A sharp threshold for rainbow connection in small-world networks

Y. Shang
A SHARP THRESHOLD FOR RAINBOW CONNECTION IN SMALL-WORLD NETWORKS

Y. SHANG

Received 30 March, 2011

Abstract. An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow connected.

We prove that $p = \sqrt{\ln n / n}$ is a sharp threshold function for the property $rc(S(n, p, H)) \leq 2$ in the small-world networks. As by-products, our extension of the concept of independence in graph theory and generalized small-world network models are of independent interest.

2000 Mathematics Subject Classification: 05C82; 05C15; 05C40

Keywords: rainbow connection, edge coloring, small world, networks

1. INTRODUCTION

We utilize the terminology and notation of [19] in this letter. An interesting connectivity concept of a graph was recently introduced in [3] and has attracted attention of some researchers. An edge-colored graph G is referred to as rainbow connected if any two vertices are connected by a path whose edges have distinct colors. A rainbow connected graph must be connected, and conversely, any connected graph has a trivial edge coloring that makes it rainbow connected. The rainbow connection of a connected graph G, denoted $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow connected.

An easy observation is that if G has n vertices then $rc(G) \leq n - 1$, since one may color the edges of a given spanning tree of G with distinct colors, and color the remaining edges with one of the already used colors. It is also known that $rc(G) = 1$ if and only if G is a complete graph, and that $rc(G) = n - 1$ if and only if G is a tree. Note that $rc(G) \geq diam(G)$, where $diam(G)$ denotes the diameter of G. The behavior of $rc(G)$ with respect to the minimum degree $\delta(G)$ has been dealt with in the work [2, 13], of which a primary result is $rc(G) \leq 20n/\delta(G)$. Related concepts such as rainbow path [6], rainbow tree [5] and rainbow k-connectivity [4] have also been investigated recently.

A natural and intriguing direction to explore is the random graph scenarios [12, 17]. Let $G(n, p)$ be the classical random graph with n vertices and edge probability p. For

© 2012 Miskolc University Press
a graph property \mathcal{A}, we say that $G(n, p)$ satisfies \mathcal{A} almost surely if the probability that $G(n, p)$ satisfies \mathcal{A} tends to 1 as n tends to infinity. A function $f(n)$ is called a sharp threshold function for the property \mathcal{A} if there are two positive constants C and c such that $G(n, p)$ satisfies \mathcal{A} almost surely for $p \geq Cf(n)$ and $G(n, p)$ almost surely does not satisfy \mathcal{A} for $p \leq cf(n)$. A remarkable feature of random graphs is that all monotone graph properties have sharp thresholds (see e.g. [1, 10, 11]).

The parameter $rc(G)$ is monotone non-increasing in the sense that if we add an edge to G we cannot increase its rainbow connection. The authors of [2] show that $p = \sqrt{\ln n / n}$ is a sharp threshold function for the property $rc(G(n, p)) \leq 2$. In this note, we propose a generalized small-world network model and explore the threshold of rainbow connection of it. The small-world network is a model with two important characteristics: the clustering effect and the small-world phenomenon, which was originally introduced by Watts and Strogatz [18] as a model of real world complex networks. It has since been the subject of considerable research interest within the physics community, see e.g. [7, 14–16] and references therein.

The rest of the note is organized as follows. In Section 2, we present some necessary notions including the generalized small-world model and state our sharp threshold result. The proofs are given in Section 3.

2. NOTIONS AND MAIN RESULT

Watts-Strogatz (WS) rewiring model [18] and its variant Newman-Watts (NW) model [16] are classical small-world network models. The NW model can be regarded as the union of an Erdős-Rényi random graph $G(n, p)$ and a $2k$-regular lattice. It is known that the NW model and the WS model are, essentially, the same. A natural extension would be to use a general sparse graph to replace the low-dimensional regular lattices.

Let $S(n, p, H)$ be a small-world network that is the union of a random graph $G(n, p)$ and a graph H on n vertices. Note that $S(n, p, H)$ is not necessarily connected when H is not connected. When H is a regular lattice, we then obtain the NW model.

Next, we need to extend the classical notion of independence in graph theory to distant l-independence. A subset X of vertices in a graph G is called distant l-independent for some $l \in \mathbb{N}$, if the distance between any two vertices in V is larger than l. Thus, a distant 1-independent set is independent in the classical sense. Recall that there is another generalization of independence, called k-independence [8, 9], which requires the induced subgraph has maximum degree less than k. The relative strength relationship of these three concepts can be described as follows:

\[k\text{-independence} < \text{independence} < \text{distant } l\text{-independence}. \]

Now we are on the stage to state our main result.
Theorem 1. Let H be a graph on n vertices, which contains a distant 2-independent set of order $\Theta(n^\varepsilon)$ for some $\varepsilon > 0$. For the small-world network $S(n, p, H)$, $p = \sqrt{\ln n}/n$ is a sharp threshold function for the property $rc(S(n, p, H)) \leq 2$.

Clearly, a $2k$-regular lattice with $k \ll n^\alpha$ for some $\alpha \in (0, 1)$ serves as an eligible graph H in Theorem 1. Therefore, the above result holds for both WS and NW models.

3. Proof of Theorem 1

In this section, we will provide a proof of Theorem 1 as per the reasoning in [2]. As mentioned in Section 1, $rc(G) \geq 2$ for any non-complete graph G. The following lemma gives a sufficient condition for $rc(G) = 2$.

Lemma 1. ([2]) If G is a non-complete graph on n vertices and any two vertices of G have at least $2\ln n$ common neighbors, then $rc(G) = 2$.

Proof of Theorem 1. For the first part of the theorem, we need to prove that for a sufficiently large constant C, the small-world network $S(n, p, H)$ with $p = C \sqrt{\ln n}/n$ almost surely has $rc(G) = 2$. Recall that $rc(G)$ is monotone non-increasing, we need only to prove this for the random graph $G(n, p)$. By Lemma 1, it suffices to show that almost surely any two vertices of $G(n, p)$ have at least $2\ln n$ common neighbors.

Fix a pair of vertices x, y, and the probability that z is a common neighbor of them is $C^2 \ln n/n$. Let random variable X represents the number of common neighbors of x and y. Accordingly, we get $EX = (n-2)(C^2 \ln n/n)$. By using the Chernoff bound (e.g. [12] pp.26), for large enough C, we have

$$P(X < 2\ln n) \leq e^{-\frac{C^2 \ln n}{4}}.$$

Since there are $\binom{n}{2}$ pairs of vertices in $G(n, p)$, the union bound readily yields the result.

For the other direction, it suffices to show that for a sufficiently small constant c, the small-world network $S(n, p, H)$ with $p = c \sqrt{\ln n}/n$ almost surely has $diam(S(n, p, H)) \geq 3$. By the assumption in Theorem 1, fix a distant 2-independent set X of order $\Theta(n^\varepsilon)$ for some $\varepsilon < 1/4$ in H, and let Y be the remaining $n - \Theta(n^\varepsilon)$ vertices. Let A be the event that X induces an independent set in the small-world network $S(n, p, H)$. Let B be the event that there exists a pair of vertices $x, y \in X$ with no common neighbor in Y. Consequently, it suffices to prove that (i) $P(A) \to 1$; and (ii) $P(B) \to 1$, as $n \to \infty$.

For (i): For c sufficiently small we obtain

$$P(A) = (1 - p)^{\Theta(n^\varepsilon)} = (1 - c \sqrt{\ln n}/n)^{\Theta(n^\varepsilon)} \approx e^{\Theta\left(c^2 \ln n\right)} \to 1.$$
For (ii): For a pair \(x, y \in X \), the probability that \(x, y \) have a common neighbor in \(Y \) is shown to be given by

\[
1 - \left(1 - \frac{c^2 \ln n}{n} \right)^{n - \Theta(n^\epsilon)} \sim (1 - n^{-c^2}).
\]

Since the vertex set \(X \) can be divided into \(\Theta(n^\epsilon)/2 = \Theta(n^\epsilon) \) pairs, the probability that all \(\Theta(n^\epsilon) \) pairs have a common neighbor is

\[
1 - P(B) = \left(1 - \left(1 - \frac{c^2 \ln n}{n} \right)^{n - \Theta(n^\epsilon)} \right)^{\Theta(n^\epsilon)} \sim \left(1 - n^{-c^2} \right)^\Theta(n^\epsilon) \sim e^{-\Theta(n^\epsilon)/nc^2}. \tag{3.1}
\]

For sufficiently small \(c \), the right hand side of (3.1) tends to zero, which thus completes the proof. \(\square \)

REFERENCES

Author’s address

Y. Shang
University of Texas at San Antonio, Institute for Cyber Security, San Antonio, TX 78249, USA
E-mail address: shylmath@hotmail.com