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Abstract. A numerical approach for solving the multi-term variable-order space fractional non-
linear partial differential equations is proposed. The fractional derivatives are described in the
Caputo sense. The numerical approach is based on generalized Laguerre polynomials and finite
difference method. The proposed scheme transforms the main problem to a system of nonlinear
algebraic equations. The nonlinear system is solved by using Newton’s method. The validity and
the applicability of the proposed technique are shown by numerical examples.
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1. INTRODUCTION

Fractional differential equations play a significant role in various fields of science
and engineering such as fluid mechanics, mechanics of materials, biology, plasma
physics, finance, chemistry, image processing (see, for example, [1–4,14,18–20,26]).
Variable-order fractional calculus is an extension of the constant-order fractional cal-
culus. In variable-order fractional calculus, the orders of fractional integrals and
derivatives are functions in time and space variables. Variable-order fractional deriv-
atives have important applications in various fields of science and engineering such
as physics, mechanics [6], viscoelasticity oscillators [21], signal processing [24] and
optimization control [27]. Since variable-order fractional nonlinear partial differen-
tial equations are much more complicated than other fractional differential equations
and have an important place in the application areas, researchers have recently started
to work on the solution of such equations.

The solutions of the nonlinear variable-order time fractional partial differential
equations have been investigated in [8, 11]. An optimization method based on the
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generalized polynomials has been proposed for solving the variable-order time frac-
tional Burgers’equation [8]. Stable three-level explicit scheme for a class of non-
linear variable-order time fractional partial differential equations has been studied
[15]. Solving two-dimensional variable-order time fractional optimal control prob-
lems, a numerical approach has been introduced based on generalized polynomials
and the Lagrange multipliers method [16]. Variable-order time fractional nonlinear
cable equation and Klein Gordon equation have been solved by using the Cheby-
shev cardinal operational matrix method and nonstandard finite difference method,
respectively [12, 25]. The moving least squares meshless approach has been applied
to the two dimensional variable-order time fractional nonlinear diffusion-wave equa-
tion [22]. Variable-order time fractional nonlinear partial differential equations have
been solved by using collocation method based on the Legendre - Laguerre poly-
nomials and an optimization method based on the generalized shifted Chebyshev
polynomials, respectively [7, 9]. The solution of the nonlinear variable-order time
fractional two-dimensional Klein-Gordon equation has obtained by using a semi-
discrete method based on the 2D Legendre wavelets [11]. Variable-order space-time
fractional nonlinear diffusion-wave equation has been solved based on the Chebyshev
cardinal functions coupling with the tau and collocation methods [10].

In this paper, we consider multi-term nonlinear variable-order space fractional par-
tial differential equation of the form:

∂u(x, t)
∂t

=
r

∑
k=1

hk(x, t).CDαk(x,t)
x u(x, t)+N(u(x, t)), 0 < x < L, 0 < t ≤ T, (1.1)

with the initial condition

u(x,0) = f (x), 0 < x < L, (1.2)

and the boundary conditions:

u(b j, t) = d j(t), b0 = 0 < b1 < ... < bnr−2 < bnr−1 = L,
j = 0,1, ...,nr −1, 0 < t ≤ T,

(1.3)

where x is a space variable, t is a time variable; the parameters αk(x, t),k = 1, ...,r,
refer to the order of the Caputo variable-order fractional derivative with respect to the
space variable. 0<α1(x, t)< ... <αr(x, t), ni−1<αi(x, t)≤ ni,ni ∈N, i= 1,2, ...,r,
hk(x), k = 1,2, ...,r, f (x) and d j(t), j = 0,1, ...,nr − 1 are known continuous func-
tions. N(u(x, t)) represents the nonlinear term.

In the present paper, we obtain an approximate solution of the initial and boundary
value problem (1.1)-(1.3) in terms of the Laguerre polynomials. Firstly, unknown
function is written in terms of the Laguerre polynomials. Substituting Laguerre poly-
nomial solution into equation (1.1), system of ordinary differential equations for ap-
propriate collocation points is obtained. The finite difference method and Newton’s
method are applied to the obtained system, respectively. This paper is structured as
follows: in Section 2, some basic preliminaries of variable-order Caputo fractional
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derivative and Laguerre polynomials are presented. Spectral method for solving the
initial and boundary value problem (1.1)-(1.3) is presented in Section 3. The ef-
ficiency and validity of the proposed method is demonstrated by some numerical
examples in Section 4. Finally, conclusion is given in Section 5.

2. PRELIMINARIES AND NOTATIONS

2.1. The Variable-Order Caputo Fractional Derivative

Definition 1. The Caputo variable-order fractional differential operator is given
by (see, for example, [5, 23])

CDα(x,t)
x u(x, t) =

1
Γ(n−α(x, t))

t∫
0

(t − τ)n−α(x,t)−1 ∂nu(x,τ)
∂τn dτ.

where n−1 < α(x, t)< n and Γ(.) is a Gamma function.

Using the above definition, the fractional derivative of a polynomial xm,m ∈N can
be obtained as follows:

CDα(x,t)
x xm =

{
Γ(m+1)

Γ(m−α(x,t)+1)x
m−α(x,t), m ≥ n

0, m < n.
(2.1)

2.2. Some Properties of the Generalized Laguerre Polynomials

The generalized Laguerre polynomials La
n(x), (a >−1) are orthogonal polynomi-

als of degree n in x defined on the interval the (0,∞). The orthogonality relation is
given as follows [13]:

< La
n(x),L

a
m(x)>=

1
Γ(a+1)

∞∫
0

xae−xLa
n(x)L

a
m(x)dx =

(
n+a
n

)
δnm.

The polynomials La
n(x) may be generated by using the recurrence relations

La
n+1(x) =

1
n+1

[(2n+a+1− x)La
n(x)− (n+a)La

n−1(x)], n = 1,2,3, ...

with La
0(x)(x) = 1, La

1(x)(x) = a+1− x.
The analytical form of the generalized Laguerre polynomials La

n(x) is given by

La
n(x) =

n

∑
k=0

(−1)k Γ(n+a+1)xk

(n− k)!k!Γ(k+a+1)
. (2.2)

The function y(x) which belongs to the space of square integrable function in [0,∞)
may be expressed in terms of the generalized Laguerre polynomials as

y(x) =
∞

∑
i=0

ciLa
i (x).
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ci =
Γ(i+1)

Γ(i+a+1)

∞∫
0

y(x)xae−xLa
i (x)dx. (2.3)

Consider only the first (m+ 1)− terms of the generalized Laguerre polynomials, so
we can write

ym(x) =
m

∑
i=0

ciLa
i (x). (2.4)

Theorem 1. Let ym(x) be approximated function in terms of the generalized Laguerre
polynomials La

i (x) given by equation (2.4), then we have

CDα(x,t)
x ym(x) =

m

∑
i=n

i

∑
k=n

ciAα

i,kxk−α(x,t), n−1 < α(x, t)≤ n, (2.5)

where

Aα

i,k = (−1)k Γ(i+a+1)
Γ(k+1−α)Γ(i− k+1)Γ(a+ k+1)

. (2.6)

3. NUMERICAL SCHEME

In this section, we apply Laguerre collocation method to the problem (1.1)-(1.3).
In the Laguerre collocation method, the unknown function is written as a finite series
expansion via generalized Laguerre polynomials. Then, the finite difference method
is applied to the obtained system of ordinary differential equation. Finally, the non-
linear system is solved by Newton’s method and the unknown coefficients of the finite
series are obtained.

Let um(x, t) be the truncated Laguerre approximation of a function u(x, t) as fol-
lows:

um(x, t) =
m

∑
i=0

ci(t)La
i (x). (3.1)

Using equations (1.1) and (2.5), we obtain
m

∑
i=0

dci(t)
dt

La
i (x) =

r

∑
j=1

h j(x, t)
m

∑
i=n j

i

∑
k=n j

ci(t)A
α j
i,kxk−α j(x,t)+N(

m

∑
i=0

ci(t)La
i (x)). (3.2)

Now, we collocate (3.2) at m−nr +1 points xp as follows:
m

∑
i=0

dci(t)
dt

La
i (xp) =

r

∑
j=1

h j(xp, t)
m

∑
i=n j

i

∑
k=n j

ci(t)A
α j
i,kxk−α j(xp,t)

p +N(
m

∑
i=0

ci(t)La
i (xp)),

(3.3)
where collocation points xp are the roots of shifted Chebyshev polynomials of the
second kinds U∗

m−1(x).
For a positive integer N, ∆t = T

N denotes the step size of time variable t. So
we define tq = q∆t, 0 ≤ tq ≤ T , in which q = 0,1, ...,N. And we introduce the
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following notations: u(b j, tq) = dq
j , j = 0,1, ...,nr − 1, ci(tq) = cq

i ,i = 0,1, ...,m,
V q =

(
cq

0,c
q
1, ...,c

q
m
)∗ and ∗ is the sign of transposition of the matrix.

Substituting equation (3.1) into the boundary condition (1.3) , we have

um(b j, t) =
m

∑
i=0

ci(t)La
i (b j) = d j(t), j = 0,1, ..,nr −1. (3.4)

By using equations (2.3) and (3.1) for initial condition (1.2), we can compute the
unknown constants ci(t0), i = 0,1, ...,m, i.e. V 0.

Applying the finite difference method to the system (3.3), we have

m

∑
i=0

(cq
i − cq−1

i )La
i (xp) = ∆t.

r

∑
j=1

h j(xp, tq)
m

∑
i=n j

i

∑
k=n j

ci(tq)A
α j
i,kxk−α j(xp,tq)

p

+∆t.N(
m

∑
i=0

ci(tq)La
i (xp)), q = 1,2, ...,N. (3.5)

Combining equations (3.4) and (3.5), we have a system of non-linear equations as
follows

F = 0, (3.6)

where 0 is zero vector with m+ 1 components and F is a vector whose components
are given by

Fp =
m

∑
i=0

(cq
i − cq−1

i )La
i (xp) = ∆t.

r

∑
j=1

h j(xp, tq)
m

∑
i=n j

i

∑
k=n j

ci(tq)A
α j
i,kxk−α j(xp,tq)

p

+∆t.N(
m

∑
i=0

ci(tq)La
i (xp)), p = 1,2, ...,m−nr +1, (3.7)

Fm−nr+2 =
m

∑
i=0

ci(tq)La
i (b0)−d0(tq),

Fm−nr+3 =
m

∑
i=0

ci(tq)La
i (b1)−d1(tq),

...

Fm+1 =
m

∑
i=0

ci(tq)La
i (bnr−1)−dnr−1(tq). (3.8)

For the non-linear system (3.6) with unknown V q (q = 1, ...,N), the following itera-
tion formula can be written by using Newton iteration method

V q,k+1 =V q,k − J−1(V q,k).F(V q,k),

V q,0 =V q−1, q = 1, ...,N, k = 0,1, ... (3.9)
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where J−1(V q,k) is the inverse of the Jacobian matrix, V q,k is approximate solution of
V q. Using iteration formula (3.9), approximate solution of the problem (1.1)-(1.3) is
obtained.

4. APPLICATIONS

Example 1. Consider nonlinear space fractional partial differential equation with
initial and boundary conditions

ut(x, t) = xα(x,t)
Γ(5−α(x, t)) ·C Dα(x,t)

x u(x, t)− xβ(x,t)
Γ(5−β(x, t))

·C Dβ(x,t)
x u(x, t)+u3(x, t)− (x4 − x2 +1)sin(t)u2(x, t)+ cos(t)(x4 − x2 +1)

− Γ(5−β(x, t))
Γ(3−β(x, t))

2x2 sin(t), 0 < x < 2, 0 < t ≤ 1, (4.1)

u(x,0) = 0, 0 < x < 2, (4.2)

u(0, t) = sin(t), u(1, t) = sin(t), u(2, t) = 13sin(t), 0 < t ≤ 1, (4.3)

where α(x, t) = 6+sin(x+t)
3 , β(x, t) = 4+sin(x+t)

3 .
The exact solution is ue(x, t) = sin(t)(x4−x2+1). Assume that the solution of the

problem (4.1)-(4.3) can be written as follows

u4(x, t) =
4

∑
i=0

ci(t)L0
i (x). (4.4)

Substituting equation (4.4) into the boundary conditions (4.3) at the points tq, we
have

F3 = c0(tq)+ c1(tq)+ c2(tq)+ c3(tq)+ c4(tq)− sin(tq),

F4 = c0(tq)−1/2c2(tq)−2/3c3(tq)−5/8c4(tq)− sin(tq),

F5 = c0(tq)− c1(tq)− c2(tq)−1/3c3(tq)+1/3c4(tq)−13sin(tq).

For m = 4, collocation points are taken as x1 = 0.25, x2 = 0.75. F1 and F2 can be
written from (3.7) for the points x1 = 0.25, x2 = 0.75. By using the iteration formula
(3.9) with the initial data V 0 = (0,0,0,0,0)∗, the absolute errors for the approximate
solution u4(x, t) are computed for N = 103;104;105;106;107 at t = 0.25;0.75. Table
1 shows that the absolute error goes to the zero as the value N increases. Figure 1
shows 3D plot of the absolute error for the approximate solution u4(x, t) for N = 106,
0 < x < 2 and 0 < t < 1.

Example 2. Consider nonlinear space fractional partial differential equation with
initial and boundary conditions

ut(x, t) = xα(x,t)
Γ(6−α(x, t)) ·C Dα(x,t)

x u(x, t)− xβ(x,t)
Γ(6−β(x, t)) ·C Dβ(x,t)

x u(x, t)

+(x5 −2)(t2 − t)u(x, t)−u2(x, t)+(x5 −2)(2t −1), 0 < x < 5, 0 < t ≤ 1,
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TABLE 1. The absolute errors for u4(x, t), N = 103; 104;105; 106;
107 at t = 0.25;0.75 in Example 1.

x N = 103 N = 104 N = 105 N = 106 N = 107

t = 0.25t = 0.75t = 0.25t = 0.75t = 0.25t = 0.75t = 0.25t = 0.75t = 0.25t = 0.75
0.2 10−5 6.10−5 10−6 6.10−6 10−7 6.10−7 10−8 6.10−8 10−9 6.10−9

0.4 2.10−5 10−4 2.10−6 10−5 2.10−7 10−6 2.10−8 10−7 2.10−9 10−8

0.6 2.10−5 10−4 2.10−6 10−5 2.10−7 10−6 2.10−8 10−7 2.10−9 10−8

0.8 2.10−5 10−4 2.10−6 10−5 2.10−7 10−6 2.10−8 10−7 2.10−9 10−8

1.2 2.10−5 10−4 2.10−6 10−5 2.10−7 10−6 2.10−8 2.10−7 2.10−9 10−8

1.4 4.10−5 3.10−4 4.10−6 3.10−5 4.10−7 3.10−6 4.10−8 3.10−7 4.10−9 3.10−8

1.6 5.10−5 4.10−4 5.10−6 4.10−5 5.10−7 4.10−6 5.10−8 4.10−7 5.10−9 4.10−8

1.8 4.10−5 3.10−4 4.10−6 3.10−5 4.10−7 3.10−6 4.10−8 3.10−7 4.10−9 3.10−8

FIGURE 1. The behavior of the absolute error for the approximate
solution u4(x, t) for N = 106, 0 < x < 2 and 0 < t < 1 in Example 1.

u(x,0) = 0, 0 < x < 5, u(0, t) = 2t −2t2, u(5, t) = 3123t2 −3123t, 0 < t ≤ 1,

where α(x, t) = 5+sin(x+t)
3 , β(x, t) = 1+sin(x+t)

4 .
The exact solution is ue(x, t) = (t2−t)(x5−2). By using the iteration formula (3.9)

for m = 5, a = 0 with the initial data V 0 = (0,0,0,0,0,0)∗, the absolute errors for
the approximate solution u5(x, t) are computed for N = 104;105;106;107 at t = 0.5.
The influence of the value N on the absolute error is presented in Table 2. Table
2 shows that the value of the absolute error goes to zero as the value N increases.
Figure 2 shows 3D plot of the approximate solution u5(x, t) for N = 104, 3 < x < 5
and 0 < t < 1.
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TABLE 2. The absolute errors for u5(x,0.5) in Example 2.

x N = 104 N = 105 N = 106 N = 107

0.4 3.10−6 3.10−7 4.10−8 4.10−9

1.2 10−4 10−5 10−6 10−7

2 10−3 10−4 10−5 10−6

2.4 2.10−3 2.10−4 2.10−5 2.10−6

3.2 5.10−3 5.10−4 5.10−5 5.10−6

3.6 7.10−3 7.10−4 7.10−5 7.10−6

4 7.10−3 7.10−4 7.10−5 7.10−6

4.4 7.10−3 7.10−4 7.10−5 7.10−6

4.8 3.10−3 3.10−4 3.10−5 3.10−6

FIGURE 2. The behavior of the approximate solution u5(x, t) for
N = 104, 3 < x < 5 and 0 < t < 1 in Example 2.

Example 3. Let us consider the following nonlinear space fractional partial differ-
ential equation with initial and boundary conditions

ut(x, t) =C Dα(x,t)
x u(x, t)+u2(x, t)− exp(x)t2u(x, t)

+2t exp(x)− t2x2−α(x,t)E1,3−α(x,t)(x), 0 < x < 1, 0 < t < 1,

u(x,0) = 0, 0 < x < 1, u(0, t) = t2, u(1, t) = exp(1)t2, 0 < t ≤ 1,

where α(x, t) = 4+sin(x+t)
3 and E1,3−α(x,t)(x) is the Mittag-Leffler function (see, for

example, [17]). Note that the exact solution to this problem is ue(x, t) = exp(x)t2. By
using the iteration formula (3.9) with zero initial condition , we obtain approximate
solution of the problem for m = 3, a = 0; 4; 5. In Table 3, the absolute errors
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between the exact solution ue(x, t) and the approximate solution um(x, t), m = 3,4,5,
at t = 0.5 for the values N = 106 are given. Table 3 shows how the change of the
values m effects the obtained results. As shown in Table 3, as the values m increase,
the approximate solution approaches to the exact solution. Figure 3 presents 3D plot
of the absolute error for the approximate solution u5(x, t) for N = 105, 0 < x < 1 and
0 < t < 1.

TABLE 3. The absolute errors for um(x, t), m = 3;4;5;106 at t =
0.2;0.8 in Example 3.

x m = 3 m = 4 m = 5
t = 0.2 t = 0.8 t = 0.2 t = 0.8 t = 0.2 t = 0.8

0.2 3.10−5 6.10−4 2.10−6 3.10−5 7.10−8 7.10−7

0.4 6.10−5 10−3 10−6 2.10−6 3.10−7 2.10−6

0.6 4.10−5 5.10−4 2.10−6 5.10−5 2.10−7 6.10−8

0.8 3.10−5 6.10−4 2.10−7 10−5 5.10−8 2.10−6

FIGURE 3. The behavior of the absolute value of the approximate
solution u5(x, t) for N = 105, 0 < x < 1 and 0 < t < 1 in Example 3.

Example 4. Let us consider the following nonlinear space fractional partial differ-
ential equation with initial and boundary conditions

ut(x, t) = exp(−t)x ·C Dα(x,t)
x u(x, t)+u3(x, t)− exp(t)cos(t)(x3 − x2)u2(x, t)

+u(x, t)+ cos(t)x3−α(x,t) 2
Γ(3−α(x, t))

− cos(t)x4−α(x,t) 6
Γ(4−α(x, t))
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− exp(t)sin(t)(x3 − x2), 0 < x < 1, 0 < t < 1,

u(x,0) = x3 − x2, 0 < x < 1, u(0, t) = 0, u(1, t) = 0, 0 < t ≤ 1,

where α(x, t) = 5+sin(xt)
4 . Note that the exact solution to this problem is ue(x, t) =

exp(t)cos(t)(x3 −x2). By using the iteration formula (3.9) for m = 3, a = 0 with the
initial data V 0 = (4,−14,16,−6)∗, the absolute errors for the approximate solution
u3(x, t) are computed for N = 103;104;105;106 at t = 0.2;0.9. The influence of the
value N on the absolute error is presented in Table 4. Table 4 shows that the value of
the absolute error goes to zero as the value N increases. Figure 4 shows 3D plot of
the approximate solution u3(x, t) for N = 104, 0 < x < 1 and 0 < t < 1.

TABLE 4. The absolute errors for u3(x, t), N = 103;104;105;106 at
t = 0.2;0.9 in Example 4.

x N = 103 N = 104 N = 105 N = 106

t = 0.2 t = 0.9 t = 0.2 t = 0.9 t = 0.2 t = 0.9 t = 0.2 t = 0.9
0 9.10−16 2.10−15 9.10−16 4.10−15 3.10−15 0 9.10−16 4.10−15

0.2 9.10−7 4.10−5 9.10−8 4.10−6 9.10−9 3.10−7 9.10−10 4.10−8

0.4 2.10−6 7.10−5 2.10−7 7.10−6 2.10−8 6.10−7 2.10−9 7.10−8

0.6 3.10−6 8.10−5 3.10−7 8.10−6 3.10−8 8.10−7 3.10−9 8.10−8

0.8 3.10−6 6.10−5 3.10−7 6.10−6 3.10−8 6.10−7 3.10−9 6.10−8

1 9.10−16 0 9.10−16 9.10−16 9.10−16 0 0 2.10−15

FIGURE 4. The behavior of the approximate solution u3(x, t) for
N = 104, 0 < x < 1 and 0 < t < 1 in Example 4.
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5. CONCLUSION

In this paper, numerical solutions of the multi-term variable-order space fractional
nonlinear partial differential equations with initial and boundary conditions have been
obtained. The space variable order fractional derivative is defined in the Caputo
sense. Spectral Laguerre collocation method and finite difference method have been
applied to the problem and the problem has been transformed into an algebraic system
of the nonlinear equations. The nonlinear system has been solved by using Newton
iteration. Some numerical examples have been given to clarify the validity and ac-
curacy of the proposed technique. The obtained numerical results are compared with
exact solutions. The proposed scheme leads to results that are in excellent agree-
ment with the exact solutions and show that the algorithm is efficient. All numerical
computations were performed in MATLAB.
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