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Abstract. An edge-colored graph G is rainbow connected if any two vertices are connected by a
path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted
by rc.G/, is the smallest number of colors that are needed in order to makeG rainbow connected.
We prove that p D

p
lnn=n is a sharp threshold function for the property rc.S.n;p;H// � 2

in the small-world networks. As by-products, our extension of the concept of independence in
graph theory and generalized small-world network models are of independent interest.
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1. INTRODUCTION

We utilize the terminology and notation of [19] in this letter. An interesting con-
nectivity concept of a graph was recently introduced in [3] and has attracted attention
of some researchers. An edge-colored graph G is referred to as rainbow connected if
any two vertices are connected by a path whose edges have distinct colors. A rain-
bow connected graph must be connected, and conversely, any connected graph has a
trivial edge coloring that makes it rainbow connected. The rainbow connection of a
connected graph G, denoted rc.G/, is the smallest number of colors that are needed
in order to make G rainbow connected.

An easy observation is that if G has n vertices then rc.G/ � n� 1, since one
may color the edges of a given spanning tree of G with distinct colors, and color the
remaining edges with one of the already used colors. It is also known that rc.G/D 1
if and only if G is a complete graph, and that rc.G/ D n� 1 if and only if G is a
tree. Note that rc.G/� diam.G/, where diam.G/ denotes the diameter of G. The
behavior of rc.G/ with respect to the minimum degree ı.G/ has been dealt with in
the work [2, 13], of which a primary result is rc.G/ � 20n=ı.G/. Related concepts
such as rainbow path [6], rainbow tree [5] and rainbow k-connectivity [4] have also
been investigated recently.

A natural and intriguing direction to explore is the random graph scenarios [12,17].
LetG.n;p/ be the classical random graph with n vertices and edge probability p. For
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a graph property A, we say that G.n;p/ satisfies A almost surely if the probability
that G.n;p/ satisfies A tends to 1 as n tends to infinity. A function f .n/ is called
a sharp threshold function for the property A if there are two positive constants C
and c such that G.n;p/ satisfies A almost surely for p � Cf .n/ and G.n;p/ almost
surely does not satisfy A for p � cf .n/. A remarkable feature of random graphs is
that all monotone graph properties have sharp thresholds (see e.g. [1, 10, 11]).

The parameter rc.G/ is monotone non-increasing in the sense that if we add an
edge to G we cannot increase its rainbow connection. The authors of [2] show that
p D

p
lnn=n is a sharp threshold function for the property rc.G.n;p// � 2. In this

note, we propose a generalized small-world network model and explore the threshold
of rainbow connection of it. The small-world network is a model with two important
characteristics: the clustering effect and the small-world phenomenon, which was
originally introduced by Watts and Strogatz [18] as a model of real world complex
networks. It has since been the subject of considerable research interest within the
physics community, see e.g. [7, 14–16] and references therein.

The rest of the note is organized as follows. In Section 2, we present some ne-
cessary notions including the generalized small-world model and state our sharp
threshold result. The proofs are given in Section 3.

2. NOTIONS AND MAIN RESULT

Watts-Strogatz (WS) rewiring model [18] and its variant Newman-Watts (NW)
model [16] are classical small-world network models. The NW model can be re-
garded as the union of an Erdős-Rényi random graphG.n;p/ and a 2k-regular lattice.
It is known that the NW model and the WS model are, essentially, the same. A nat-
ural extension would be to use a general sparse graph to replace the low-dimensional
regular lattices.

Let S.n;p;H/ be a small-world network that is the union of a random graph
G.n;p/ and a graphH on n vertices. Note that S.n;p;H/ is not necessarily connec-
ted when H is not connected. When H is a regular lattice, we then obtain the NW
model.

Next, we need to extend the classical notion of independence in graph theory to
distant l-independence. A subset X of vertices in a graph G is called distant l-
independent for some l 2N, if the distance between any two vertices in V is larger
than l . Thus, a distant 1-independent set is independent in the classical sense. Recall
that there is another generalization of independence, called k-independence [8, 9],
which requires the induced subgraph has maximum degree less than k. The relative
strength relationship of these three concepts can be described as follows:

k-independence < independence < distant l-independence:

Now we are on the stage to state our main result.
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Theorem 1. LetH be a graph on n vertices, which contains a distant 2-independent
set of order �.n"/ for some " > 0. For the small-world network S.n;p;H/, p Dp

lnn=n is a sharp threshold function for the property rc.S.n;p;H//� 2.

Clearly, a 2k-regular lattice with k� n˛ for some ˛ 2 .0;1/ serves as an eligible
graph H in Theorem 1. Therefore, the above result holds for both WS and NW
models.

3. PROOF OF THEOREM 1

In this section, we will provide a proof of Theorem 1 as per the reasoning in [2].
As mentioned in Section 1, rc.G/� 2 for any non-complete graph G. The following
lemma gives a sufficient condition for rc.G/D 2.

Lemma 1. ([2]) If G is a non-complete graph on n vertices and any two vertices
of G have at least 2 lnn common neighbors, then rc.G/D 2.

Proof of Theorem 1. For the first part of the theorem, we need to prove that for a
sufficiently large constantC , the small-world network S.n;p;H/with pDC

p
lnn=n

almost surely has rc.G/D 2. Recall that rc.G/ is monotone non-increasing, we need
only to prove this for the random graph G.n;p/. By Lemma 1, it suffices to show
that almost surely any two vertices of G.n;p/ have at least 2 lnn common neighbors.

Fix a pair of vertices x;y, and the probability that ´ is a common neighbor of them
is C 2 lnn=n. Let random variable X represents the number of common neighbors of
x and y. Accordingly, we get EX D .n� 2/.C 2 lnn=n/. By using the Chernoff
bound (e.g. [12] pp.26), for large enough C , we have

P.X < 2 lnn/� P
�
X <EX �

C 2 lnn
4

�
� e�C

2 lnn
32 D o.n�2/:

Since there are
�
n
2

�
pairs of vertices in G.n;p/, the union bound readily yields the

result.
For the other direction, it suffices to show that for a sufficiently small constant c,

the small-world network S.n;p;H/ with p D c
p

lnn=n almost surely has
diam.S.n;p;H//� 3. By the assumption in Theorem 1, fix a distant 2-independent
set X of order �.n"/ for some " < 1=4 in H , and let Y be the remaining n��.n"/
vertices. Let A be the event that X induces an independent set in the small-world
network S.n;p;H/. Let B be the event that there exists a pair of vertices x;y 2 X
with no common neighbor in Y . Consequently, it suffices to prove that (i) P.A/! 1;
and (ii) P.B/! 1, as n!1.

For (i): For c sufficiently small we obtain

P.A/D .1�p/.
�.n"/
2 /
D .1� c

p
lnn=n/.

�.n"/
2 /

� e

�
c
p

lnn

�

�
n
1
2
�2"
�
! 1;
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as n!1, since 0 < " < 1=4.
For (ii): For a pair x;y 2 X , the probability that x;y have a common neighbor in

Y is shown to be given by

1�
�
1�

c2 lnn
n

�n��.n"/
� .1�n�c2/:

Since the vertex set X can be divided into �.n"/=2 D �.n"/ pairs, the probability
that all �.n"/ pairs have a common neighbor is

1�P.B/D
�
1�

�
1�

c2 lnn
n

�n��.n"/��.n"/
�
�
1�n�c2

��.n"/
� e

�
�.n"/

nc
2 : (3.1)

For sufficiently small c, the right hand side of (3.1) tends to zero, which thus com-
pletes the proof. �
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