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Abstract. Hyperelastic curves in a Riemannian manifold are solutions of a constrained vari-
ational problem and characterized by Euler–Lagrange equations. We study the effect of hyper-
elastic curves on the geometry of isometric immersions. We investigate the relation between
hyperelastic curves and umbilical submanifolds and apply the results to analyze classical elastic
curves. The case of a Riemannian manifold with constant sectional curvature is also discussed
and some applications are presented for illustrating the results.
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1. INTRODUCTION

A parametrized curve by its arclength is called a hyperelastic curve if it is a critical
point of the following curvature energy action defined on a suitable space of curves
in a Riemannian manifold:

F r
γ =

∫
(κr +λ)ds, (1.1)

where κ denotes the curvature of γ [3, 21, 22]. Such curves are called as free hy-
perelastic curves when λ = 0. The functional F r

γ is nothing but the classical Euler–
Bernoulli’s bending (or elastic) energy functional for r = 2. Immersed curves which
are critical for the bending energy functional satisfying some boundary conditions
are called elastic curves (or elastica) [16]. The existence, classification or stability
problems of elastic curves or their generalizations in Riemannian manifolds have at-
tracted the attention of many researches. Some of the most remarkable examples in
the literature worked by D. Singer et al. [13, 15, 16, 23]. J. Langer and D. Singer
in 1984 showed that there exist closed elastic curves of a fixed length in a compact
Riemannian manifold [16]. At around the same time with the paper [16], that idea
is shown in [14] by different method [10]. These curves have been characterized on
the sphere in Euclidean 3-space by Brunnett and Crouch [7]. Another noteworthy
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works of elastic curves and its extensions have been studied by Garay et al. in non-
Euclidean spaces [1, 3, 10]. They have found important results of this variational
problem in Lorentz-Minkowski space.

The study of this topic in low dimensional cases, curves and surfaces, has impor-
tant applications to Physics, Biophysics and Engineering while attention to higher di-
mensional submanifolds has usually shown a more purely mathematical flavor. How-
ever, the hyperelastic curves have important applications to other higher dimensional
variational problems in submanifolds and physics such as Chen–Willmore subman-
ifolds, string theory and p-branes, models of relativistic particles, capillary pressure
difference, etc. [3, 10].

The special curves on the surfaces were first considered in Riemannian manifolds
by Nomizu and Yano [18]. The authors described the concept of a circle and showed
that if a circle on a submanifold is carried to the ambient manifold along an im-
mersion, the submanifold is totally umbilical and the mean curvature vector field is
parallel [18]. Ikawa expressed a characterization of a helix by a differential equa-
tion in a Riemannian manifold and obtained the necessary and sufficient condition
as depending upon the mean curvature vector field that a helix in a Riemannian sub-
manifold corresponds to a helix in ambient manifold [12, 17, 18]. One of the most
active area of differential geometry has been the theory of isometric immersions [9]
and this theory is still active area, see for instance [2] and [4]. The aim of this pa-
per is to consider hyperelastic curves along an immersion. By considering the role of
submanifold theory in geometric mechanics [8] and applications of elastic curves, we
believe our result will start a fresh research area by combining these two concepts.

In section 2, we give some geometric preliminaries concerning the basic problem
of the paper mentioned in the introduction. In section 3, we examine isometric im-
mersions which carry a hyperelastic curve of the total manifold to ambient manifold
as a hyperelastic curve. Then, we give a characterization of the submanifold with
regard to the mean curvature vector field H by means of hyperelastic curves. We
also consider elastic curves under isometric immersions. In the last section, we give
some results according to constant sectional curvature of the manifold. Finally, we
exemplify the findings.

2. GEOMETRICAL NOTATIONS AND PRELIMINARIES

Let M be a n-dimensional submanifold of a m-dimensional Riemannian manifold
M. ⟨·, ·⟩ denotes both the metric tensor fields of M and the induced metric of M.
A vector field V in M is called a normal vector field in M if ⟨X ,V ⟩ = 0 for any
vector field X in M and a unit normal vector field in M is known a normal section,
[24]. ∇ and ∇ denote the Riemannian connection of M and induced connection of M
respectively. χ(M) and χ(M) are the set of the Lie algebra of vector fields in M and
M, respectively. χ⊥(M), T M and T M⊥ will express the set of all normal vector fields
of M, the tangent bundle and the normal vector bundle of M, respectively.
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Let X and Y be vector fields on M. The Gauss formula [24] is given by

∇XY = ∇XY +h(X ,Y ) , (2.1)

where ∇XY is the tangential component, h(X ,Y ) is the normal component of ∇XY .
h(X ,Y ) is the second fundamental form of M. h is a bilinear and symmetric form in
X and Y .

Let V be a normal vector field in M. The Weingarten formula is given by

∇XV =−AV X +DXV, (2.2)

where D is the connection in the normal bundle and A is the shape operator of M. A
and h satisfy

⟨AV X ,Y ⟩= ⟨h(X ,Y ) ,V ⟩ . (2.3)

From the Gauss and Weingarten formulas, we have

R(X ,Y )Z =R(X ,Y )Z−Ah(Y,Z)X+Ah(X ,Z)Y +
(

∇X h
)
(Y,Z)−

(
∇Y h

)
(X ,Z) , (2.4)

where R and R are the Riemannian curvature tensor fields of M and M, respectively.
In addition,

(
∇X h

)
(Y,Z) and (∇X A)V Y are defined as the covariant derivative of the

second fundamental forms h and A as follows(
∇X h

)
(Y,Z) = DX h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z) (2.5)

and
(∇X A)V Y = ∇X (AVY )−ADXVY −AV ∇XY, (2.6)

respectively. On the other hand, the following equality is satisfied〈(
∇X h

)
(Y,Z) ,V

〉
= ⟨∇X (A)V Y,Z⟩ . (2.7)

M is called a totally geodesic submanifold in M if its second fundamental form is
identically zero, that is h = 0 or equivalently A = 0. If the second fundamental form
satisfies

h(X ,Y ) = ⟨X ,Y ⟩H,

then M is said to be totally umbilical. If the vector h(x,x) has the same length for any
unit vector x ∈ TpM, then M is called isotropic at p. A submanifold M is isotropic iff
h satisfies

⟨h(x,x) ,h(x,y)⟩= 0

for any orthonormal vectors x and y of TpM. Furthermore if

h(x,y) = 0 (2.8)

for any orthonormal vectors x and y of TpM, then M is totally umbilical at p [12,19].
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3. CHARACTERIZATION OF THE SUBMANIFOLD OF A RIEMANNIAN MANIFOLD
BY HYPERELASTIC CURVES

We firstly remind a characterization of the hyperelastic curve in a Riemannian
manifold. We consider the family of C∞ curves as follows

ℑ = {γ |γ : [0, ℓ]⊂ R→ M, γ(iℓ) = pi, pi ∈ M,
.
γ(iℓ) = vi, vi ∈ TpiM i = 0,1}.

For a parametrized curve γ ∈ ℑ, κ is the geodesic curvature of γ. Then a hyperelastic
curve is a critical point of the functional F r

γ : ℑ → [0,∞) defined by (1.1) for a natural
number r ≥ 2 (see [3]).

Let γ : I → M be an immersed unit speed curve in a n-dimensional Riemannian
manifold M. We denote by T , N and B, the unit tangent vector field, the unit nor-
mal vector field and the binormal vector field of γ, respectively. κ = ∥∇T T∥ is the
geodesic curvature and τ = −⟨∇T B,N⟩ is the torsion of γ. γ has also curvatures
κ1 = κ > 0, κ2 = τ, κ3, κ4, . . . ,κn−1 and Frenet frame N0 = T, N1 = N, N2 = B,
N3, N4, . . . ,Nn−1. Then, the Frenet equations are given by

∇T Ni =−κiNi−1 +κi+1Ni+1, 0 ≤ i ≤ n−1

(defining κ0 = κn = 0) see [16]. In this case γ is called a Frenet curve of order n.
Critical points of the functional (1.1) are characterized by the Euler–Lagrange

equation
∇

2
T
(
κ

r−2
∇T T

)
+κ

r−2R(∇T T,T )T +∇T (λT )=0, (3.1)
for some constant b ∈ R and

λ =
2r−1

r
κ

r +b (3.2)

see [3, 21].

Lemma 1. Let M and M be Riemannian manifolds and i : M → M an isometric
immersion such that γ is a curve on M. Assume that γ(s) = i ◦ γ(s) is a curve with
curvature κ in M. Then we have the following equations:

(i)

∇
2
T

(
κ

r−2
∇T T

)
= ∇

2
T (ξ∇T T )+h(T,∇T (ξ∇T T ))−Aξh(T,∇T T )T

+DT ξh(T,∇T T )−∇T
(
Aξh(T,T )T

)
−h
(
Aξh(T,T )T,T

)
−ADT ξh(T,T )T +D2

T ξh(T,T ) ,

(ii)

κ
r−2R

(
∇T T,T

)
T = ξR(∇T T,T )T −ξAh(T,T )∇T T +ξAh(∇T T,T )T

+ξ

(
∇∇T T h

)
(T,T )−ξ

(
∇T h

)
(∇T T,T ) ,

where ξ = (κ2 +∥h(T,T )∥2)
r−2

2 and κ is the curvature of γ in M.
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Proof. Suppose that γ(s) is an immersed curve with κ in M.

(i) From Gauss and Weingarten formulas, we have

∇T

(
κ

r−2
∇T T

)
=∇T (ξ∇T T )+∇T (ξh(T,T ))

=∇T (ξ∇T T )+ξh(T,∇T T )−Aξh(T,T )T +DT ξh(T,T ) .
(3.3)

Taking derivative of (3.3) and using (2.1) and (2.2), we get the desired equation.
(ii) From (2.1) and (2.4), we have

R
(

∇T T,T
)

T = R(∇T T,T )T −Ah(T,T )∇T T +Ah(∇T T,T )T

+
(

∇∇T T h
)
(T,T )−

(
∇T h

)
(∇T T,T ) .

(3.4)

Taking inner product both sides of (3.4) with ξ, we obtain the relation (ii) of
Lemma (1).

□

Now, we suppose that γ(s) is a hyperelastic curve in M. From (3.1), we have the
following equation

∇
2
T

(
κ

r−2
∇T T

)
+κ

r−2R(∇T T,T )T+∇T (λT )=0, (3.5)

for some constant b ∈ R and

λ =
2r−1

r
κ

r +b. (3.6)

Taking into consideration Lemma 1, we obtain

∇
2
T (ξ∇T T )+h(T,∇T (ξ∇T T ))+DT ξh(T,∇T T )−∇T

(
Aξh(T,T )T

)
−ξh

(
Ah(T,T )T,T

)
−ADT ξh(T,T )T +D2

T ξh(T,T )+ξR(∇T T,T )T

−ξAh(T,T )∇T T +ξ

(
∇∇T T h

)
(T,T )−ξ

(
∇T h

)
(∇T T,T )

+∇T (λT )+λh(T,T ) = 0,

(3.7)

where
λ =

2r−1
r

(κ2 +∥h(T,T∥2)
r
2 +b.

The tangent part of (3.7) is

∇
2
T (ξ∇T T )−∇T (Aξh(T,T )T )−ADT ξh(T,T )T

+ξR(∇T T,T )T −ξAh(T,T )∇T T +∇T (λT ) = 0.
(3.8)

We have from (2.6) and (2.5)

∇T (Aξh(T,T )T ) = ∇T (A)ξh(T,T ) T +ADT ξh(T,T )T +Aξh(T,T )∇T T (3.9)

and
ξ

(
∇T h

)
(T,T ) = ξDT h(T,T )−2ξh(∇T T,T ) , (3.10)
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respectively. Substituting (3.9) and (3.10) into (3.8), we have

∇
2
T (ξ∇T T )−∇T Aξh(T,T )T −2A(DT ξ)h(T,T )T −2ξA(∇T h)(T,T )T

−4ξAh(∇T T,T )T −2ξAh(T,T )∇T T +ξR(∇T T,T )T +∇T (λT ) = 0.
(3.11)

From Frenet equations of γ, (3.11) reduces to(
λs −3ξκκs −2κ

2
ξs
)

T +(ξκss −κ
3
ξ+2κsξs +ξssκ−κτ

2
ξ+λκ)N

+(2κsτξ+κτsξ+2κτξs)B−4ξκAh(N,T )T −2ξκAh(T,T )N

= 2A(DT ξ)h(T,T )T +2ξA(∇T h)(T,T )T +∇T Aξh(T,T )T −ξκR(N,T )T.
(3.12)

Taking inner product with T to (3.12) and using (3.10), we calculate

λs −3ξκκs −2κ
2
ξs −6ξκ⟨h(T,N) ,h(T,T )⟩=

2
〈
A(DT ξh)(T,T )T,T

〉
−4κξ

〈
Ah(T,N)T,T

〉
+
〈
∇T Aξh(T,T )T,T

〉
by using the fact ⟨N,T ⟩ = ⟨B,T ⟩ = ⟨R(N,T )T,T ⟩ = 0, (2.3) and (3.10). By using
(2.3), (2.7) and (3.10) we have

λs −3ξκκs −2κ
2
ξs = 2⟨h(T,T ) ,DT ξh(T,T )⟩+ ⟨ξh(T,T ) ,DT h(T,T )⟩

= 2(DT ξ)∥h(T,T )∥2 +
3
2

ξDT∥h(T,T )∥2 (3.13)

= ξ((r−2)(κ2 +∥h(T,T )∥2)−1∥h(T,T )∥2 +
3
2
)DT∥h(T,T )∥2.

The normal part of (3.7) is

h(T,∇T (ξ∇T T ))+DT ξh(T,∇T T )−ξh
(
Ah(T,T )T,T

)
+D2

T ξh(T,T )

+ξ

(
∇∇T T h

)
(T,T )−ξ

(
∇T h

)
(∇T T,T )+λh(T,T ) = 0.

(3.14)

We have from (2.5)

ξD2
T h(T,T ) = ξ

(
∇

2
T h
)
(T,T )+4ξDT h(T,∇T T )

−2ξh(∇T T,∇T T )−2ξh
(
T,∇2

T T
)
.

(3.15)

Substituting (3.15) into (3.14) and using (2.5), we get

h(T,ξs∇T T )+4ξh
(
T,∇2

T T
)
+5(DT ξ)h(T,∇T T )+4ξ

(
∇T h

)
(T,∇T T )

+3ξh(∇T T,∇T T )−ξh
(
Ah(T,T )T,T

)
+(D2

T ξ)h(T,T )+2(DT ξ)(∇T h)(T,T )

+ξ

(
∇

2
T h
)
(T,T )+ξ

(
∇∇T T h

)
(T,T )+λh(T,T ) = 0.
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Taking into consideration the Frenet equations, we have

(κξs +4ξκs +5(DT ξ)κ)h(T,N)+4ξκτh(T,B)+4ξκ

(
∇T h

)
(T,N)

+3ξκ
2h(N,N)+2(DT ξ)(∇T h)(T,T )+ξκ

(
∇Nh

)
(T,T ) =

(4ξκ
2 −D2

T ξ)h(T,T )+ξh
(
Ah(T,T )T,T

)
+λh(T,T )−ξ

(
∇

2
T h
)
(T,T ) .

(3.16)

Changing B into −B in (3.16) and using (3.16), we get

h(T,B) = 0. (3.17)

In the following proposition, we give a characterization of the submanifold of a
Riemannian manifold by using hyperelastic curves.

Proposition 1. Let M and M be Riemannian manifolds and i : M → M an isomet-
ric immersion such that γ is a curve on M. Assume that γ(s) = i◦γ(s) is a hyperelastic
curve with curvature κ in M. Then M is an isotropic submanifold if one of the follow-
ing conditions are satisfied.:

(i) r = 2 that is γ(s) is an elastic curve,
(ii) curvature κ of γ is a constant when κ ̸= 0.

Proof. If γ= γ(s) is a hyperelastic curve with curvature κ and γ(s) has the curvature
κ. Then we have the following cases:

(i) If r = 2 then (3.13) reduces to

DT∥h(T,T )∥2 = 0. (3.18)

Thus ∥h(T,T )∥ is equal to a constant value, that is, M is an isotropic submani-
fold.

(ii) We suppose that κ is a constant value. From (3.13), we obtain

ξ((r−2)(κ2 +∥h(T,T )∥2)−1∥h(T,T )∥2 +
3
2
)DT∥h(T,T )∥2 = 0.

On the other hand, since κ ̸= 0 and r ≥ 2, then we have (3.18).
□

From (2.8), (3.17) and Proposition 1, the proof of the following corollary is clear.

Corollary 1. We suppose that γ(s) = i◦γ(s) is a hyperelastic curve with curvature
κ in M. In this case, M is totally umbilic submanifold if it is isotropic.

Now, we introduce the concept of hyperelastic immersion.

Definition 1. Let i be an isometric immersion from a Riemannian manifold M
to a Riemannian manifold M such that γ is a hyperelastic curve on M. If the curve
i ◦ γ is also a hyperelastic curve on M, then the immersion i is called a hyperelastic
immersion.
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From (3.1) and the Frenet equations for γ, we have the following proposition (sim-
ilar to that of [5]).

Proposition 2. Let γ be a regular curve in Rn with curvatures {κ,τ,δ, . . .}. Then
γ be a critical for the bending energy functional (1.1) if and only if the following
Euler–Lagrange equations are satisfied

(r−1)κss +(r−1)(r−2)κ−1
κ

2
s −κτ

2 +
r−1

r
κ

3 = 0

2(r−1)κsτ+κτs = 0

δ = 0.

(3.19)

Especially, a hyperelastic curve in R2 or R3 can be moved to a hyperelastic curve
in Rn by a hyperelastic immersion. In the following, an example of a hyperelastic
immersion is given.

Example 1. The mapping j is defined as

j : [−1,1]× I ⊂ R2 → R3

(u,v)→

(
u, v,

√
r−1

r
arccos(u)

)
.

Let

β(s) =

cos

 s√
2r−1

r

 , sin

 s√
2r−1

r

 where 0 ≤

 s√
2r−1

r

≤ 2π,

be a curve in R2. Then we find the curve

β(s) =

cos(
s√
2r−1

r

), sin(
s√
2r−1

r

),

√
r−1

r
s√
2r−1

r

 .

We can see from (3.19) that β and β are hyperelastic curves in R2 and R3, respect-
ively. This implies that j is a hyperelastic immersion.

The following theorem gives a result of hyperelastic immersions in terms of the
elements of submanifold theory.

Theorem 1. Let i be a hyperelastic immersion between the submanifold M and a
Riemannian manifold M. If γ is a hyperelastic curve with the constant curvature κ

and the tangent vector field T in M, then M is a totally umbilical submanifold and
the mean curvature vector field H satisfies

D2
T H =CH, (3.20)

where C = κ2+∥H∥2+ λ

ξ
= constant. Conversely if the isometric immersion is totally

geodesic, then it is a hyperelastic immersion.
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Proof. Let i be a hyperelastic immersion between Riemannian manifolds M and
M. Suppose that γ(s) is a hyperelastic curve with a constant curvature κ and the
tangent vector field T in M. Then γ satisfies the Euler–Lagrange equation (3.1) with
(3.2). We can see from Proposition 1, M is an isotropic submanifold. Since γ is a
hyperelastic curve in M, we have (3.5) with (3.6). On the other hand Corollary 1
shows that M is totally umbilical submanifold.
So, (3.16) reduces to

4ξκ

(
∇T h

)
(T,N)+3ξκ

2h(N,N)+ξκ

(
∇Nh

)
(T,T ) =

4ξκ
2h(T,T )+ξh

(
Ah(T,T )T,T

)
+λh(T,T )−ξ

(
∇

2
T h
)
(T,T ) .

(3.21)

Changing N into −N in (3.21), we have

4ξκ

(
∇T h

)
(T,N)+ξκ

(
∇Nh

)
(T,T ) = 0. (3.22)

Substituting (3.22) into (3.21) we have

−ξκ2H = ξ
〈
Ah(T,T )T,T

〉
H +λH −ξ

(
∇

2
T h
)
(T,T ) .

By using (2.3) and (3.15) we get

−ξκ2H = ξ∥H∥2 H +λH −ξD2
T H.

Then, we obtain

D2
T H =

(
κ

2 +∥H∥2 +
λ

ξ

)
H.

Conversely, we assume that the isotropic immersion is a totally geodesic. Since γ is
a hypereastic curve with the curvature κ, i ◦ γ satisfies the Euler–Lagrange equation
(3.5) with (3.6). □

Then we have the following result.

Corollary 2. If i : M → M is a hyperelastic immersion and γ is a hyperelastic
curve with the constant curvature in M, then γ has constant torsion.

Proof. Let i be a hyperelastic immersion and γ a hyperelastic curve with the con-
stant curvature κ in M. (3.12) can be written as(

−κ2 − τ2 + λ

ξ

)
N + τsB = 4Ah(N,T )T +2Ah(T,T )N. (3.23)

Taking inner product with N in (3.23), we get

∥H∥2 =
1
2

(
−κ

2 − τ
2 +

λ

ξ

)
. (3.24)

Because of ∥h(T,T )∥ = constant = ∥H∥, one can see from (3.24), the torsion τ of γ

is a constant, too. □
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We recall the following result which will be very crucial for our theorem. A unit
speed curve γ in a Riemannian manifold M is called an elastic curve (or elastica)
if it satisfies (3.1) with (3.2) for r = 2 see [16, 22]. The following theorem gives a
characterization of totally umbilical submanifolds by the behaviour of elastic curves
under an immersion.

Theorem 2. Let i : M → M be an immersion from a Riemannian manifold M to a
Riemannian manifold M transporting each elastic curve with the tangent vector T ,
curvature κ and torsion τ, respectively, to another elastic curve on M. Then M is
totally umbilical and the mean curvature vector field H satisfies

D2
T H =

1
2

(
κ

2 − τ
2 +3λ+

κss

κ

)
H, ∥H∥= constant. (3.25)

Conversely, if M is an totally umbilical, its mean curvature vector satisfies (3.25) and
D∇T T H = 2λH then an elastic curve in M is an elastic curve in M.

Proof. Suppose that γ(s) is an elastic curve in M, with unit tangent vector field T
then the following equation is satisfied

(∇T )
3 T +R(∇T T,T )T +∇T (λT ) = 0

with (3.2) for r = 2. Since γ is an elastic curve with curvature κ in M, we have
also (3.5) with (3.6) for r = 2. Proposition 1 and Corollary 1 show that M is totally
umbilical submanifold. If (3.23) is rewritten for r = 2, and taking inner product with
N, we get

∥H∥2 =
1
2

(
κss

κ
− τ

2 +λ−κ
2
)
. (3.26)

Now we consider for the similar process for the normal part in case of r = 2. If
necessary calculations are taken, we obtain

D2
T H =

(
λ+κ

2 +∥H∥2
)

H. (3.27)

Combining (3.26) and (3.27), we find (3.25).
Conversely, we assume that M is totally umbilical and H satisfies (3.25). On the

other hand, we have

∇
3
T T = ∇

3
T T −∇T (∥H∥2 T )− (κ2 +∥H∥2)H +D2

T H. (3.28)

If we add κ
r−2R(∇T T,T )T +∇T (λT ) both sides of (3.28), then we have from (2.1),

(3.4) and (3.20)

∇
3
T (T )+R(∇T T,T )T+∇T (λT ) = ∇

3
T (T )+∇T ((λ−2∥H∥2)T )

+R(∇T T,T )T +2λH − (D∇T T )H.
(3.29)

Since γ is an elastic curve in M, the tangent part of (3.29) is calculated as

(∇T )
3 T +∇T (λT )+R(∇T T,T )T = 0,
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where

λ =
3
2

κ
2 +b,

for suitable choosing b = b+2∥H∥2. Normal part of (3.29) is found zero if

D∇T T H = 2λH.

□

4. HYPERELASTIC IMMERSIONS IN CONSTANT SECTIONAL CURVATURE
MANIFOLDS

Let M be a Riemannian manifold having constant sectional curvature c. Then we
have

R(X ,Y )Z = c(⟨Y,Z⟩X −⟨X ,Z⟩Y ).

From (3.1) the following result is concluded: a unit speed curve γ= γ(s) parametrized
by arc length s is a hyperelastic curve if it satisfies

∇
2
T
(
κ

r−2
∇T T

)
+cκ

r−2
∇T T +∇T (λT )=0 (4.1)

with (3.2) (see [11, 21]).
We know that a totally umbilical submanifold M of a Riemannian manifold M

of constant sectional curvature c has also constant sectional curvature c+ ∥H∥2 for
dim(M) > 2 (see [24]). Thus, we can get the following corollary as a result of The-
orem 1 and Corollary 1.

Corollary 3. Let i be a hyperelastic immersion between the submanifold M
(dim(M) > 2) and a Riemannian manifold M with constant sectional curvature c.
If M is an isotropic submanifold of M, then M has also constant sectional curvature
c = c+∥H∥2, where H is the mean curvature vector field.

We can give the following corollary in a Riemannian manifold with constant sec-
tional curvature as a result of Theorem 2.

Corollary 4. Let i : M →M(c) be a hyperelastic immersion between a Riemannian
manifold M and a Riemannian manifold M(c) of constant curvature such that γ is an
elastic curve with curvature κ, the torsion τ and the unit vector field T . Then M is
totally umbilical and the mean curvature vector field H satisfies

D2
T H =

(
κss

κ
− τ

2
)

H, ∥H∥= constant. (4.2)

Conversely, if M is totally umbilical submanifold of a Riemannian manifold M with
constant sectional curvature c and the mean curvature vector field satisfies (4.2), then
an elastic curve γ is an elastic curve in M.
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A Riemannian manifold of constant sectional curvature is called elliptic, hyper-
bolic or locally Euclidean if the sectional curvature is respectively positive, negative
or zero. Now, we give an example of elastic immersion which carry elastic curves
of the total manifold with 2-dimensional (c = 0, Euclidean plane) to ambient mani-
fold with 3-dimensional (c = 1, 2-sphere). Firstly, we recall some results for elastic
curves on the plane and a 2-sphere S2. An elastic curve on Euclidean plane satisfies
the following differential equation

κ
′′
+

1
2

κ
3 − 1

2
λκ = 0 (4.3)

see [6]. On the other hand, Brunnett and Crouch classify the forms of spherical elastic
curve based on the differential equation

2κ
′′
g +κ

3
g +

(
2
ρ2 −σ

)
·κg = 0, (4.4)

where κg is the geodesic curvature, ρ is the tension parameter and σ is the radius of
the sphere, [7].

Example 2. Let u and v be coordinate functions of R2. The mapping i is defined as

i : R2 → S2 ⊂ R3

(u,v)→ (u2 − v2, 2uv, 0)

(see [20] ), where (u2+v2)2 = 1. Let α : I ⊂R→R2 be a curve such that t → α(t) =
(cos t, sin t), where 0 ≤ t ≤ 2π. We see from (4.3) that α is an elastic curve since the
curvature κ of α is 1. The curve i ◦α is obtained as (i ◦α)(t) = (cos2t, sin2t, 0).
One can see from (4.4) this curve is an elastica on S2. Then i is an elastic immersion.
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