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Abstract. An edge-colored graph G is rainbow connected if any two vertices are connected by a
path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted
by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected.
We prove that p = y/Inn/n is a sharp threshold function for the property rc(S(n, p, H)) <2
in the small-world networks. As by-products, our extension of the concept of independence in
graph theory and generalized small-world network models are of independent interest.
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1. INTRODUCTION

We utilize the terminology and notation of [19] in this letter. An interesting con-
nectivity concept of a graph was recently introduced in [3] and has attracted attention
of some researchers. An edge-colored graph G is referred to as rainbow connected if
any two vertices are connected by a path whose edges have distinct colors. A rain-
bow connected graph must be connected, and conversely, any connected graph has a
trivial edge coloring that makes it rainbow connected. The rainbow connection of a
connected graph G, denoted rc(G), is the smallest number of colors that are needed
in order to make G rainbow connected.

An easy observation is that if G has n vertices then rc(G) < n — 1, since one
may color the edges of a given spanning tree of G with distinct colors, and color the
remaining edges with one of the already used colors. It is also known that r¢(G) = 1
if and only if G is a complete graph, and that rc(G) = n — 1 if and only if G is a
tree. Note that rc¢(G) > diam(G), where diam(G) denotes the diameter of G. The
behavior of rc(G) with respect to the minimum degree §(G) has been dealt with in
the work [2, 13], of which a primary result is r¢(G) < 20n/5(G). Related concepts
such as rainbow path [6], rainbow tree [5] and rainbow k-connectivity [4] have also
been investigated recently.

A natural and intriguing direction to explore is the random graph scenarios [12,17].
Let G(n, p) be the classical random graph with n vertices and edge probability p. For
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a graph property +, we say that G(n, p) satisfies 4 almost surely if the probability
that G(n, p) satisfies 4 tends to 1 as n tends to infinity. A function f(n) is called
a sharp threshold function for the property + if there are two positive constants C
and ¢ such that G(n, p) satisfies + almost surely for p > C f(n) and G(n, p) almost
surely does not satisfy # for p < cf(n). A remarkable feature of random graphs is
that all monotone graph properties have sharp thresholds (see e.g. [1, 10, 11]).

The parameter rc(G) is monotone non-increasing in the sense that if we add an
edge to G we cannot increase its rainbow connection. The authors of [2] show that
p = +/Inn/n is a sharp threshold function for the property rc(G(n, p)) < 2. In this
note, we propose a generalized small-world network model and explore the threshold
of rainbow connection of it. The small-world network is a model with two important
characteristics: the clustering effect and the small-world phenomenon, which was
originally introduced by Watts and Strogatz [18] as a model of real world complex
networks. It has since been the subject of considerable research interest within the
physics community, see e.g. [7, 14—16] and references therein.

The rest of the note is organized as follows. In Section 2, we present some ne-
cessary notions including the generalized small-world model and state our sharp
threshold result. The proofs are given in Section 3.

2. NOTIONS AND MAIN RESULT

Watts-Strogatz (WS) rewiring model [18] and its variant Newman-Watts (NW)
model [16] are classical small-world network models. The NW model can be re-
garded as the union of an Erdés-Rényi random graph G (n, p) and a 2k-regular lattice.
It is known that the NW model and the WS model are, essentially, the same. A nat-
ural extension would be to use a general sparse graph to replace the low-dimensional
regular lattices.

Let S(n, p, H) be a small-world network that is the union of a random graph
G(n, p) and a graph H on n vertices. Note that S(n, p, H) is not necessarily connec-
ted when H is not connected. When H is a regular lattice, we then obtain the NW
model.

Next, we need to extend the classical notion of independence in graph theory to
distant /-independence. A subset X of vertices in a graph G is called distant /-
independent for some [ € N, if the distance between any two vertices in V is larger
than /. Thus, a distant 1-independent set is independent in the classical sense. Recall
that there is another generalization of independence, called k-independence [&, 9],
which requires the induced subgraph has maximum degree less than k. The relative
strength relationship of these three concepts can be described as follows:

k-independence < independence < distant /-independence.

Now we are on the stage to state our main result.



RAINBOW CONNECTION IN SMALL-WORLD NETWORKS 495

Theorem 1. Let H be a graph on n vertices, which contains a distant 2-independent
set of order ©(n®) for some ¢ > 0. For the small-world network S(n,p,H), p =
vInn/n is a sharp threshold function for the property rc(S(n, p, H)) <2.

Clearly, a 2k-regular lattice with k& << n® for some « € (0, 1) serves as an eligible
graph H in Theorem 1. Therefore, the above result holds for both WS and NW
models.

3. PROOF OF THEOREM 1

In this section, we will provide a proof of Theorem 1 as per the reasoning in [2].
As mentioned in Section 1, r¢(G) > 2 for any non-complete graph G. The following
lemma gives a sufficient condition for rc(G) = 2.

Lemma 1. (/2]) If G is a non-complete graph on n vertices and any two vertices
of G have at least 2Inn common neighbors, then rc(G) = 2.

Proof of Theorem 1. For the first part of the theorem, we need to prove that for a
sufficiently large constant C, the small-world network S(n, p, H) with p = C \/Inn/n
almost surely has rc(G) = 2. Recall that ¢ (G) is monotone non-increasing, we need
only to prove this for the random graph G(n, p). By Lemma 1, it suffices to show
that almost surely any two vertices of G(n, p) have at least 2lnn common neighbors.

Fix a pair of vertices x, y, and the probability that z is a common neighbor of them
is C%Inn/n. Let random variable X represents the number of common neighbors of
x and y. Accordingly, we get EX = (n —2)(C?Inn/n). By using the Chernoff
bound (e.g. [12] pp.26), for large enough C, we have

2 =o(n?).

Czll'll’l _C2]nn
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Since there are (g) pairs of vertices in G(n, p), the union bound readily yields the
result.

For the other direction, it suffices to show that for a sufficiently small constant c,
the small-world network S(n, p, H) with p = ¢/Inn/n almost surely has
diam(S(n, p, H)) > 3. By the assumption in Theorem 1, fix a distant 2-independent
set X of order ®(n®) for some ¢ < 1/4in H, and let Y be the remaining n — ®(n®)
vertices. Let 4 be the event that X induces an independent set in the small-world
network S(n, p, H). Let B be the event that there exists a pair of vertices x,y € X
with no common neighbor in Y. Consequently, it suffices to prove that (i) P(+4) — 1;
and (ii) P(B) > 1, as n — oo.

For (i): For ¢ sufficiently small we obtain

PA) = (1=p) ") = (1= inn/m )
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asn — 0o, since 0 < ¢ < 1/4.

For (ii): For a pair x,y € X, the probability that x, y have a common neighbor in
Y is shown to be given by

2 Inn\ n-6(n)
1—(1—c n") ~ (=1~

Since the vertex set X can be divided into ®(n®)/2 = @ (n?) pairs, the probability
that all @ (n?) pairs have a common neighbor is

2] n—0(n®)\ On®) e _eud
1=P@) =(1-(1-="5) )~ (=) e 3
For sufficiently small ¢, the right hand side of (3.1) tends to zero, which thus com-
pletes the proof. U
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