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Abstract. This work deals with a Petrovsky equation with delay term and variable exponents.
Firstly, we establish the local existence result by the Faedo-Galerkin method. Later, we prove
the blow-up of solutions in a finite time. Our results are more general than the earlier results.
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1. INTRODUCTION

In this work, we study the following Petrovsky equation with variable exponents
and delay term

s+ Nu— Aug + g (x,1) | \m(x)fz (x,1)

; +
Sy (x,1 — 1) Juag |72 (1 — ) = bu P2 QxR
u(x,r) = 2480 inoQ x [0,00),  (1.1)
u(x,0) =up(x), u (x,0) =u; (x) in Q,
u (x,t — 1) = fo (x,1 —1) in Qx (0,1),

where Q is a bounded domain with smooth boundary dQ in R", n > 1. Here, T >0
is a time delay term, b > 0 is a constant, g is a positive constant and w, is a real
number. The functions ug, u;, fo are the initial data to be specified later.

The variable exponents p(-) and m(-) are given as measurable functions on Q
satisfy:

2<m <m(x) <m" <m*
: . (12)
2<p <px)<p"<p
where
m~ = essinfm (x), m*t = esssupm (x),
xeQ xXeQ
p~ =essinfp(x), pT =esssupp(x),
XEQ xXEQ
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and

m*,p*:M ifn>4.
n—4

The problems with variable exponents arises in many branches in sciences such as
electrorheological fluids, nonlinear elasticity theory and image processing [3,4, 20—

]. Time delay often appears in many practical problems like thermal, biological,
chemical, physical and economic phenomena [7].

There has been published much work concerning the wave equations with variable
exponents or time delay. Our goal is to consider the Petrovsky equation both with
the delay term (upu, (x,7 — T)) and variable exponents which make the problem more
interesting than from those concerned in the literature.

Li et al. [11] considered the Petrovsky equation with strong damping term as fol-
lows

un+A2u—Au,+|u,|p72u, = |u\q72u. (1.3)

The authors established the blow up of solutions, existence and decay of the problem
(1.3). Then, Polat and Pigkin [19] proved the global existence and decay of solutions
of (1.3).

In [12], Messaoudi studied the Petrovsky equation as follows

U+ Nu+g () = Blul” " u, (1.4)

where g (1;) = ot|u;|P~" u, and he investigated the blow-up result in finite time for
r> p. In[25], for when g (u;) = ot |u|” ~!4,, Tsai and Wu looked into that the solution
is global for equation (1.4). Moreover, they established the blow-up result in finite
time for the nonnegative initial energy.

Messaoudi and Kafini [6] looked into the nonlinear wave equation with variable
exponents and delay term as follows

ey — A+ vty (x,1) [ |72 (3, 8) + oy (3,1 — ) [ |72 (3,1 — 1) = bu P72

They proved the global nonexistence and decay estimates of the equation (1).

In recent years, some other authors investigate hyperbolic type equation with vari-
able exponents (see [8, 13,16, 18,24]).

There is no research, to our best knowledge, about Petrovsky equation with delay
term and variable exponents, hence, our paper is generalization of the previous ones.
In this paper, our main goal is to study the local existence and blow-up result of
Petrovsky equation (1.1) with variable exponents and delay term.

The plan of this paper is as follows. Firstly, in Section 2, the definition of the
variable exponent Sobolev and Lebesgue spaces are introduced. In Section 3, we
obtain the local existence result. Finally, in Section 4, we prove the blow-up result
for negative initial energy.
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2. PRELIMINARIES

In this part, we state the results related to Lebesgue L’()(Q) and Sobolev
whr() (Q) spaces with variable exponents (see [1,2,4,5, 10, 17]).

Let p: Q — [1,00) be a measurable function. We define the variable exponent
Lebesgue space with a variable exponent p (-) by

’YQ) = {u: Q — R; measurable in Q : / |u?") dx < oo },
Q
with a Luxemburg-type norm

u |p)
=1 : = < .
lul mf{x>o /9’7\, dx_l}

Equipped with this norm, L(") (Q) is a Banach space (see [4]).
Next, we define the variable-exponent Sobolev space W!-»() (Q) as following:

wir0) (Q) = {u € 1PV (Q) : Vuexists and |Vu| € L) (Q)} :
Variable exponent Sobolev space with the norm
ey py = loellor + 1Vl
is a Banach space. WOLP © (€) is the space which is defined as the closure of Cj' (Q)
in WP (Q). Foru € Wol’p(') (Q), we can define an equivalent norm
el piy = [Valloco -
The dual of WOl 2() (Q) is defined as W(;l”7 © (Q), similar to Sobolev spaces, where
1 1
PO PO
We also assume that:

A B
pxX)—p)| < -7 and mx)—m((y)| < ————
p() =P O] < ooy ) =m )] <€~

forall x,y € Q,A,B>0and 0 < § < I with |[x—y| < J (log-Hélder condition).

2.1

Lemma 1 ([ 1] Poincare inequality). Let Q be a bounded domain of R* and suppose
that p (-) satisfies (2.1). Then,

lulls < eVl for allwe Wy ™ (@),
where c=c(p~,p™,|Q|) > 0.

Lemma 2 ([1]). If p: Q — [1,) is continuous,
+ < 2n
_— n_2’

2<p <px)<p



844 ERHAN PISKIN AND HAZAL YUKSEKKAYA
satisfies, then the embedding H) (Q) — LP") (Q) is continuous.

Lemma 3 ([1]). If pt < oo and p: Q — [1,) is a measurable function, then
Cy (Q) is dense in L'V) (Q).

Lemma 4 ([1] Holder’ inequality). Let p,q,s > 1 be measurable functions defined
on Q and

= + , forae yeQ,

satisfies. If f € LPY) (Q) and g € L1V) (Q), then fg € L°Y) (Q) and

1£8llscy) < 211y 18l -

Lemma 5 ([6, Lemma 2.5] unit ball property). Let p > 1 be a measurable function
on Q. Then| f||,.) < Lifand only if p,() (f) < 1, where

oy (1) = [ 17 )" a.
Lemma 6 ([1]). If p > 1 is a measurable function on Q, then
. - + - +
min { a2 Nl } <y () < max {2l b

for any u € LPV) (Q) and for a.e. x € Q.

Remark 1. Let c be various positive constants which may be different from line to
line. Then, we use the embedding

H; (Q) < Hy (Q) < LF ()

which satisfies

ull , < c[[Vull < | Aull,

where 2 < p <o (n=1,2),2<p < -2 (n>3).

Moreover
lully < CllAull,
o0 ifn <4,
g =< anynumberin [l,00) ifn=4,
2(n-2)
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3. LOCAL EXISTENCE

In this part, our goal is to prove the local existence result for our main problem
(1.1) by using Faedo-Galerkin method. We use similar arguments as in [ 14, 16] to get
the result. Firstly, we give the lemma which we need:

Lemma 7 ([9, Lemma 3.1]). (Lemma 3.1 in [9]) Let x € Q and p(+) satisfies
2<p <p() <p <o
plx)—2

then, h(s) = b|s|"™ 2 is differentiable function and |l (s)| = b|p (x) — 1|3

Suppose that y; and uy satisfy

-

2| < e U (3.1

where m~ = essin fycqom (x), m* = essup freom (x). Assume that { is a positive
constant such that

Tt =) <{<t(mpu —|wl). (3.2)

Now, similar to [15], we introduce, the new variable
2(x,p,t) = u; (x,1 —1p), xeQ,pe(0,1),r>0.

Hence, problem (1.1) takes the form

gy + A% — A g [ (x,0)["O) 2, (1) oot

o |2 (6, 1,0)™ 972 2 (x, 1,2) = bu|ulP 2 ’
% (X,p,1) +2p (x,p,2) =0 inQx(0,1) x (0,00),
u(x,t):wzo on 0Q x (0,0), (3.3)
u(x,0) =ugp(x), u (x,0) = u; (x) in Q,
z(x,p,O):fO(x,—’rp) iIlQX(O,l)7
z(x,0,t) = u; (x,1) in Q x (0,).

Theorem 1. Assume that (3.1) holds and m (-) satisfies (1.2), (2.1) and p (-) satis-
fies (2.1) and

2(n—2)
n—4

Assume further that (uo,u1) € HZ (Q) x L*(Q), fo € L") (Qx (0,1)) and T > 0.
Then, the problem (3.3) has a unique local solution

ueC([0,T];H3 (Q)),
w € C([0,T];:L2(Q))NL" (@ (0,T)),
ze L (@x(0,1)).

2<p <p)<p < ifn>4 (34
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Proof. Existence: Let v e L ((0,T);H3 (Q)). Since

2n

- _ +_
2 =) <2(p" =) < ——7,

then
R ()| < |b* {/ \v|2<1”—”dx+/ 2P dx} < oo,
Q Q
Hence, we have
h(v) € L ((0,T);L*(Q)) C L* (@ x (0,T)).
Thus, for each v € L™ ((0,T) ; Hj (Q)), there exists a unique solution

we L7 ((0,7);Hg (@),
w € L7 ((0,7);L7(2)) L") (@ % (0,T)),
zeL"(Qx(0,1))

satisfying the following problem

i+ A _Aurtn(j)_—éll o (e )™ (1) inQx (0,7),
2|z (e L) z(x, 1,8) = h(v)
TZt(xapvt)+ Zp(xap7t)zo inQX(Oal)X(O?T)v
u(x,r) = a”éi’” =0 on dQ x (0,T), (3.5)
u ()C,O) = Up (x)a Ut (X,O) =up ()C) in Q,
Z(x,O,t)zu,(x,t) ian(O,T),
2(x,p,0) = fo (x,—p) in Qx (0,1).

Define the following space that the sequence (1X) is Cauchy in
X:=C([0,T];H; (Q))nc' ([0,T];L*(Q)),

equipped with the norm
2 2 2
= A }
ol = g { >+ e

We define the nonlinear mapping K: X — X by K (v) = u, here, u is the unique
solution of (3.5). Now, we shall show that there exist 7 > 0, such that

i K: X =X,

(i1) K is a contraction mapping in X.
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To show (i), we multiply the first equation in (3.5) by u, and integrate over Q x (0,1),
to obtain

Sl 3 1l [ 1ulPs g [ a6 aas
+y2/ / |z(x,1,s)|mk z(x,1,8) uy (s)dxds (3.6)
1

:5/ dx+2/ | Au| derb/ / [P =2 vy (5) dxds.

We multiply the second equation in (3.5) by %z’"(")*l, and integrate over

Q% (0,1) x (0,7), to have

//gm 2, p,) "™ = [z (x, p, 0)" )dxdp

—// C !z (x,0,5)") —]z(x,l,s)\m(x)>dxds. 3.7)
Q m
Combining (3.6) and (3.7), we have

1 1 ! ! nix
P+ 5 >+ [V Pas+ [ [ imx,p,z)\ ) dxdp
‘HJI//‘”t dXdS+H2//|Z x1,s)[" (x,l,s)u,(s)dxds
m(x) _ m(x)
//Qm ]z (x,1,8)|" |u; ()] )dxds (3.8)
—/ 2dx+ ~ /|Au0| dx+/ /
+b/ / V[P 2 v, (s) dxds

Utilizing Young’s inequality and (1.2), we get

)| dxdp

— 2 /Q |z(x, 1,5) |mm72 z(x, 1,8) u; (s)dxds

+_1 m(x
<ol e O DU [ g ar Gy
m- Ja m Q

Applying Young’s inequality and Sobolev embedding H3 (Q) < = (Q), we obtain

S 1 o)
Sz/g‘”t(s)‘zdx"‘g/gh"’z(p() !

€ 2 Ce 2(p~-1) 2(pt-1)
< — — .
< 4/Q|ut (s)]>dx+ . {||Av|\ +|Av| } (3.10)

v\p Zyuy (
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here, c, is the embedding constant. We should inserting (3.9) and (3.10) into (3.8),
then, we have

3 lal 5 ] +/ IV ds+/ s e adp

+<,u1 Luz\ >//]u, *) dxds
m-
C  (m"—1)|ul m(x)
+<m+1_ o //|Z(x,1,s)| dxds
1 C
35/ Tdx+ ~ /|Auo| dx+// )" dxdp
+—sup/|u,| dx+ &€ {/ | Av]27 ds+/ ||Av|2<f’”>ds}.
0

By (3.2), we have

1 1 g
E(SUP o || +§(SUPHA”H +-rllz(xp, t)Hme (@x(0,1))

<5/ 2dx+ = /!Auol dx—i—C/ /!fo mdedP

ecT cecT -1) 2(pt—1
+ s P+ {Hvux" S IvIET

By taking € such that ecT = 1, we get

A ¢’ 2 gt
el < ?/Q“ld”f/gm“()’ dx+m,/0 /Q‘fO(xa—TP)’m(x)dxdp
2(p~—1 2(pT—1
e {IME" "+

1L
40 mt
that [|v||, <M, then

2c* 1
c*/ u%dx+c*/ ]Auo\zdx—kcc/ / fo (x, —7p) "™ dxdp < M?
Q Q m~ Jo Jo

and T sufficiently small such that

where Ci = min{ } and ¢, = © gec Here, we choose M > 0 large enough, such

1
T's 2¢. (M2(p:2) +M2(P+*2)) )

As a result, we have
lul 5 < M.
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Thus we have K : Z — Z, where
Z ={u € X such that ||u|, <M}.

Next, we show that K is a contraction mapping. For this purpose, we let
K(vl) =u' and K(vz) =u® and set u = u' —u? and w = w! —w? then u and w
satisfy

(

wy + A%u — Au; + ‘u} (x,1) }m(x)—Z u! (x,1)
2
—p [ (e, )" ZH“? (x.1)
|, L) 2 (L) inQx(0,7),
) m(x)—2 2

—yz’z (x,l,t)| 77 (x, 1,1)

=b|v! T |v? "R ©-11)
u(x,t)= a”a):’t) =0 ondQ x (0,7),
z(th)—u,(x,t) inQx(0,T),
z(x,p,0) = inQx(0,1),

[ u(x,0)=0, ut(x,O)zo in Q.

We multiply equation (3.11) by u, and integrate over Q x (0,¢), we get
1 1 t
o P+ 5 sl + 19 s
t _n )
—HJI/O /Q (‘uzl (S)‘m(x) utl (s)— ‘u?( } m(x)— u,2 (s)) u, (s) dxds
t | m(x)—2 1 5 m(x)—2 )
+Au2/0 /Q‘ ‘Z (xalas)’ < (Xyl,S)—‘Z (X,l,s)’ Z (x’l7s) Mt(S)dde

:/Ot/g(h(vl)h(vz))u, (s) dxds,

where /1 (v) = b |v|P™ =2y, Since the function u — |u[™™ =2y is increasing, we con-
clude that

Sl sl + [V lRds < [ [ (b= hGa)u (dxds. G12)

Thanks to (3.4), Young’s inequality and Sobolev embedding, we obtain

) =h2) s (5) |dx—/|h’ ) IVl (5)] i

8
<X |u,( WP dx+ —

5 |h’ v| dx<—/ |y (s)|* dx

28

At {(/ ol >"+</Q|p”§2 dx)

n—4

] (/le|,,2"4dx>n

EIFS
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b (pt —1)c, - _
< 2 (o) + P gl ) g )] 6.13)
0
b2 (pt—1)%c. -
< 2 ()1 + e (b2 ) 22 ) P

wherev=v;—vyandp=39v;+ (1 —=9)1,, 0 <O < 1.
By inserting (3.13) into (3.12) and choosing 9y small enough, we obtain

lull < d|vilx, (3.14)

4h2(p*g1)2ceT M) 20t -2)
0

Now, we choose T small enough so that 0 < d < 1. Thus, (3.14) indicates that K is
a contraction. The Banach fixed theorem shows that the existence of a unique u € Z
satisfying K (1) = u. Obviously, it is a solution of (3.3).

Uniqueness: Assume that (3.3) have two solutions (u!,z"), (u?,z%). We define

u=u'—u?and 7 = z! — 72, then (u, 7) satisfy

where d =

/

fljt[[‘i‘AletJ—A/I/\il‘i‘lJ] ‘l/tt ‘ m(x)= zlzltl (t)
—HMi \Mzz \ 14 ( )
+IUZ‘Z x717t)‘ (X,],t) inQX(O’T)’
m(x)— 2
_IUZ‘Z x717t) ()C,l,t)
— pu! ‘Ml ‘P x)—2 bu2 }uz‘p (x)—2 (3.15)
12 (x,p,1) +2p (x,p,1) =0 inQx (0,1) x (0,T),
() = 2t in9Q x (0,T),
2 (x,0,1) = u (x,1) inQx (0,T),
7 (x,p,0) =0 inQx(0,1),
u(x,0) =0 u; (x,0) =0 in Q.
We multiply the first equation in (3.15) by u, and integrate over &, we get
1d ~ |2 ~12 2
Zdt{/g Uy dx+/ ‘Au‘ dx}+/ ‘Vu, dx
m(x)—2 m(x)—2
e [ (Ol 0~ O ) i (1) dn
n (3.16)

1 m(x)—2 1 0 m(x)—2 2 ~
+y2/ 1) L) — |2 L] 2 1) ) () dx
Q

= b/ (ul ‘ul ‘p(x)—Z —bu? ‘uz‘p(x)_2> u; (1) dx.
Q
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Multiplying the second equation in (3.15) by z and integrating over Q x (0,1), we

have
2dt//’ S ot (H (e, 1) H -

Combining (3.16) and (3.17), we have

1d
Vu
2dt{ L2(Qx(0,1) } /‘ ut

*iW@ﬂJW-ﬂuL(waww*%mn—wﬂ\<>2ﬁ@nm@mx

+,UZ/ <|Z1 (x, 1’[’) m(x)—2
Q

o Do ~ 1

:b/Q (ul‘ul‘p() z—buz‘uz‘p() 2) ut(t)dx—i—i‘

i (1 H >_0 3.17)

dx+’cH (x,p, t)

m(x)—2 ~
& (01,1~ [ (3, 1,0) f@Jﬂ)mwﬂ

N
i (z)” . (3.18)

Since the function y — [y|™ =2y s increasing, we get
m(x)—2 m(x)—2 ~
LQ@@|“ al ()= [ ()" () s (1) dx > 0, (3.19)
1 m(x)—2 1 > m(x)—2 2 ~
/ ' (x, L) (L) = |2 (L) 2 (x, Le) ) u (£)dx > 0. (3.20)
Q

By using (3.18), (3.19) and (3.20), we obtain

2m{/‘

iz(Qx(O,l))} +% HZ(x, 1,;)”2

<e(fao] + s

which implies that u = 0, 7 = 0. O

2
)H —I—THZ(x,p,t)

Mt

4. BLOW UP

In this part, for the case b > 0, we establish the blow-up result for our main problem
(1.1). Now we introduce, as in the work of [15], the new function

z2(x,p,1) = u; (x,1—=p), xX€Q, pe(0,1), >0,
which implies that

1% (x,p,1) +2p (x,p,1) =0, xeQ, pe(0,1), t>0.
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Consequently, problem (1.1) is equivalent to:
(

gy -+ A2 — At + g (x,1) g (x,) "2
iz (x,1,1) |z (x, 1,1) "0 —2 in Q x (0,00),
= bu|u|p(x)72
Tz (x,p,1) +2p (x,p,1) =0 inQx(0,1) x (0,00),  (4.1)
z(x,p,0) = fo (x,—pT) inQx(0,1),
u(x,1) = 2460 on 9Q x [0, o),
u(x,O):uo( ), ur (x,0) = uy (x) in Q.

We define the energy functional of (4.1) as

(F*I!ut\l +—HA I +//§ szpt ddp b/"p

for t > 0, where & is a continuous function satisfies
| (m(x) —1) <&(x) <T(um(x) —|w) xeQ. (4.2)

The following lemma gives that, under the condition ¢y > |uz|, E (¢) is nonincreasing.

Lemma 8. Let (u,z) be a solution of (4.1). Then there exists some Cy > 0 such
that

E’(t)g—Co/ (™ + 12 (x, 1,6 ) dx < 0,
Q

Proof. We multiply the first equation in (4.1) by u,, integrate over €2, then mul-
tiplying the second equation of (4.1) by %& (x) \z|m(x)72 z and integrate over Q x (0, 1),
summing up, we get

a1, o 1, / / &(x) |z (x, p, 1) "™ Jul ")
—|= —|IA —b
dt [2 ”ul‘H +2 || M” + o Ja m(x) dXdp o p(x) dx

m\x 1 ! m(x)—
= =1Vl = [ " dx == [ [TE )]z p) "z (1, pur) dp

—mn / iz (6, 1,6) 2 (x, 1,0) "™ 2 dx. - (4.3)
Q

Next, we estimate the last two terms of the right-hand side of (4.3) as following,

1 ! m(x)—
2 | [ e o) 22z (xp.r dp

Lo (e )™
__r/g/oap< n() )d"d"

1 €(x) » -
Tt o m(x) (|Z(x,0,t)| ()_|Z(X,1,t)] ())dx
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‘:( |,\ ) dx— /g 2 (x, 1,0) ")

QTm

% and ¢’ = m (x) for the last term to obtain

(
1 m(x)—l
(%) m (x)

Using the Young’s inequality, g =

e |2 (x, 1,0) "1 < g 2 (x, 1,0) ")

§

Consequently, we deduce that

—uz/ wz|z (x, 1,0)]" 2 dx
Q

<ol ([ sl P aes [ MO Linras).

e (S g
_A<an_Wme—n

m (x) m(x)

et dx

As a result, for all x € Q, the relation (4.2) satisfies,

p (X)—m—( !uz! >
—1)

Since m(x), and hence &(x), is bounded, we infer that f; (x) and f> (x) are also
bounded. So, if we define

Co (x) =min{fi (x), fo(x)} > 0 forany x € Q,
and take Cy (x) = infg Cp (x), so Cy (x) > Cp > 0. Hence,

(1) < —Co V luy (z)\m@d”/ |z(x,1,t)]m(x)dx] <o0.
Q Q

0

To prove the blow-up result, we assume that £ (0) < 0 in addition to (1.2). Set
H(t)=—E(t), hence H' (r) = —E’ (1) > 0,

|u|17(x)

b
a p P

p () = Py () = [ Ju"dx

0<H(O)<H(@)<b

where
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Lemma 9 ([0, Lemma 3.2]). Suppose that condition (1.2) satisfies.Then, depend-
ing on Q only, there exists a positive C > 1, such that

P/ () < € (|| aul*+p (w)).

Then, we have following inequalities:

i )
Jully- < € (Al + o))

x)|z(x m(x)
0P () §C<IH(I)I+IquH2+p(u)+ e )'anef)’”’ dxdp>,

1 m(x)
K 2 P &(XHZ(X,Q,[)‘
IIMH,,SC<IH(t)I+Hqu [ [ s | @)

for anyu € H} (Q) and 2 < s < p~. Let (u,z) be a solution of (4.1), then

p>=Claly . [ dx<c(pm I @ e ). @)
Q
The blow-up result is given by the following theorem:

Theorem 2. Let conditions (1.2) and (2.1) be provided and assume that E (0) < 0.
Then, the solution (4.1) blows up in finite time T*, and

T* < -«
~ Wo[L(0) ¥

where L(t) and o are given in (4.6) and (4.7), respectively.

Proof. Define

€
L(1) :HH*(I)H/ wndx-+ [ Vul?, 4.6)
Q
where € small to be chosen later and

fp -2 p -m  p —m’
0<a< . 47
_a_mm{ 2p~ ’p‘(m+—1)’p‘(m+—1)} @7

Differentiation L (¢) with respect to ¢, and using the first equation in (4.1), we obtain

L (1) = (1— o) H (1) H' (¢) +s/ 2~ |Auf] ax
Q
teb / P dx — e / ity (6,0) g (6, 0)]" " dx
Q Q

m(x)—2

—S,uz/uz(x,l,t)|z(x,1,t)| dx.
Q
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By using the definition of the H (¢) and for 0 < a < 1, such that

L'(t)>C(1—a) [/ ’Mz”nxdx-i-/ |z(x,1,1)] dx]
+s(<1—a>p‘H<r>+“‘§)”|ut||2+<‘§”’||Au||2)

m

o [ [ AR
+£/ [ut—|Au| }dﬁeab/ yu|P
Q Q

m(x)— m(x)—
_gyl/ uuy (x,1) [uy (x,1)] v 2dx—s,uz/ uz(x,1,1) |z (x,1,1)| " dx.
Q Q

Hence
L'(t)>Co(1—a) [/ gy | dx+/ |z (x,1,1)] dx]
l1—a l—a)p™ -2
+s<1—a>p-H<r>+e()2”||ut||2+e()2p|mu||2

X X m(x)
e(1a)p—/01/§f( ”Z;&;’t)‘ dxdp + eabp ()

felul/ uuy (x,1) |uy (x,t)]mwizdxfe,uz/ uz(x,1,1) |z(x,1,t)]m<x>72dx.
Q Q

Utilizing Young’s inequality, we get

m(x)— 1 m(x m+ —1 __m(x) m(x)
/|u,| N l|u|dx§—_/5m(x)]u| e /5 W " dx (4.8)
Q m Q m Q

[ et ulax
Q
/ Sm x) m(v)
m

As in [14], estimates (4.8) and (4.9) remain valid if 8 is time-dependent. Let us
choose 0 so that

_ m(x) m(x
O 20 1L, dr. (4.9)

where k > 1 is specified later, we obtain
/ 570 |u, " dx = kH (1) / 4, . (4.10)
Q

m(x) m(x
L8 e L™ =k )10 e @
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and
[0l dx= [ Ko ) )
Q Q

< / K et =1 (g / ™™ dx. (4.12)
Q Q
By using (4.5), we obtain
H()L(erfl) (l‘)/ ’u|m(x)dx
Q

m~/p~+o(mt— m*/p~+o(mt—
<C|(p )™ /7 p ()] @3
From (4.7), we deduce that
s:mf—l—ap*(m‘L—l)Sp* and s:m++ap7(m+—1)§p7.
Then, by using Lemma 9, satisfies
HO =) (t)/ " ax < (JJau|*+p(w). 4.14)
Q
Combining (4.8)-(4.14), we get

L'(t)> (1-o)H (1) [co—e(m+_1)ck]/Qyul,mwdx

m+
+_ m(x
- [a—e ("ol [ ke
- 2)—ap- c
+e<(1’ ) —mklm)uAurZ (4.15)
re(t-a)p a0+ U2 e (- C o
m—k

0z (x m(x)
+£(l—a)p/01/gg( )|Z’S1£5)’t)| dxdp.

Let us choose a small enough such that
l—a)p™ +2
A-ap™+2 _,

2
and k large enough so that
(P~ —2)—ap” C C
> _m_kl_”r >0 and ab—m>0

Once k and a are fixed, picking € small enough such that

1 +_1
Co—e<m >ck>0, co—e<m >ck>o
mt mt
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and
€
L(0) = H'%(0) +s/ wourdx+ 5 || Vuo|* > 0.
Q

Consequently, (4.15) yields

1 m(x)
H(r)+||u,||2+||Au||2+p(u)+/0/Q&(xﬂzsg)’t” dxdp|  (4.16)

for a constant 1 > 0. Thus we get L(¢) > L(0) >0, Vt > 0.
Now, for some constants 6, I' > 0 we denote L' (f) > I'L° (r). On the other hand,
applying Holder inequality, we obtain

1/(1—-o)
/ uu;dx
Q

1/(1—-
< Clufl, "
and by using Young’s inequality gives

1/(1-a)
/ uu;dx
Q

where 1/u+1/® = 1. From (4.7), the choice of ® = 2(1 —a) will make
u/(1—o) =2/(1—-2a) < p~. Hence,

1/(1-a)
/ uudx
Q

where s = u/ (1 — o). From (4.4), we have
1/(1-a) 1 m(x)
‘/Quu,dx < C [|H )|+ |l + p (u) +/O /Q S [z(xp.1)] dxdp] .

m (x)
Hence, we get

L'(r) >en

l/loc

mu/(1— 0/(1-
<C |l 4 570

K 2
€ [llully + el

e 1/(1-0)
71/(1-0) (t) = |:H(10€) (1) +g/ uudx + 3 HVu||2:|
Q

1/(1-o)
/ uu;dx ]
Q

<C |H(t)|+|ut”2+||AM||2—|—p(u)_|_/Ol/Q§('x)’Z

< 2%/0=% | F (1) +

(x,p,1)"
m (x)

dxd p]

So, for some ¥ > 0, from (4.16) we arrive
L'(t) >wL/1=% ), (4.17)
A simple integration of (4.17) over (0,¢) satisfies

1
LY (1=0) (1) >
)2 [ =a7i=e (0) —Wou/ (1 — )
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which implies that the solution blows up in a finite time 7*, with

T* < I-a
~ o [L(0)) (T

As a result, the proof is completed. U

5. CONCLUSIONS

In recent years, there has been published much work concerning the wave equation
with constant delay or time-varying delay. However, to the best of our knowledge,
there was no blow-up result for the Petrovsky equation with delay term and variable
exponents. Firstly, we have been obtained the local existence result by using the
Faedo-Galerkin method. Later, we have been proved that blow-up of solutions for
problem (1.1) under the sufficient conditions in a bounded domain.
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