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Abstract. The game-theoretic p-Laplacian operator is a version of classical variational p-Laplacian
which is in connection with stochastic games called Tug-of-War with noise. The existence of
positive singular and Hölder continuous solutions of the game-theoretic p-Laplace operator in-
volving the gradient in a small C2 perturbation of the unit ball in Rn are proved. Finally, a more
case problem is introduced.
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1. INTRODUCTION

Game theoretic stochastic or deterministic methods have recently emerged as a
novel approach to study and to approximate various non-linear Partial Differential
Equations (PDEs). The normalized p-Laplacian or game-theoretic p-Laplacian oper-
ator is a version of classical variational p-Laplacian which was introduced recently in
connection with stochastic games called Tug-of-War with noise and it can be used as
a unified framework for interpolation problems in signal processing on graphs, such
as image processing and machine learning (see [9]).

Generally, tug-of-war, athletic contest between two teams at opposite ends of a
rope, each team trying to drag the other across a center line. In some forms of the
game a tape or handkerchief is tied around the center of the rope, and two others are
tied six feet (1.8 meters) on either side. Three corresponding lines are marked on the
ground. The game ends when one team pulls the other so that the tape on the losers’
side crosses the ground mark on the winners’ side. The contest is decided by the best
two out of three pulls. A rural pastime in England and Scotland, the tug-of-war was
an Olympic event from 1900 to 1920, with five men to a side. It has often been an
outdoor contest at Scottish Highland Games and at other large social gatherings in
the 20th century.

Mathematically, tug-of-war games related to the 1-Laplacian or to the p-Laplacian
(first introduced by Peres, Schramm, Shefel, and Wilson in [22, 23]) have attracted a
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lot of attention and are used in many works to study the existence or the regularity
of solutions for many PDEs (see [35] and references therein). Many of these games
generally are formulated as well-known statistical functionals such as mean, min, or
max operators. They are interpreted as a discrete approximation of the underlying
PDE, and solving the latter leads to taking a suitable limit of the solution of the
discrete game.

Here, we briefly review the notion of tug-of-war game and continuous PDEs prob-
lem form [8] (one can see more details in [22, 23]).

Let Ω ⊂ Rn be an open, bounded domain, h : Ω → R the running payoff function,
and g : ∂Ω → R the payoff function. Fix a number ε > 0. The dynamics of the game
are as follows: a token is placed at an initial position x0 ∈ Ω. At the kth stage of the
game, Player I and Player II select points xI

k and xII
k , respectively, each belonging to a

specified set Bε(xk−1)⊂ Ω (where Bε(xk−1) is the ε-ball centered in xk−1). The token
is then moved to xk, where xk can be either xI

k or xII
k with equal probability. In other

words, a fair coin is tossed to determine where the token is placed (i.e., which player
won this stage).

After the kth stage of the game, if xk ∈ Ω then the game continue to stage k+ 1.
Otherwise, if xk ∈ ∂Ω, the game ends and Player II pays Player I the amount g(xk)+

ε2
∑

k−1
j=0 h(x j). Player I attempts to maximize the payoff while Player II attempts to

minimize it. If both player are using optimal strategy, according to the Dynamic
Programming Principle, the value functions for Player I and Player II for standard
ε-turn tug-of-war satisfy the relation:{

uε(x) =
1
2

[
supy∈Bε(x) uε(y)+ infy∈Bε(x) uε(y)

]
+ ε2h(x) x ∈ Ω,

uε(x) = g(x) x ∈ ∂Ω,

The authors of [23] have shown that if the running payoff function h is of constant
sign, the value function uε converges to the unique viscosity solution of the normal-
ized ∞-Poisson equation: {

∆N
∞u(x) =−h(x) x ∈ Ω,

u(x) = g(x) x ∈ ∂Ω,

where ∆N
∞ := 1

|∇u|2 ∆∞ is the normalized ∞-Laplacian and

∆∞ = |∇u|2 ∑
i j

uxiuxix j ux j

In another version of tug-of-war game with noise, the game is modified as follows:
at point xk ∈ Ω, player I and player II play ε-step tug-of-war game with probability
β ∈ [0,1] and a random point in ball of radius ε centered at xk is chosen with prob-
ability 1− β. The value functions of the game satisfy the dynamic programming
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principle:

uε(x) =
β

2

[
sup

y∈Bε(x)
uε(y)+ inf

y∈Bε(x)
uε(y)

]
+

1−β

|Bε(x)|

∫
Bε(x)

uε(y)dy+ ε
2h(x)

with the boundary condition uε(x) = g(x) for x ∈ ∂Ω. A detailed proof for existence
and uniqueness of these types of function was shown in [17].

Choosing the probability β = p−2
p+n , this dynamic programming principle gives a

connection to viscosity solutions of the following p-Laplace equation [14, 16, 35]:{
∆N

p u(x) =−h(x) x ∈ ∂Ω,
u(x) = g(x) x ∈ ∂Ω,

for p ≥ 2 with ∆N
p u := 1

p |∇u|2−pdiv(|∇u|p−2∇u).
Recently, in [9], the authors proposed an adaptation and generalization of the nor-

malized p-Laplacian operator on weighted graphs, they studied the uniqueness and
existence of the solution where the Dirichlet problem associated to this operator is
considered. Also there is a high interest in adapting classical signal processing tools
on graphs and networks such as wavelets or PDEs (see [8] and references there in).
The demand for such methods is motivated by existing and potential future applica-
tions, such as in machine learning and mathematical image processing. Indeed, any
kind of data can be represented by a graph in an abstract form in which the vertices
are associated to the data and the edges correspond to relationships within data.

In this paper, we are interested in obtaining positive singular and Hölder continu-
ous solutions of {

−∆N
p u(y) = C|∇u(y)|q y ∈ Ω,

u = 0 y ∈ ∂Ω,
(1.1)

where Ω is a small C2 perturbation of the unit ball in Rn and C > 0 is a constant.
The equation (1.1) can be rewrite as

0 = |∇u|2∆u+
(p−2)

2
∇u ·∇|∇u|2 + pC|∇u|q+2 y ∈ Ω, (1.2)

with u = 0 on y ∈ ∂Ω. We can write this in terms of the components as

0 =

(
|∇u|2∆u+(p−2)

n

∑
i, j=1

uyiuy j uyiy j

)
+ pC|∇u|q+2, y ∈ Ω. (1.3)

Notice that we can re-write the equation as −∆pu−a(x) ·∇u = 0 in Ω with u = 0 on
∂Ω where a(x) = p|∇u|q+p−4∇u and hence if u sufficiently smooth we see that a(x)
should be sufficiently smooth so as to apply the maximum principle; hence the only
solution should be u = 0. From this informal argument we expect the only way to
obtain a positive solution is for the solution to be somewhat singular. The following
example gives an explicit solution on the puncture of the unit ball. Our approach will
be to perturb an explicit solution on the ball.
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Example 1. Let B1 denote the unit ball centered at the origin in Rn.

(1) Let 1 < p < n, 1+ (p−1)
n−1 < q < 2 and define w(r) := r−σ −1 where σ := 2−q

q−1
and

C :=
(n−1)(q−1)− (p−1)

p(q−1)σq−1 . (1.4)

Then u is a singular weak solution of (1.1) with Ω = B1. Note the above
restriction forces σ > 0 and the further restriction forces C > 0.

(2) Let q > max{2,1+ (p−1)
n−1 } and define w(r) := 1− rσ where σ := q−2

q−1 and

C :=
(n−1)(q−1)− (p−1)

p(q−1)σq−1 . (1.5)

Then w is a positive Hölder continuous weak solution of (1.1) with Ω = B1.
Note the restriction forces σ > 0 and C > 0.

PDE’s problems are important for their applications in other sciences. The stand-
ard mathematical techniques are not adequate to study these problems and they need
new techniques. This may be the central development of mathematical ideas in act-
ive areas of pure mathematics which have had a decisive interaction with PDE’s (see
[1,10–13,15,18,20,21,24–34,36–38] for more relevant problems). It is very remark-
able to write that in the classical theory of the p-Laplace equation (as well as Laplace
equation) several main parts of mathematics such as Calculus of Variations, Partial
Differential Equations, Potential Theory, Function Theory are joined. The problem
∆pu := div(|∇u|p−2∇u) is studied for different range of p. It is worth to mention that
(1.1) is a non variational equation and hence there are various standard tools which
are not available anymore. Here, by an idea motivated form [2–7, 19] we study the
problem.

Due to do this, we do a change of variables to reduce the problem to one on the
unit ball; this is take from [7]. Fix ψ : B1 →Rn be a smooth map and for ε > 0 define

Ωε := {x+ εψ(x) : x ∈ B1}.

This domain will be the small perturbation of the unit ball we work on. There is
some small ε0 > 0 such that for all 0 < ε < ε0 one has that Ωε is diffeomorphic to the
unit ball B1. Let y = x+ εψ(x) for x ∈ B1 and note there is some ψ̃ smooth such that
x = y+ εψ̃(ε,y) for y ∈ Ωε. Given u(y) defined on y ∈ Ωε or v(x) defined on x ∈ B1
we define the other via u(y) = v(x). So to find a positive singular solution u(y) of
(1.1) it is sufficient to find a positive singular solution v(x) of some, to be determined
equation, on the unit ball. To compute the equation for v(x) we will use the chain
rule, but we mention that the computation becomes quite involved. We know that

uyi =
n

∑
k=1

vxk

(
δki +

∂ψ̃k

∂yi

)
= vxi + ε

n

∑
k=1

vxk

∂ψ̃k

∂yi
.
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Also a computation shows (similar to [2, 3])
n

∑
i, j=1

uyiuy j uyiy j =
∇v ·∇(|∇v|2)

2
+g0(ε)

n

∑
i, j,k=1

{
vxix j vxivx j + vxivx j vxk

}
,

where |g0(ε)| ≤ Cε for all |ε| small. We now make some comments on this simpli-
fication. Our approach will be to look for solutions of the form v(x) = w(x)+ φ(x)
where w(x) = w(r) is the above explicit singular radial solution. We will end up writ-
ing out fixed point argument but all these terms that were simplified will not affect
the linearized operator; but will only show up in the nonlinear terms. So the exact
nature of the terms is not overly important, and in fact if one checks all the dropped
terms, they see they are all of the exact for of the two terms we left. Additionally we
have dropped the smooth coefficients, but this won’t affect anything either.

By [7] we can write ∆yu(y) = ∆xv(x)+Eε(v) where Eε(v) is defined by (1.6). So
the equation for v on the unit ball now becomes (after taking into account the prior
mentioned simplification)

0 = |∇v+ εA0∇v|2(∆v+Eε(v))+
p−2

2
∇v ·∇(|∇v|2)

+g0(ε)∑
{

vxix j vxivx j + vxivx j vxk

}
+ pC|∇v+ εA0∇v|q+2

= (∆v)|∇v|2 + p−2
2

∇v ·∇(|∇v|2)+ pC|∇v+ εA0∇v|q+2 +Hε(v)

where

Hε(v) := (∆v)2ε(A0∇v) ·∇v+ ε
2(∆v)|A0∇v|2 +Eε(v)|∇v|2

+Eε(v)(2εA0∇v) ·∇v+Eε(v)ε2|A0∇v|2

+g0(ε)∑
{

vxix j vxivx j + vxivx j vxk

}
Eε(v) := 2ε∑

i,k
vxixk ∂yiψ̃k + ε∑

i,k
vxk ∂yiyiψ̃k + ε

2
∑
i, j,k

vx jxk ∂yiψ̃ jψ̃k. (1.6)

We now hope for small enough ε we can find a solution of the form v = w+φ. If we
rewrite the equation putting all the linear in φ terms on the left we arrive at{

−L(φ) = ∑
7
k=1 Fk(φ)+ Iε(φ)+Hε(w+φ) B1,

φ = 0 ∂B1,
(1.7)

where

F1(φ) = ∆w|∇φ|2,
F2(φ) = (∆φ)(2∇w ·∇φ),

F3(φ) = (∆φ)|∇φ|2,

F4(φ) =
p−2

2
∇w ·∇(|∇φ|2),

F5(φ) = (p−2)∇φ ·∇(∇w ·∇φ),
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F6(φ) =
(p−2)

2
∇φ ·∇|∇φ|2

Iε(φ) = pC|∇w+∇φ+ εA0(∇w+∇φ)|q+2 − pC|∇w+∇φ|q+2,

F7(φ) = pC
{
|∇w+∇φ|q+2 −|∇w|q+2 − (q+2)|∇w|q∇w ·∇φ

}
.

The linear operator L is given by

L(φ) := |∇w|2(∆φ)+(∆w)(2∇w ·∇φ)+(p−2)∇w ·∇(∇w ·∇φ)

+
(p−2)

2
∇φ ·∇|∇w|2 + pC(q+2)|∇w|q∇w ·∇φ.

Of crucial importance will be the linear operator L and what functions spaces we
work in. Before we consider these issues we want to normalize L by dividing by
|∇w|2. So instead of considering (1.7) we will consider{

−L̃(φ) := −L(φ)
|∇w|2 = ∑

7
k=1

Fk(φ)
|∇w|2 +

Iε(φ)
|∇w|2 +

Hε(w+φ)
|∇w|2 B1,

φ = 0 ∂B1.
(1.8)

To obtain a solution of this we will apply the Contraction Mapping Principle to the
nonlinear mapping Jε(φ) = ψ (for φ ∈ X where X is yet to be determined and of
course this mapping is not well defined yet){

−L̃(ψ) = ∑
7
k=1

Fk(φ)
|∇w|2 +

Iε(φ)
|∇w|2 +

Hε(w+φ)
|∇w|2 B1,

ψ = 0 ∂B1.
(1.9)

The exact form of L̃ will be crucial for us. A computation shows that we can write

L̃(φ) = ∆φ+ γφrr +
αφr

r
,

where γ := p−2 and

α := 2(n−1)−2(p−1)(σ+1)− pC(q+2)σq−1 (1.10)

where C is given by (1.4).

2. LINEAR THEORY

We study the linear theory for the problem in two different cases (1) The singular
case and (2) The Hölder continuous case as follows:

For the singular case, we first define the function spaces. For 0 < s ≤ 1
2 define

As := {x ∈ Rn : s < |x|< 2s} and for σ ∈ R and n < t < ∞ define the spaces Y = Yt,σ
and X = Xt,σ with norms given by

∥ f∥t
Y : = sup

0<s≤ 1
2

s(2+σ)t−n
∫

As

| f (x)|tdx

∥φ∥t
X := sup

0<s≤ 1
2

sσt−n
{∫

As

|φ|tdx+ st
∫

As

|∇φ|tdx+ s2t
∫

As

|D2
φ|tdx

}
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where for the space X we impose the boundary condition φ = 0 on ∂B1. We now
define the closed subspaces of X and Y respectively X1,Y1 where we remove the first
mode. So to define this properly we need to introduce the spherical harmonics.

Consider the Laplace-Beltrami operator ∆Sn−1 = ∆θ on Sn−1 and the eigenpairs

−∆θψk(θ) = λkψk(θ), θ ∈ Sn−1,

and note that λ0 = 0,ψ0 = 1 (multiplicity 1); λ1 = n − 1 with multiplicity n and
λ2 = 2n. Given φ ∈ X , f ∈ Y we write

φ(x) =
∞

∑
k=0

ak(r)ψk(θ), f (x) =
∞

∑
k=0

bk(r)ψk(θ),

and so we define

X1 :=

{
φ ∈ X : φ(x) =

∞

∑
k=1

ak(r)ψk(θ)

}
, note there is no k = 0 mode

and analogous for Y . Note we are abusing notation by not showing the correct multi-
plicity for modes which have multiplicity greater than one; but this isn’t an issue for
the procedures we perform. For γ,α ∈ R we define the operator

L(φ)(x) := Lγ,α(φ)(x) := ∆φ(x)+ γφrr(x)+
α

r
φr(x). (2.1)

Note we can write the operator as

Lγ,α(φ)(x) = ∆φ+ γ

n

∑
i, j=1

xix j

|x|2
φxix j +

α

|x|2
x ·∇φ(x).

In this section we will prove various results regarding this operator L = Lγ,α. For
explicit values of γ,α this operator Lγ,α will be exactly the operator L̃ from the previ-
ous section. In this section the values of γ,α,σ will satisfy a few constraints but are
otherwise arbitrary. These constraints are: Take 1 < p < n, 1+ (p−1)

n−1 < q < 2 and set

γ := p−2, σ := 2−q
q−1 ,

α := 2(n−1)−2(p−1)(σ+1)− pC(q+2)σq−1,
(2.2)

Note that by the above α, one can get n− 2− γ+α = p−1
q−1 − (n− 1)(q− 1) and a

computation shows that n−2− γ+α changes sign in the interval 1+ (p−1)
n−1 < q < 2.

Now, similar to [3] one can prove the following theorem.

Theorem 1. Suppose −1 < γ < n−2 and 0 < σ <−β
−
1 . Then there is some C > 0

such that for all f ∈ Y1 there is some φ ∈ X1 such that Lγ,α(φ) = f in B1\{0} and
∥φ∥X ≤C∥ f∥Y .

For the following lemma we use the exact values of the parameters.



874 A. RAZANI

Lemma 1. (Onto estimate for k = 0 mode) Suppose the parameters satisfy (2.2)
and set β := n−1+α

1+γ
(which implies β−σ−1 < 0). There is some C0 > 0 such that for

all b0 there is some a0 which satisfies

(1+ γ)a′′k (r)+
(n−1+α)a′k(r)

r
− λkak(r)

r2 = bk(r) 0 < r < 1 (2.3)

with ak(1) = 0, for k = 0 and ∥a0∥X ≤C0∥b0∥Y .

Corollary 1. Suppose the parameters satisfy (2.2). Then there is some C > 0 such
that for all f ∈Y there is some φ∈ X which satisfies Lγ,α(φ) = f in B1\{0} with φ= 0
on ∂B1. Moreover, one has ∥φ∥X ≤C∥ f∥Y .

For the Hölder continuous case, we examine the needed linear theory to linearize
around the radial Hölder continuous solution from Example 1 Case 2 where w(r) =
1−rσ where σ := q−2

q−1 . If one takes the same approach as in the singular case, they see
we need to examine the operator L = Lγ,α (defined by (2.1)), where γ := p−2,σ :=
q−2
q−1 and α := 2(n−1)+2(p−1)(σ−1)− pC(q+2)σq−1, where C defined in (1.5).

The spaces we work in are the same as before (again we have n < t < ∞) except
now note the change of sign in front of σ; define the spaces Y = Yt,σ and X = Xt,σ
with norms given by

∥ f∥t
Y := sup

0<s≤ 1
2

s(2−σ)t−n
∫

As

| f (x)|tdx

∥φ∥t
X := sup

0<s≤ 1
2

s−σt−n
{∫

As

|φ|tdx+ st
∫

As

|∇φ|tdx+ s2t
∫

As

|D2
φ|tdx

}
where for the space X we impose the boundary condition φ = 0 on ∂B1.

By a similar argument in [3], we have the following theorem.

Theorem 2. Let n ≥ 2, p > 1 and q > max
{

2,1+ p−1
n−1

}
and σ,γ,α be as above.

Then there is some C > 0 such that for all f ∈ Y there is some φ ∈ X which satisfies

L(φ) = Lγ,α(φ) = f in B1\{0}, φ = 0 on ∂B1, (2.4)

and ∥φ∥X ≤C∥ f∥Y .

3. FIXED POINT THEORY

In this section we study the fixed point argument to show that in the singular and
Hölder continuous cases Jε has a fixed point. Due to do, we show that Jε(BR) ⊂ BR
and Jε(BR) is a contraction on Br, where Br is the closed ball of radius r centered at
the origin in X .

For the singular case, we know that σ = 2−q
q−1 , 1 < q ≤ 2 and the norms given by

∥ f∥t
Y := sup

0<s≤ 1
2

s(2+σ)t−n
∫

As

| f (x)|tdx
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and

∥φ∥t
X := sup

0<s≤ 1
2

sσt−n
{∫

As

|φ|tdx+ st
∫

As

|∇φ|tdx+ s2t
∫

As

|D2
φ|tdx

}
.

Also a computation shows that
∆w

|∇w|2
= σ(σ+2−n)rσ.

Recall we have defined Jε(φ)=ψ, where ψ satisfies (1.9). In order to obtain a solution
φ of (1.7) we will show that Jε is a contraction on Br where Br is the closed ball of
radius r centered at the origin in X . First of all note that Jε is into X .

Theorem 3. Assume φ ∈ BR ⊂ X. Then there exists C such that

(1)
∥∥∥∥F1(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥2t

X . (2)
∥∥∥∥F2(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥2t

X .

(3)
∥∥∥∥F3(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥3t

X . (4)
∥∥∥∥F4(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥2t

X .

(5)
∥∥∥∥F5(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥2t

X . (6)
∥∥∥∥F6(φ)

|∇w|2

∥∥∥∥t

Y
≤C∥φ∥3t

X .

(7)
∥∥∥∥F7(φ)

|∇w|2

∥∥∥∥t

Y
≤C

(
∥φ∥2t

X +∥φ∥(q−p+4)t
X

)
.

(8)
∥∥∥∥ Iε(φ)

|∇w|2

∥∥∥∥t

Y
≤Cεt

(
1+∥φ∥(q−p+4)t

X

)
.

(9)
∥∥∥∥Hε(w+φ)

|∇w|2

∥∥∥∥t

Y
≤Cεt for all φ ∈ BR with R ≤ 1.

Proof. The proof is straightforward. □

Combining the above results we see that for 0 < R < 1 chosen sufficiently small
and then ε > 0 chosen sufficiently small we have Jε(BR)⊂ BR.

Contraction: We want to show that for small enough ε > 0 that Jε is a contraction on
BR ⊂ X for suitably (small) R. Let Jε(φ) = ψ and Jε(φ0) = ψ0 with φ,φ0 ∈ Br. Note
that

L̃(ψ)− L̃(ψ0) =
7

∑
k=1

Fk(φ)−Fk(φ0)

|∇w|2
+

Iε(φ)− Iε(φ0)

|∇w|2
+

Hε(w+φ)−Hε(w+φ0)

|∇w|2
(3.1)

Theorem 4. Jε : BR → BR is a contraction, where ε and R are small enough.

Proof. We have to show that for sufficiently small ε and R, Jε : BR → BR is a
contraction. In other words we need to show there exists a kR,ε < 1 such that

∥Jt(φ)− Jt(φ0)∥Y ≤ kR,ε∥φ−φ0∥X .
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We need to prove there exist kR,ε such that∥∥∥Fk(φ)−Fk(φ0)
|∇w|2

∥∥∥
Y

≤ kR,ε ∥φ−φ0∥X for k = 1,2, · · · ,7

∥∥∥ Iε(φ)−Iε(φ0)
|∇w|2

∥∥∥
Y

≤ kR,ε ∥φ−φ0∥X and

∥∥∥Hε(w+φ)−Hε(w+φ0)
|∇w|2

∥∥∥
Y

≤ kR,ε ∥φ−φ0∥X .

(3.2)

A computation shows that each of the above inequalities are hold. □

Remark 1. Notice that v > 0. Firstly, v ≥ 0 and since v(x) = w(x) + φ(x), the
pointwise estimates on φ and it’s gradient for R > 0 small enough implies v ̸= 0 in
B1.

By the same argument in the singular continuous case, for the Hölder continuous
case one can show that for 0 < R < 1 chosen sufficiently small and then ε > 0 chosen
sufficiently small we have Jε(BR)⊂BR, and for small enough ε> 0, Jε is a contraction
on BR ⊂ X for suitably (small) R. Thus the fixed point argument is working for the
the Hölder continuous case.

Thus, by combining the fixed point argument and the linear theory, we can state
that the main result as follows:

Theorem 5. Assume n ≥ 2.
(1) Suppose p,q,n,σ,C are as in Example 1 part 1. Then for sufficiently small

C2 perturbations of the unit ball, say Ωε, there exists a positive singular weak
solution u of (1.1) (with Ω=Ωε) which blows up at exactly one point xε (near
the origin) and behaves like u(x) ≈ |x− xε|−σ near xε. The proof gives the
exact behaviour near xε.

(2) Suppose p,q,n,σ,C are as in Example 1 part 2. Then for sufficiently small
C2 perturbations of the unit ball, say Ωε, there exists a positive weak solution
u of (1.1) (with Ω = Ωε) with u ∈ C∞(Ωε\{xε}) and with u ∈ C0,σ(Ωε). In
addition u is not in C0,σ+δ(Ωε) for any δ > 0.

4. MORE GENERAL CASE

By a similar argument in the above sections, one can study the existence of positive
singular solutions of{

−div(|x|α|∇u|β∇u)+ εh(x) ·∇u = |x|γ|∇u|q + ε1uη + ε2g(x) in Ω,
u = 0 on ∂Ω,

(4.1)

where Ω is a small C2 perturbation of the unit ball in Rn, η > 0 is a positive constant,
and ε,ε1,ε2 are small enough. Assume there exist C0 such that |h(x)| ≤C0|x|σ+1 and
|gi(x)| ≤C0|x|σ+2, i = 1,2. Under suitable conditions on α,β,γ and q, one can prove
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that if Ω is a sufficiently small C2 perturbation of the unit ball there exists a singular
positive weak solution u of (4.1). For other ranges of α,β,γ and q, one may prove
the existence of Hölder continuous positive solution (with optimal regularity) on a C2

perturbation of the unit ball.
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