(B+y) = Hep t [hey- (2.12)
Let
g ={Agela e M} and Uz{ueﬂmef}.
These sets are additive groups and defining the mappings
PXOX P =0, (Axs ey, Aye) P Axseyys = Axyye (2.13)
and
Oxpx8—0, (//Ley,kx&//veﬁ) = Ueyxsef = Meyxp- (2.14)
It can be shown that (8, ) is a gamma ring.
In the following theorem, D (I, M') will denote collection of all dense ideal of M.

Theorem 3. Let (I, M) be a semiprime gamma ring with strong right identity
element. Then (I, M) is a subring of (A, Q).

Proof. Consider the mappings
oM —> Q,ar> [AgesM] and Yo : T > A, B — [pep: I'].
One readily checks that ¢, is well defined. Using (2.11) equation, we have
e (@ +b) = [Aabyes M) = [Aaes M1+ [Apes M] = ¢e (a) + de (b)
foralla,b e M.
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Hence, ¢, is a group homomorphism. Now, we suppose that ¢, (a) = ¢ (b). Then
[Aae; M] = [Ape; M], and s0 (Age; M) ~ (Ape; M) . Hence there exists W C M N M
such that W € D(I, M) and Age = Ap, on W, i.e., asw = bew, for all w € W. That
is (a—b)eW = (0). Since W is a ideal of M, we have (a —b)sMT' W = (0), and
so (a—b)eM €l (W). By Theorem 1(v), we get (a —b)eM = (0). In particular,
taking m by e, we get (a —b)ee =0, and so a = b. Thus ¢, is one-one. Hence ¢, is
a group monomorphism.

On the other hand, once easly checks that ¥, is a group monomorphism.

Foralla, el "m,ne M

¢e (MmPn) = [A(mﬂn)e; M] = [Amseﬂne; M] ) (2.15)
and
e (M) Ve (B) de (n) = [Ame: M [jtep: I | [Ane: M] (2.16)

A A _
= [)Lms,ueﬁkne; (Meﬂkns) ! (M)].
We will show that (2.15) and (2) are equivalent. Set W = M I'M and w = xyy € W,
where y € I', x,y € M.

A A A
(epAne) (W) = (egAne) (XYY) = Hep (nexyy) = nexpeg (y) y = nexyefy.

A A
Thus (pegAne) (w) € M, and so w € (Meﬂkng)_l (M) . Hence we obtain that W C

A
(HepAne) ™ (M) N M.
On the other hand, using (2.13), we conclude that

A
/\msﬂeﬂkns = Amseﬂns = A(mﬂn)s-

A
That is AmeflegAne = A(mpn)s 0N W. In that case, we get

be (mPn) = de (m) Ye (B) pe (n).

Using similar arguments as above, we can shown that

Ve (amy) = Yo (a) pe (M) Ye (v).

Hence (¥e,¢e) is a gamma ring monomorphism, and so (I, M) is a subring of

(4,0). O

Theorem 4. Let (I, M) be a semiprime gamma ring with strong left identity ele-
ment. (A, Q) satisfies the following properties:

DIfU e DI, M) and f:U — M is a right I’ M —module homomorphism, then
there exists an element q € Q such that f (u) = qeu forallu € U.

ii) For all q € Q there exists U € D(I', M) such that geU < M.

iii) Forallg € Q and U € D(I',M), geU = (0) if and only if ¢ = 0.
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Proof. )Letgqe Q,ueU, f:U — M be aright ' M —module homomorphism
and ¢ = [f;U]. Since M can be embedded in Q, we can write u = [Ay¢; M] such
that Ao : M — M, x — uex for all u € U. Then we have

qgeu = [f:U][pee: I’ [Aue: M| = [f,UvAes)tud(lfeskus)_l U)] (2.17)
and
S )= [/\f(u)s;Ml (2.18)
We will show that (2.17) and (2.18) are equivalent. Indeed, for W = UI'M and
x=yymeW,where y eU,y el,me M, we have

A A A
(Heehue) (x) = (HeeAue) (Yym) = fhee (ueyym)
=UEY e (Y)m = usyyeem = ueyym € U.

A A
In this way, we get x = yym € (tesAus) L (U), and so W C (fesAye) "L (U) N M.
Moreover, for all x € W, we get

(f Heshue) (¥) = (f teshue) (yym) = (f tiee) (ueyym)
= f (ueypee (y)m) = f (ueyyesm)
= f (ueyym) = f (u)eyym
= Arwye (Yym) = Ay (X).

That is f[LAeg)kug = Af)e on W.

Therefore, there exists an element ¢ € Q such that f (u) = geu for allu € U.

ii) Letg € Q0. Then there exists U € D(I", M) suchthatg =[f;U]and f:U - M
be a right "M —module homomorphism. According to (i), we have f (1) = geu
for all u € U. Thus geU C M. Consequently, there exists U € D(I", M) such that
qelU C M.

iii) Let g € Q and U € D(I,M), qeU = (0). Then g = [f;U]. If geU = (0),
then geu =0, forallu € U. By (i), f (u) =qeu =0, forall u € U. Thus f (u) =0,
forall u € U, and so g = [0;U] = [0; M] = Og. Conversely, let ¢ = 0. Then ¢ =
[f;U] =[0;M], and so (f;U) ~ (0;M). Thatis f (u) =0 forallu e U C M.
According to (i), f (u) =qeu =0forallu € U, so geU = (0). This completes the
proof. O
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