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Abstract. In this paper we introduce the concepts of Wijsman p-statistical convergence of order
o and Wijsman strongly p-convergence of order o. In addition, some inclusion theorems are also
presented.
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1. INTRODUCTION

The concept of statistical convergence was introduced by Steinhaus [30] and Fast
[18]. Schoenberg [28] established some basic properties of statistical convergence
and studied the concept as a summability method. Later on it was further investigated
from the sequence space point of view and linked with summability theory by Altinok
etal. [1], Aral etal. ([2,3]), Bhardwaj and Dhawan [5], Cakalli et al. ([6—8]), Caserta
et al. [9], Cinar et al. [10], Connor [12], Colak [11], Demirci et al. [13], Et et al.
([14-17]), Fridy [19], Gadjiev and Orhan [20], Isik and Akbag [21], Salat [26], Savas
and Et [27], Sengiil [29] and many others.

Let (X,0) be a metric space. The distance d(x,A) from a point x to a non-empty
subset A of (X, 0) is defined to be

d(x,A) = yirel£c(x,y).

If sup, d(x,Ax) < oo (for each x € X), then we say that the sequence {A} is bounded.
The set of all bounded sequences of sets denoted Lo (X).

The concepts of Wijsman statistical convergence for the sequence were given by
Nuray and Rhoades [25] and the concept were generalized by Ulusu et al. ([31],[32]).
In this paper we introduce the concepts of Wijsman p-statistical convergence of order
o and Wijsman strongly p-convergence of order o.

© 2023 Miskolc University Press


http://dx.doi.org/10.18514/MMN.2023.3503

570 NAZLIM DENIZ ARAL, HACER SENGUL KANDEMIR, AND MIKAIL ET

2. RESULTS

Definition 1. Let (X,0) be a metric space and a € (0,1]. For any non-empty
closed subsets A,A; C X, we say that the sequence {A;} is Wijsman p-statistical
convergent to A of order o ( or WSg-convergent to A)if foreache > 0 and x € X,

1
i — <n: — > =
351010 oo {k<n:|d(x,Ax)—d(x,A)| >¢€}| =0,

where p = (p,) is a non-decreasing sequence of positive real numbers tending to oo
such that

limsup% <oo, Ap,=0(1) and Ap,=pPui1—Pn 2.1

n

for each positive integer n. In this case, we write Ay — A(WSJ). The set of all
Wijsman p-statistical convergent sequences to A of order o will be denoted by WSS‘.

If p, = n, for all n € N, Wijsman p-statistical convergence of order o is coin-
cided with Wijsman statistical convergence of order a denoted by Ay — A ((WS%)).
If oo = 1, Wijsman p-statistical convergence of order o is coincided with Wijsman
p-statistical convergence which were defined by Aral et al. [4]. In this case we write
Ay — AWSp). If p, =n for all n € N and a0 = 1, Wijsman p-statistical convergence
of order « is coincided with Wijsman statistical convergence which were defined by
Nuray and Rhoades [25].

Definition 2. Let (X,0) be a metric space and a € (0,1]. For any non-empty
closed subsets A,A; C X, we say that the sequence {A;} is said to be Wijsman
strongly p-summable of order o to A, if for each € > 0 and x € X,

N
JEIJQF%]; |d(xaAk) _d(va)| =0.

The set of all Wijsman strongly p-summable sequences of order o to A will be
denoted by Wi*. In this case we write Ay —> A(W'). If p, = n for all n € N, Wijsman
strong p-summability of order « is reduced to Wijsman strong summability of order
o denoted by Ay — A((W%)). If o = 1, Wijsman strong p-summability of order
o is reduced to Wijsman strong p-summability denoted by Ay — A ((W,)) which
were defined by Aral et al. [4]. If p, =n for all n € N and a0 = 1, Wijsman strong
p-summability of order & is reduced to Wijsman strong summability which were
defined by Nuray and Rhoades [25].

We give the following results without proof.

Theorem 1. Let (X,0) be a metric space and o € (0,1]. If Ay — A(WS), then
A is unique.

Theorem 2. Let (X,0) be a metric space, o € (0,1] and A, A (for all k € N) be
non-empty closed subsets of X , then
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(i) If Ax — A(WSg) and c € C, then cAy — cA(WSg).

(ii) If Ax — A(WSJ) and By — B(WSY), then (Ax+ Bx) — (A +B)(WSg).
(iii) If Ay —>A(WF§X) and c € C, then cAy — cA(Wy').

(iv) If Ax — A(Wy') and By — B(W'), then (Ax + Bx) — (A+ B)(Wy).
Corollary 1. In the case p, =n (for alln € N) (i)-(iv) hold in the above Theorem 2.

Theorem 3. Let (X,0) be a metric space, o, € (0,1] such that o. < P and A, Ay
(for all k € N) be non-empty closed subsets of X, then WSSC C WSE and the inclusion
is strict.

Proof. The inclusion part of the proof is easy. To prove the inclusion is strict define
a sequence {A} such that

Ay {k,k} if k =n?%
710,01 otherwise.

Then {A} € WSh for } < B < 1 but {A;} ¢ WSS for 0 < o < 1. O

Corollary 2. Let (X,0) be a metric space, o. € (0,1] and A, A (for all k € N) be
non-empty closed subsets of X. If Ay — A(WSJ), then Ay — A(WS)).

Theorem 4. Let (X,0) be a metric space, o € (0,1] and A, Ay, (for all k € N) be
non-empty closed subsets of X, then

(i) Ax = A(Wg') = Ay — A(WS3) and Wi is a proper subset of W Sg.
(ii) {Ac} € Lo (X) and A — A(WSp) = A — A(W,).

(iii) WSp Lo (X) = Wy N Leo (X) .

Proof.

(1) The inclusion part of the proof is easy. In order to show that the inclusion
W5t C WSF is proper, we define a sequence {Ay} as follows:

A — {(Vk} ifk=n%

o {0}  otherwise.
Let X =R, d(x,y) = |x—y| (x,y € X) and p, = n for all n € N. For € > 0,
x>0and%<oc<l,wehave

pl(x]{kgn: 1d (6, Ag) —d (x, {0})] > e} < (n@%o, as 1 — oo

n

andsowegetAk—>0(WSg>.
On the other hand, for 0 < o < 1 and x > 0,
n(y/n+1
2o YA —d(efop) = LD

pY = 2n%
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and for a0 =1
vn(vntl)
n(X
So 4y 0 (W),
(i) Omitted.
(ii1) Omitted.
]
Theorem 5. Let (X,0) be a metric space, o. € (0,1] and A, A (for all k € N) be
non-empty closed subsets of X. Then, WS* C WSJ if liminf,, Z—& > 0.

Proof. Proof follows from the following inequality:

n%\{kénzld(x,Ak) d(x,A)| > e} > n:ld(x,Ar) —d (x,A)] > €}].

”a Pr
O
Theorem 6. Let (X,G) be a metric space, a. € (0,1] and A, A (for all k € N) be
non-empty closed subsets of X. WS C WSO‘ if
lim inf 2 p" > 0.
n—soo

Proof. Omitted. O

Theorem 7. Let (X,G) be a metric space, p = (p,) and T = (T,) be two sequences
satisfying (2.1) condmons such that p, <ty foralln e Nand 0 <o < B < 1. If

lim pg
n—oo T}’l

=a>0, (2.2)

then WS§ C WSS
Proof. Omitted. 0
Corollary 3. Let (X,0) be a metric space, p = (p,) and Tt = (1,) be two sequences

satisfying (2.1) condztzons such that p, < T, foralln € Nand 0 < a < 1. If (2.2)
holds, then

(i) WS® C WS,
(ii) WS C WSS‘.
Theorem 8. Let (X,0) be a metric space, p = (p,) and T = (1) be two sequences
satisfying (2.1) conditions such that p, < T, foralln e Nand 0 < a <P < 1. If

Tim sup p—" < oo, 2.3)

n—seo Tn

then WS% C WSt
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Proof. Let Ay — A(WSg) and for € > 0. We have

Py 1
fﬁp@]{kén c|d (x,Ar) —d (x,A)| > €}].

Tn Pn

1
T—B H{k <n:|d(x,Ax)—d(x,A)| >e}| <

Using the condition and A; — A(WSS‘) we have WSg C wsb.
OJ

Corollary 4. Let (X,0) be a metric space, p = (p,) and Tt = (1,) be two sequences
satisfying (2.1) conditions such that p, < T, foralln e Nand 0 < a < 1. If (2.3)
holds, then

(i) WS C WS
(ii) WS¢ C WSk,

3. RESULTS RELATED TO ORLICZ FUNCTION

An Orlicz function is a function M: [0,00) — [0,0), which is continuous, non-
decreasing and convex with M(0) =0, M(x) > 0 for x > 0 and M(x) — oo as x — oo.

The study of Orlicz sequence spaces was initiated with a certain specific purpose
in Banach space theory. Indeed, Lindberg [23] got interested in Orlicz sequence
spaces in connection with finding Banach spaces with symmetric Schauder bases
having complementary subspaces isomorphic to ¢y or £, (0 < p < ). Subsequently,
Lindenstrauss and Tzafriri [24] used the idea of Orlicz function to construct the se-

quence space
EM—{xew: M(|)§‘><ooforsomep>0}.
k=1

The space ) with the norm

, - |Xk|>
=inf{p>0: ) M < <1
Joll =int{p >0: 01 (1) <1}

becomes a Banach space, called an Orlicz sequence space. The space ¢y, is closely
related to the space ¢, which is an Orlicz sequence space with M(x) = |x|” for 1 <
p < oco. Lindenstrauss and Tzafriri [24] proved that every Orlicz sequence space £y
contains a subspace isomorphic to [, (1 < p < o). The Orlicz sequence spaces are
the special cases of Orlicz spaces studied in [22].

It is well known that if M is a convex function and M(0) = 0, then M (Ax) < AM(x)
forall A withO < A < 1.

Definition 3. Let (X,0) be a metric space. Let M be an Orlicz function, p = (px)
be a sequence of strictly positive real numbers, a € (0,1], p = (p,) be a sequence



574 NAZLIM DENIZ ARAL, HACER SENGUL KANDEMIR, AND MIKAIL ET

such as above and for A > 0, now we define

o _ . 1 ¢ ’d(va)_d(x7A)’ P
<Wp,[M,<p>1>—{{Ak}ex‘p%k;[zw( A o,

for some A and for x € X}.

If M(x) = x and py = 1 for all k € N then we shall write (W*, [M, (p)]) = Wg' and
if M(x) = x, then we shall write (W3, [M, (p)]) = (WS, (p)). If py =1 forallk € N

then we shall write (W', [M, (p)]) = (W;‘, [M]) .

In the following theorems, assume that the sequence p = (px) is bounded and
0<h:infkpkgpkgsupkpk:H<oo.

Theorem 9. Let 0 < o < B < 1, M be an Orlicz function and p = (p,) be a
sequence such as above, then (Wg',[M, (p)]) C WSE.

Proof. Let {Ay} € (W3, [M,(p)]. Let € > 0 be given. As pjy < p?, for each n we
can write

Sk

1 u [M<|d<x’Ak)_d(x’A)|>rk

% k=1 A
|d(x,Ar)—d(x,A)|>€
1 a |d (x,Ar) —d (x,A)] \ ]7*
Y {M ( X
|d(x,Ap)—d(x.A)|<e
" Dk
L [u(MeA)—ded)
PE k=1 A

1 n 1 .
> ()] =5 X min(ME) M)
Pn (oA o) > P e ) dleA) e

> plﬁ [{k <n:1d (v,A) — d (x,4)| > el min ([M(eD)]", M (e1))")

where € = §. From the above inequality we have {A;} € WS[S .
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Corollary 5.
(i) Let 0 < o < 1, M be an Orlicz function and p = (p,) be a sequence as above,
then (W, [M, (p)]) C WS3.
(ii) Let p = (pn) be a sequence as above and 0 < a. < B < 1, then (W', [M]) C
(WSh).

Theorem 10. Let M be an Orlicz function,{Ay} be a sequence in L. (X) and
p = (pn) be a sequence. If lim,_,e % = 1, then WSg C (W, [M, (p)])-

n
Proof. Suppose that {A;} is in Le (X) and Ay — A(WSJ). As {Ar} € Lo (X)
there exists 7 > 0 such that |d (x,A) —d (x,A)| < T for all k. For given € > 0 we
have

i) MD]H (k<0 [a )~ (5.4)| > o)

| :
ERIRUBIY

We give the following results without proof.

Theorem 11. Let p = (p,) be a sequence as above and 0 < o < B < 1, then
(W [v]) < (W, [)).
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Theorem 12. Let p = (p,) and T = (1,) be two sequences such that p, < T, for
o

alln €N, 0< a<B< L Iflimg ot =a> 0, then (WE,[M]) C (Wg',[M).

Tﬂ

Corollary 6. Let p = (p,) and © = (1,) be two sequences such that p, < T, for all
o

ne N If lim, e p—g = a > 0 holds, then (WZ*,[M]) C (Wg,[M]) for 0 <a < 1.
T

Theorem 13. Let p = (p,) and © = (1,) be two sequences such that p, < T, for
o

alln €N, 0< o< B< L If limy oo & = 1, then (WE, [M])  (WSY).

Theorem 14. Let M be an Orlicz function and infy py > O, the limit of any se-
quence {Ar} € (W3, [M, (p)]) is unique.

Proof. Let limy py = s > 0. Suppose that Ay — A (W, [M, (p)])) and Ay —
A(Wg,[M,(p)]). Then there exists A; > 0 and A, > 0 such that

im L § [ (e A )"

n=ee Py

I ) Y (LA Ry

n=ee Py

Let A = max{2A;,2A, }. As M is nondecreasing and convex, we have

1 ¢ [ <|d (x,A1) d(x,Aﬁ)]pk

Pr =1
i ([ (|d(xAk d(x,A |>]p"+[ (d XAk)x d(x,A2)|)]pk)
k 2

D
PH it
<P

Lo ()
g (o (ERre)])) o

as n — oo, where sup; py = H and D = max(1,27~1). Therefore we get
1 & d(x,A1)—d(x,A Pk
limZ[M<| (A1) —dx, Z)N —0.
n%oop(x A

As limy pr = s, we have

Jim [M<|d(x,A1);d(x,A2)>]p" _ [M<|d(x,A1);d(x7A2)|>T

and so A| = A,. Thus, the limit is unique. ]

N
[\
=

ke
[\
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