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Abstract. In this paper we introduce the concepts of Wijsman ρ-statistical convergence of order
α and Wijsman strongly ρ-convergence of order α. In addition, some inclusion theorems are also
presented.
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1. INTRODUCTION

The concept of statistical convergence was introduced by Steinhaus [30] and Fast
[18]. Schoenberg [28] established some basic properties of statistical convergence
and studied the concept as a summability method. Later on it was further investigated
from the sequence space point of view and linked with summability theory by Altınok
et al. [1], Aral et al. ([2,3]), Bhardwaj and Dhawan [5], Çakallı et al. ([6–8]), Caserta
et al. [9], Çınar et al. [10], Connor [12], Çolak [11], Demirci et al. [13], Et et al.
([14–17]), Fridy [19], Gadjiev and Orhan [20], Işık and Akbaş [21], Salat [26], Savaş
and Et [27], Şengül [29] and many others.

Let (X ,σ) be a metric space. The distance d(x,A) from a point x to a non-empty
subset A of (X ,σ) is defined to be

d(x,A) = inf
y∈A

σ(x,y).

If supk d(x,Ak)< ∞ (for each x ∈ X), then we say that the sequence {Ak} is bounded.
The set of all bounded sequences of sets denoted L∞ (X).

The concepts of Wijsman statistical convergence for the sequence were given by
Nuray and Rhoades [25] and the concept were generalized by Ulusu et al. ([31],[32]).
In this paper we introduce the concepts of Wijsman ρ-statistical convergence of order
α and Wijsman strongly ρ-convergence of order α.
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2. RESULTS

Definition 1. Let (X ,σ) be a metric space and α ∈ (0,1]. For any non-empty
closed subsets A,Ak ⊂ X , we say that the sequence {Ak} is Wijsman ρ-statistical
convergent to A of order α ( or WSα

ρ -convergent to A ) if for each ε > 0 and x ∈ X ,

lim
n→∞

1
ρα

n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}|= 0,

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to ∞

such that
limsup

n

ρn

n
< ∞, ∆ρn = O(1) and ∆ρn = ρn+1−ρn (2.1)

for each positive integer n. In this case, we write Ak −→ A(WSα
ρ). The set of all

Wijsman ρ-statistical convergent sequences to A of order α will be denoted by WSα
ρ .

If ρn = n, for all n ∈ N, Wijsman ρ-statistical convergence of order α is coin-
cided with Wijsman statistical convergence of order α denoted by Ak −→ A((WSα)).
If α = 1, Wijsman ρ-statistical convergence of order α is coincided with Wijsman
ρ-statistical convergence which were defined by Aral et al. [4]. In this case we write
Ak→ A(WSρ). If ρn = n for all n ∈ N and α = 1, Wijsman ρ-statistical convergence
of order α is coincided with Wijsman statistical convergence which were defined by
Nuray and Rhoades [25].

Definition 2. Let (X ,σ) be a metric space and α ∈ (0,1]. For any non-empty
closed subsets A,Ak ⊂ X , we say that the sequence {Ak} is said to be Wijsman
strongly ρ-summable of order α to A, if for each ε > 0 and x ∈ X ,

lim
n→∞

1
ρα

n

n

∑
k=1
|d (x,Ak)−d (x,A)|= 0.

The set of all Wijsman strongly ρ-summable sequences of order α to A will be
denoted by W α

ρ . In this case we write Ak −→ A(W α
ρ ). If ρn = n for all n∈N, Wijsman

strong ρ-summability of order α is reduced to Wijsman strong summability of order
α denoted by Ak −→ A((W α)). If α = 1, Wijsman strong ρ-summability of order
α is reduced to Wijsman strong ρ-summability denoted by Ak −→ A

(
(Wρ)

)
which

were defined by Aral et al. [4]. If ρn = n for all n ∈ N and α = 1, Wijsman strong
ρ-summability of order α is reduced to Wijsman strong summability which were
defined by Nuray and Rhoades [25].

We give the following results without proof.

Theorem 1. Let (X ,σ) be a metric space and α ∈ (0,1]. If Ak −→ A(WSα
ρ), then

A is unique.

Theorem 2. Let (X ,σ) be a metric space, α ∈ (0,1] and A,Ak (for all k ∈ N) be
non-empty closed subsets of X , then
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(i) If Ak −→ A(WSα
ρ) and c ∈ C, then cAk −→ cA(WSα

ρ).
(ii) If Ak −→ A(WSα

ρ) and Bk −→ B(WSα
ρ), then (Ak +Bk)−→ (A+B)(WSα

ρ).
(iii) If Ak −→ A(W α

ρ ) and c ∈ C, then cAk −→ cA(W α
ρ ).

(iv) If Ak −→ A(W α
ρ ) and Bk −→ B(W α

ρ ), then (Ak +Bk)−→ (A+B)(W α
ρ ).

Corollary 1. In the case ρn = n (for all n∈N) (i)-(iv) hold in the above Theorem 2.

Theorem 3. Let (X ,σ) be a metric space, α,β ∈ (0,1] such that α ≤ β and A,Ak

(for all k ∈N) be non-empty closed subsets of X, then WSα
ρ ⊂WSβ

ρ and the inclusion
is strict.

Proof. The inclusion part of the proof is easy. To prove the inclusion is strict define
a sequence {Ak} such that

Ak :=

{
{k,k} if k = n2;
{0,0} otherwise.

Then {Ak} ∈WSβ

ρ for 1
2 < β6 1 but {Ak} /∈WSα

ρ for 0 < α6 1
2 . �

Corollary 2. Let (X ,σ) be a metric space, α ∈ (0,1] and A,Ak (for all k ∈ N) be
non-empty closed subsets of X. If Ak −→ A(WSα

ρ), then Ak −→ A(WSρ).

Theorem 4. Let (X ,σ) be a metric space, α ∈ (0,1] and A,Ak (for all k ∈ N) be
non-empty closed subsets of X , then

(i) Ak→ A(W α
ρ )⇒ Ak→ A(WSα

ρ) and W α
ρ is a proper subset of WSα

ρ .
(ii) {Ak} ∈ L∞ (X) and Ak→ A(WSρ)⇒ Ak→ A(Wρ).

(iii) WSρ∩L∞ (X) =Wρ∩L∞ (X) .

Proof.
(i) The inclusion part of the proof is easy. In order to show that the inclusion

W α
ρ ⊆WSα

ρ is proper, we define a sequence {Ak} as follows:

Ak =

{
{
√

k} if k = n2;
{0} otherwise.

Let X = R, d (x,y) = |x− y| (x,y ∈ X) and ρn = n for all n ∈ N. For ε > 0,
x > 0 and 1

2 < α6 1, we have

1
ρα

n
|{k 6 n : |d (x,Ak)−d (x,{0})| ≥ ε}| ≤ (

√
n)

nα
→ 0, as n→ ∞

and so we get Ak→ 0
(

WSα
ρ

)
.

On the other hand, for 0 < α6 1 and x > 0,

1
ρα

n

n

∑
k=1
|d (x,Ak)−d (x,{0})|=

√
n(
√

n+1)
2nα

→ ∞
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and for α = 1 √
n(
√

n+1)
nα

→ 1.

So Ak 9 0
(

W α
ρ

)
.

(ii) Omitted.
(iii) Omitted.

�

Theorem 5. Let (X ,σ) be a metric space, α ∈ (0,1] and A,Ak (for all k ∈ N) be
non-empty closed subsets of X. Then, WSα ⊂WSα

ρ if liminfn
ρα

n
nα > 0.

Proof. Proof follows from the following inequality:

1
nα
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}|> ρn

α

nα

1
ρα

n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}| .

�

Theorem 6. Let (X ,σ) be a metric space, α ∈ (0,1] and A,Ak (for all k ∈ N) be
non-empty closed subsets of X. WS⊂WSα

ρ if

lim
n→∞

inf
ρα

n

n
> 0.

Proof. Omitted. �

Theorem 7. Let (X ,σ) be a metric space, ρ = (ρn) and τ = (τn) be two sequences
satisfying (2.1) conditions such that ρn 6 τn for all n ∈ N and 0 < α6 β6 1. If

lim
n→∞

ρα
n

τ
β
n
= a > 0, (2.2)

then WSβ

τ ⊆WSα
ρ .

Proof. Omitted. �

Corollary 3. Let (X ,σ) be a metric space, ρ= (ρn) and τ= (τn) be two sequences
satisfying (2.1) conditions such that ρn 6 τn for all n ∈ N and 0 < α 6 1. If (2.2)
holds, then

(i) WSα
τ ⊆WSα

ρ .
(ii) WSτ ⊆WSα

ρ .

Theorem 8. Let (X ,σ) be a metric space, ρ = (ρn) and τ = (τn) be two sequences
satisfying (2.1) conditions such that ρn 6 τn for all n ∈ N and 0 < α6 β6 1. If

lim
n→∞

sup
ρα

n

τ
β
n
< ∞, (2.3)

then WSα
ρ ⊆WSβ

τ .
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Proof. Let Ak→ A(WSα
ρ) and for ε > 0. We have

1

τ
β
n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}|6 ρα

n

τ
β
n

1
ρα

n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}| .

Using the condition and Ak→ A(WSα
ρ) we have WSα

ρ ⊆WSβ

τ .
�

Corollary 4. Let (X ,σ) be a metric space, ρ= (ρn) and τ= (τn) be two sequences
satisfying (2.1) conditions such that ρn 6 τn for all n ∈ N and 0 < α 6 1. If (2.3)
holds, then

(i) WSα
ρ ⊆WSα

τ .
(ii) WSα

ρ ⊆WSτ.

3. RESULTS RELATED TO ORLICZ FUNCTION

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-
decreasing and convex with M(0) = 0, M(x)> 0 for x > 0 and M(x)→ ∞ as x→ ∞.

The study of Orlicz sequence spaces was initiated with a certain specific purpose
in Banach space theory. Indeed, Lindberg [23] got interested in Orlicz sequence
spaces in connection with finding Banach spaces with symmetric Schauder bases
having complementary subspaces isomorphic to c0 or `p (0≤ p < ∞). Subsequently,
Lindenstrauss and Tzafriri [24] used the idea of Orlicz function to construct the se-
quence space

`M =

{
x ∈ w :

∞

∑
k=1

M
(
|xk|
ρ

)
< ∞ for some ρ > 0

}
.

The space `M with the norm

‖x‖= inf
{

ρ > 0 :
∞

∑
k=1

M
(
|xk|
ρ

)
≤ 1
}

becomes a Banach space, called an Orlicz sequence space. The space `M is closely
related to the space `p which is an Orlicz sequence space with M(x) = |x|p for 1 ≤
p < ∞. Lindenstrauss and Tzafriri [24] proved that every Orlicz sequence space `M
contains a subspace isomorphic to lp (1 ≤ p < ∞). The Orlicz sequence spaces are
the special cases of Orlicz spaces studied in [22].

It is well known that if M is a convex function and M(0) = 0, then M(λx)6 λM(x)
for all λ with 0 < λ < 1.

Definition 3. Let (X ,σ) be a metric space. Let M be an Orlicz function, p = (pk)
be a sequence of strictly positive real numbers, α ∈ (0,1], ρ = (ρn) be a sequence
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such as above and for λ > 0, now we define

(W α
ρ , [M,(p)]) =

{
{Ak} ∈ X :

1
ρα

n

n

∑
k=1

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

→ 0,

for some A and for x ∈ X

}
.

If M(x) = x and pk = 1 for all k ∈ N then we shall write (W α
ρ , [M,(p)]) =W α

ρ and
if M(x) = x, then we shall write (W α

ρ , [M,(p)]) = (W α
ρ ,(p)). If pk = 1 for all k ∈ N

then we shall write (W α
ρ , [M,(p)]) =

(
W α

ρ , [M]
)
.

In the following theorems, assume that the sequence p = (pk) is bounded and
0 < h = infk pk 6 pk 6 supk pk = H < ∞.

Theorem 9. Let 0 < α 6 β 6 1, M be an Orlicz function and ρ = (ρn) be a
sequence such as above, then (W α

ρ , [M,(p)])⊂WSβ

ρ.

Proof. Let {Ak} ∈ (W α
ρ , [M,(p)]. Let ε > 0 be given. As ρα

n 6 ρ
β
n for each n we

can write
1

ρα
n

n

∑
k=1

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

=

1
ρα

n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

+
1

ρα
n

n

∑
k=1

|d(x,Ak)−d(x,A)|<ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

>
1

ρ
β
n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

+
1

ρα
n

n

∑
k=1

|d(x,Ak)−d(x,A)|<ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

>
1

ρ
β
n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

[
M
(

ε

λ

)]pk
>

1

ρ
β
n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

min
(
[M(ε1)]

h, [M(ε2)]
H
)

>
1

ρ
β
n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}|min

(
[M(ε1)]

h, [M(ε1)]
H
)
.

where ε1 =
ε

λ
. From the above inequality we have {Ak} ∈WSβ

ρ.
�
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Corollary 5.
(i) Let 0 < α6 1, M be an Orlicz function and ρ = (ρn) be a sequence as above,

then (W α
ρ , [M,(p)])⊂WSα

ρ .
(ii) Let ρ = (ρn) be a sequence as above and 0 < α 6 β 6 1, then (W α

ρ , [M]) ⊆
(WSβ

ρ).

Theorem 10. Let M be an Orlicz function,{Ak} be a sequence in L∞ (X) and

ρ = (ρn) be a sequence. If limn→∞

ρn

ρα
n
= 1, then WSα

ρ ⊆ (W α
ρ , [M,(p)]).

Proof. Suppose that {Ak} is in L∞ (X) and Ak −→ A(WSα
ρ). As {Ak} ∈ L∞ (X)

there exists T > 0 such that |d (x,Ak)−d (x,A)| 6 T for all k. For given ε > 0 we
have

1
ρα

n

n

∑
k=1

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

=

1
ρα

n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

+
1

ρα
n

n

∑
k=1

|d(x,Ak)−d(x,A)|<ε

[
M
(
|d (x,Ak)−d (x,A)|

λ

)]pk

6
1

ρα
n

n

∑
k=1

|d(x,Ak)−d(x,A)|>ε

max

{[
M
(

T
λ

)]h

,

[
M
(

T
λ

)]H
}

+
1

ρα
n

n

∑
k=1

|d(x,Ak)−d(x,A)|<ε

[
M
(

ε

λ

)]pk

6max

{[
M
(

T
λ

)]h

,

[
M
(

T
λ

)]H
}

1
ρα

n
|{k 6 n : |d (x,Ak)−d (x,A)| ≥ ε}|

+
ρn

ρα
n

max
{[

M
(

ε

λ

)]h
,
[
M
(

ε

λ

)]H
}
.

Therefore {Ak} ∈ (W α
ρ , [M,(p)]).

�

We give the following results without proof.

Theorem 11. Let ρ = (ρn) be a sequence as above and 0 < α 6 β 6 1, then
(W α

ρ , [M])⊆ (W β

ρ , [M]).
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Theorem 12. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for

all n ∈ N, 0 < α6 β6 1. If limn→∞

ρα
n

τ
β
n
= a > 0, then (W β

τ , [M])⊆ (W α
ρ , [M]).

Corollary 6. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for all

n ∈ N. If limn→∞

ρα
n

τ
β
n
= a > 0 holds, then (W α

τ , [M])⊆ (W α
ρ , [M]) for 0 < α6 1.

Theorem 13. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for

all n ∈ N, 0 < α6 β6 1. If limn→∞

ρα
n

τ
β
n
= 1, then (W β

τ , [M])⊆ (WSα
ρ).

Theorem 14. Let M be an Orlicz function and infk pk > 0, the limit of any se-
quence {Ak} ∈ (W α

ρ , [M,(p)]) is unique.

Proof. Let limk pk = s > 0. Suppose that Ak → A1((W α
ρ , [M,(p)])) and Ak →

A(W α
ρ , [M,(p)]). Then there exists λ1 > 0 and λ2 > 0 such that

lim
n→∞

1
ρα

n

n

∑
k=1

[
M
(
|d (x,Ak)−d (x,A1)|

λ1

)]pk

= 0,

and

lim
n→∞

1
ρα

n

n

∑
k=1

[
M
(
|d (x,Ak)−d (x,A2)|

λ2

)]pk

= 0.

Let λ = max{2λ1,2λ2}. As M is nondecreasing and convex, we have

1
ρα

n

n

∑
k=1

[
M
(
|d (x,A1)−d (x,A2)|

λ

)]pk

6
D
ρα

n

n

∑
k=1

1
2pk

([
M
(
|d (x,Ak)−d (x,A1)|

λ1

)]pk

+

[
M
(
|d (x,Ak)−d (x,A2)|

λ2

)]pk
)

6
D
ρα

n

n

∑
k=1

1
2pk

([
M
(
|d (x,Ak)−d (x,A1)|

λ1

)]pk

+
D
ρα

n

n

∑
k=1

1
2pk

([
M
(
|d (x,Ak)−d (x,A2)|

λ2

)]pk
))
→ 0

as n→ ∞, where supk pk = H and D = max(1,2H−1). Therefore we get

lim
n→∞

1
ρα

n

n

∑
k=1

[
M
(
|d (x,A1)−d (x,A2)|

λ

)]pk

= 0.

As limk pk = s, we have

lim
k→∞

[
M
(
|d (x,A1)−d (x,A2)|

λ

)]pk

=

[
M
(
|d (x,A1)−d (x,A2)|

λ

)]s

and so A1 = A2. Thus, the limit is unique. �
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