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1. INTRODUCTION

Fractional differential equations have been studied extensively in the literature be-
cause of their applications in various fields of engineering and science; see the books
[16,18,22]. In the few past years, the variety of definitions of fractional operators has
become visible to those interested in fractional calculus.Here, we focus on the most
ranking kinds including Liouville, Caputo, Hadamard, Atangana-Baleanu, Caputo-
Fabrizio derivatives and etc. For instance, see the books [15, 23] and the papers
[3, 8, 19–21] and the references quoted therein.

Recently, Khalil et al. [14] introduce a new definition of fractional derivative,
called the conformable fractional derivative, with an obstacle that it does not tend to
the original function as the order α tends to zero. The new definition has attracted
good efforts of many researchers to establish some useful results; see, for example,
[5–7, 17, 26].

In control theory, a proportional derivative controller for controller output u at time
t with two tuning parameters has the algorithm

u(t) = κPE(t)+κd
d
dt

E(t),
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where κP and κd are the proportional control parameter and the derivative control
parameter, respectively. The function E is the error between the state variable and
the process variable. This control law enables Dawei et al. [11] to present the control
of complex networks models.

Inspired by the above concept of the proportional derivative controller, Anderson
et al. [2] were able to define the proportional (conformable) derivative of order α by

P
0 Dα

t g(t) = k1(α, t)g(t)+ k0(α, t)g′(t),

where g is differentiable function and k0,k1 : [0,1]×R→ [0,∞) are continuous func-
tions of the variable t and the parameter α ∈ [0,1] which satisfy the following condi-
tions for all t ∈ R:

lim
α→0+

k0(α, t) = 0, lim
α→1−

k0(α, t) = 1, k0(α, t) ̸= 0, α ∈ (0,1], (1.1)

lim
α→0+

k1(α, t) = 1, lim
α→1−

k1(α, t) = 0, k1(α, t) ̸= 0, α ∈ [0,1). (1.2)

This newly defined local derivative tends to the original function as the order α

tends to zero and hence improved the conformable derivatives. In [13], Jarad et
al. discussed a special case of the proportional derivatives when k1(α, t) = 1−α and
k0(α, t) = α.

In [4], Baleanu et al. proposed a new more general proportional fractional derivat-
ive as a linear combination of a Riemann-Liouville integral and a Caputo derivative,
also they obtained some amazing results relevant to the newly hybrid fractional op-
erator such as the Laplace transform and its inversion. Further, they solved some dif-
ferential equations involved that new hybrid derivative and got the solution in terms
of a new bivariate Mittag-Leffler function.

Inspired by the new results in [4], we investigate initial value problems for frac-
tional differential equations via generalized proportional-Caputo fractional derivat-
ives. Precisely, we consider the following IVP:{

PC
0 Dα

t x(t) = f (t,x(t))+Bu(t), t ∈ J = [0,b], b < ∞,

x(0) = x0 ∈ R,
(1.3)

where PC
0 Dα

t denotes the proportional-Caputo fractional derivative of order α ∈ (0,1],
the function f : J×R→R is continuous, the control function u(·) is given in L2(J,U),
a Banach space of admissible control functions with U as a Banach space, and B is a
bounded linear operator from U to R.

Controllability is one of the fundamental notions of modern control theory, which
enables one to steer the control system from an arbitrary initial state to an arbitrary
final state using the set of admissible controls where initial and final state may vary
over the entire space. The problem of controllability of nonlinear systems represented
by fractional differential equations has been extensively studied by several authors;
see, for example, [1, 9, 10, 25] and the references therein.
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To our knowledge there are no similar contributions to the controllability and
Hyers-Ulam stability of fractional differential equations via generalized proportional-
Caputo fractional derivatives.

2. PRELIMINARIES

In this section we collect some definitions, properties and propositions of the new
generalized proportional-Caputo hybrid fractional derivative.

Definition 1 ([4]). The proportional-Caputo hybrid fractional derivative of order
α ∈ (0,1) of a differentiable function g(t) is given by

PC
0 Dα

t g(t) =
1

Γ(1−α)

∫ t

0

(
k1(α,τ)g(t)+ k0(α,τ)g′(t)

)
(t − τ)−α dτ, (2.1)

where the function space domain is given by requiring that g is differentiable and
both g and g′ are locally L1 functions on the positive reals.

Definition 2 ([4]). The inverse operator of the proportional-Caputo hybrid frac-
tional derivative of order α ∈ (0,1) is given by

PC
0 Iα

t g(t) =
∫ t

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
) RL

0 D1−α
u g(u)

k0(α,u)
du, (2.2)

where RL
0 D1−α

u denotes the Riemann-Liouville fractional derivative of order 1−α and
is given by

RL
0 D1−α

u g(u) =
1

Γ(α)

d
du

∫ u

0
(u− s)α−1g(s) ds. (2.3)

For more details, we refer the reader to the book of Kilbas et al. [15].

Proposition 1 ([4]). The following inversion relations

PC
0 Dα

t
PC
0 Iα

t g(t) = g(t)− t−α

Γ(1−α)
lim
t→0

RL
0 Iα

t g(t), (2.4)

PC
0 Iα

t
PC
0 Dα

t g(t) = g(t)− exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

g(0) (2.5)

are satisfied.

Proposition 2 ([4]). The proportional-Caputo hybrid fractional derivative oper-
ator PC

0 Dα
t is non-local and singular.

Remark 1 ([4]). In the limiting cases α → 0 and α → 1, we recover the following
special cases:

lim
α→0

PC
0 Dα

t g(t) =
∫ t

0
g(τ) dτ,

lim
α→1

PC
0 Dα

t g(t) = g(t).
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Theorem 1 (Krasnoselskii’s fixed point theorem, [24]). Let Ω be a closed convex
and non-empty subset of a Banach space X. Let P1 and P2, be two operators such
that

(i) P1x+P2y ∈ Ω, for all x,y ∈ Ω,
(ii) P1 is compact and continuous,

(iii) P2 is a contraction mapping.

Then there exists z ∈ Ω such that z = P1z+P2z.

3. CONTROLLABILITY RESULTS

In this section, we employ the generalized proportional Caputo fractional derivat-
ive operator to discuss the controllability of the IVP (1.3).

Let C(J,R) be the Banach space of all real-valued continuous functions from J
into R equipped by the norm ∥x∥= supt∈[0,T ] |x(t)|.

Firstly, we consider the following auxiliary lemma.

Lemma 1. Let 0 < α ≤ 1 and h ∈ C(J,R). Then the solution of the following
linear fractional differential equation{

PC
0 Dα

t x(t) = h(t), t ∈ J,
x(0) = x0,

(3.1)

is equivalent to the Volterra integral equation

x(t) = exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x0

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
h(τ) dτ du. (3.2)

Proof. Applying the operator PC
0 Iα

t (·) on both sides of (3.1), we get

PC
0 Iα

t
PC
0 Dα

t x(t) = PC
0 Iα

t h(t).

Using (2.2) and (2.3) together with Proposition 1, we get

x(t)− exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x(0) =
∫ t

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
) RL

0 D1−α
u h(u)

k0(α,u)
du.

In view of the following elementary fact:

RL
0 D1−α

u h(u) = RL
0 I−(1−α)

u h(u) = RL
0 Iα−1

u h(u) =
1

Γ(α−1)

∫ u

0
(u− τ)α−2h(τ) dτ,

one can easily obtain the desired integral equation (3.3). The converse follows by
direct computation. This completes the proof. □
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By virtue of Lemma 1, the solution of the IVP (1.3) is given by

x(t) = exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x0

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
f (τ,x(τ)) dτ du

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
Bux(τ) dτ du. (3.3)

The following definition is helpful in the discussion of the controllability of the IVP
(1.3).

Definition 3. The IVP (1.3) is said to be controllable on the interval J if, for every
x0,x1 ∈ R, there exists a control u ∈ L2(J,U) such that a solution x of equation (1.3)
satisfies x(b) = x1.

The following assumptions will be imposed.
(A1) The function f : J×R→ R is continuous.
(A2) There exists a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|, for all t ∈ J, x,y ∈ R.
(A3) The linear operator W : L2(J,U)→ R, defined by

Wu =
1

Γ(α−1)

∫ b

0

∫ u

0
exp
(
−
∫ b

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
Bu(τ) dτ du

has an induced inverse operator W−1 which takes values in L2(J,U)/kerW,
where the kernel space of W is defined by kerW = {x ∈ L2(J,U) : Wx = 0}
and there exist constants M1,M2 > 0 such that ∥B∥ ≤ M1 and ∥W−1∥ ≤ M2.

Now we formulate the first main theorem of the paper.

Theorem 2. If the assumptions (A1)− (A3) are satisfied. Then the IVP (1.3) is
controllable on J, provided that

M1M2b2αL
M2

k Γ2(α+1)
< 1, (3.4)

where inft∈J |k0(α, t)|= Mk ̸= 0.

Proof. Set supt∈J | f (t,0)|= M f < ∞.

We consider the set Br = {x ∈C(J,R) : ∥x∥ ≤ r)} with r ≥ Λ1

1−Λ2
.

For the purpose of expediency, we define the two constants Λ1 > 0 and 0 < Λ2 < 1
as

Λ1 = |x0|+
M f bα

MkΓ(α+1)
+

M1M2bα

MkΓ(α+1)

[
|x1|+ |x0|+

M f bα

MkΓ(α+1)

]
,
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Λ2 =
Lbα

MkΓ(α+1)

(
1+

M1M2bα

MkΓ(α+1)

)
.

Define the control ux(t) by

ux(t) = W−1
[
x1 − exp

(
−
∫ b

0

k1(α,s)
k0(α,s)

ds
)

x0

+
1

Γ(α−1)

∫ b

0

∫ u

0
exp
(
−
∫ b

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
f (τ,x(τ)) dτ du

]
(t), t ∈ J.

Later, we shall use the following estimates:

∥ux∥= sup
t∈J

|ux(t)|

≤ M2 sup
t∈J

{
|x1|+ |x0|+

1
Γ(α−1)

∫ b

0

∫ u

0

(u− τ)α−2

|k0(α,u)|
|( f (τ,x(τ))− f (τ,0))+ f (τ,0)| dτ du

}
≤ M2 sup

t∈J

{
|x1|+ |x0|+

1
Γ(α−1)

∫ b

0

∫ u

0

(u− τ)α−2

|k0(α,u)|
(
| f (τ,x(τ))− f (τ,0)|+ | f (τ,0)|

)
dτ du

}
≤ M2 sup

t∈J

{
|x1|+ |x0|+

1
Γ(α−1)

∫ b

0

∫ u

0

(u− τ)α−2

|k0(α,u)|
(
L|x(τ)|+ | f (τ,0)|

)
dτ du

}
≤ M2

[
|x1|+ |x0|+

bα

MkΓ(α+1)
(
L∥x∥+M f

)]
, (3.5)

and

∥ux −uy∥= sup
t∈J

|ux(t)−uy(t)|

≤ M2 sup
t∈J

{
1

Γ(α−1)

∫ b

0

∫ u

0

(u− τ)α−2

|k0(α,u)|
| f (τ,x(τ))− f (τ,y(τ))| dτ du

}

≤ M2L
MkΓ(α−1)

sup
t∈J

{∫ b

0

∫ u

0
(u− τ)α−2|x(τ)− y(τ)| dτ du

}

≤ M2Lbα

MkΓ(α+1)
∥x− y∥. (3.6)

Using the control ux(t), we define the operators P1,P2 on Br as:

(P1x)(t) = exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x0

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
f (τ,x(τ)) dτ du,

(P2x)(t) =
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
Bux(τ) dτ du.
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Clearly, one can notice that (P1x+P2x)(b) = x1. This means that ux steers the IVP
(1.3) from x0 to x1 in finite time b, which implies that the IVP (1.3) is controllable on
J.

The proof is divided into three main steps.

Step 1. P1x+P2y ∈ Br, ∀x,y ∈ Br.
For each t ∈ J and x,y ∈ Br, using (3.5), one has

∥P1x+P2y∥= sup
t∈J

|(P1x)(t)+(P2y)(t)|

≤ sup
t∈J

{
exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)
|x0|

+
1

Γ(α−1)

∫ b

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)

× (u− τ)α−2

|k0(α,u)|
|( f (τ,x(τ))− f (τ,0))+ f (τ,0)| dτ du

+
1

Γ(α−1)

∫ b

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

|k0(α,u)|
|Buy(τ)| dτ du

}

≤ |x0|+
1

MkΓ(α−1)

∫ b

0

∫ u

0
(u− τ)α−2(L∥x∥+M f

)
dτ du

+
1

MkΓ(α−1)

∫ b

0

∫ u

0
(u− τ)α−2∥B∥∥uy∥ dτ du

≤ |x0|+
bα

MkΓ(α+1)
(
Lr+M f

)
+

M1M2bα

MkΓ(α+1)

[
|x1|+ |x0|+

bα

MkΓ(α+1)
(
Lr+M f

)]
≤ |x0|+

M f bα

MkΓ(α+1)
+

M1M2bα

MkΓ(α+1)

[
|x1|+ |x0|+

M f bα

MkΓ(α+1)

]
+

Lbα

MkΓ(α+1)

(
1+

M1M2bα

MkΓ(α+1)

)
r

= Λ1 +Λ2r ≤ r.

Thus, we conclude that P1x+P2y ∈ Br.

Step 2. P1 is compact and continuous. Firstly, we show that P1 is continuous. Let
{xn} be a sequence such that xn → x as n → ∞ in Br. Thus, for each t ∈ J, we have

∥P1xn −P1x∥= sup
t∈J

|(P1xn)(t)− (P1x)(t)|

≤ 1
MkΓ(α−1)

∫ t

0

∫ u

0
(u− τ)α−2∥( f (·,xn(·))− f (·,x(·))∥ dτ du.
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Therefore, the continuity of f implies that P1 is continuous.
Next, we show that P1 is uniformly bounded on Br. For each t ∈ J and x ∈ Br, one

has

∥P1x∥= sup
t∈J

|(P1x)(t)|

≤ sup
t∈J

{
exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)
|x0|+

1
Γ(α−1)

∫ b

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)

× (u− τ)α−2

|k0(α,u)|
|( f (τ,x(τ))− f (τ,0))+ f (τ,0)| dτ du

}

≤ |x0|+
bα

MkΓ(α+1)
(
Lr+M f

)
,

which implies that P1 is uniformly bounded on Br.
It remains to show that P1 is equicontinuous. For each t1, t2 ∈ J, t1 < t2 and x ∈ Br,

one obtain that:

∥(P1x)(t2)− (P1x)(t1)∥

≤

∥∥∥∥∥exp

(
−

∫ t2

0

k1(α,s)
k0(α,s)

ds

)
x0 − exp

(
−

∫ t1

0

k1(α,s)
k0(α,s)

ds

)
x0

∥∥∥∥∥
+

1
Γ(α−1)

∥∥∥∥∥
∫ t2

0

∫ u

0

[
exp

(
−

∫ t2

0

k1(α,s)
k0(α,s)

ds

)
− exp

(
−

∫ t1

0

k1(α,s)
k0(α,s)

ds

)]

× (u− τ)α−2

k0(α,u)
( f (τ,x(τ)) dτ du

∥∥∥∥∥
+

1
Γ(α−1)

∥∥∥∥∥
∫ t2

t1

∫ u

0
exp

(
−

∫ t1

0

k1(α,s)
k0(α,s)

ds

)
(u− τ)α−2

k0(α,u)
( f (τ,x(τ)) dτ du

∥∥∥∥∥
=

∥∥∥∥∥k1(α,ξ)

k0(α,ξ)
x0 exp

(
−

∫
ξ

0

k1(α,s)
k0(α,s)

ds

)
(t2 − t1)

∥∥∥∥∥
+

1
Γ(α−1)

∥∥∥∥∥
∫ t2

0

∫ u

0

k1(α,ξ)

k0(α,ξ)
exp

(
−

∫
ξ

0

k1(α,s)
k0(α,s)

ds

)

(t2 − t1)
(u− τ)α−2

k0(α,u)
( f (τ,x(τ)) dτ du

∥∥∥∥∥
+

1
Γ(α−1)

∥∥∥∥∥
∫ t2

t1

∫ u

0
exp

(
−

∫ t1

0

k1(α,s)
k0(α,s)

ds

)
(u− τ)α−2

k0(α,u)
( f (τ,x(τ)) dτ du

∥∥∥∥∥
≤

∣∣∣∣∣k1(α,ξ)

k0(α,ξ)
x0

∣∣∣∣∣(t2 − t1)+
f̄

Γ(α+1)

∣∣∣∣∣k1(α,ξ)

k2
0(α,ξ)

∣∣∣∣∣t2(t2 − t1)+
f̄

Γ(α+1)

∣∣∣∣∣ 1
k0(α,ξ)

∣∣∣∣∣(tα
2 − tα

1 ),
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where f̄ = supt∈J×Br
| f (t,x(t)| and ξ ∈ (t1, t2). As t1 → t2, the right hand side of

the above inequality tends to zero independently of x ∈ Br. As a consequence of the
Arzelà-Ascoli theorem, we deduce that P1 is compact on Br.

Step 3. P2 is a contraction on Br.
For each t ∈ J and x,y ∈ Br, using (3.6), one has

∥P2x−P2y∥= sup
t∈J

|(P2x)(t)− (P2y)(t)|

= sup
t∈J

{
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
B(ux(τ)−uy(τ)) dτ du

}

≤ M1bα

MkΓ(α+1)
∥ux −uy∥

≤ M1M2b2αL
M2

k Γ2(α+1)
∥x− y∥.

In view of the condition (3.4), we conclude that P2 is a contraction mapping.
Therefore, all the assumptions of Krasnoselskii’s fixed point theorem (Theorem 1)

are satisfied. Hence, the IVP (1.3) is controllable on J. This completes the proof. □

4. HYERS-ULAM STABILITY

Here, we elucidate Hyers-Ulam stability of the IVP (1.3). We begin with the
following essential definition.

Definition 4 ([12]). The integral equation (3.3) is said to be Hyers-Ulam stable, if
there exists a constant µ > 0 satisfying: for every ε > 0, if∣∣∣∣∣x(t)− exp

(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x0

− 1
Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
f (τ,x(τ)) dτ du

− 1
Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
Bux(τ) dτ du

∣∣∣∣∣≤ ε,

there exists a continuous function x∗(t) satisfying

x∗(t) =exp
(
−
∫ t

0

k1(α,s)
k0(α,s)

ds
)

x0

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
f (τ,x∗(τ))dτdu

+
1

Γ(α−1)

∫ t

0

∫ u

0
exp
(
−
∫ t

u

k1(α,s)
k0(α,s)

ds
)
(u− τ)α−2

k0(α,u)
Bux∗(τ)dτdu, (4.1)
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such that
|x(t)− x∗(t)| ≤ µ ε, ∀ t ∈ J.

Theorem 3. Assume that the assumptions (A1)−(A3) are satisfied. Then the IVP
(1.3) is Hyers-Ulam stable.

Proof. With the help of Theorem 2, let x(t) be unique solution of (3.3) and x∗(t)
be any other solution satisfying (4.1). Then, by a similar way in the proof of Theorem
2 and by virtue of (3.6), one has

|x(t)− x∗(t)| ≤ 1
MkΓ(α−1)

∫ t

0

∫ u

0
(u− τ)α−2 | f (τ,x(τ))− f (τ,x∗(τ))| dτ du

+
M1

MkΓ(α−1)

∫ t

0

∫ u

0
(u− τ)α−2 |ux(τ)−ux∗(τ)| dτ du

≤ L
MkΓ(α−1)

∫ t

0

∫ u

0
(u− τ)α−2 |x(τ)− x∗(τ)| dτ du

+
M1

MkΓ(α−1)

∫ t

0

∫ u

0
(u− τ)α−2 |ux(τ)−ux∗(τ)| dτ du

≤
(

bαL
MkΓ(α+1)

+
M1M2b2αL

M2
k Γ2(α+1)

)
∥x− x∗∥

= µ∥x− x∗∥ ,

where

µ :=
bαL

MkΓ(α+1)
+

M1M2b2αL
M2

k Γ2(α+1)
.

Therefore, the integral equation (3.3) is Hyers-Ulam stable. Consequently, the IVP
(1.3) is Hyers-Ulam stable. The proof is finished. □
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