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1. INTRODUCTION

Harmonic numbers are important in various branches of combinatorics and num-
ber theory. The harmonic numbers are defined by

H0 = 0, Hn =
n

∑
i=1

1
i
, for n = 1,2, · · · .

The first few harmonic numbers are 1, 3
2 ,

11
6 ,

25
12 , · · · . These numbers have been gen-

eralized by some authors.
In [7], for every ordered pair (α,n) ∈ R+×N, the generalized harmonic numbers

Hn(α) are defined by

H0(α) = 0, Hn(α) =
n

∑
i=1

1
iαi , for n = 1,2, · · · .

For α = 1, the usual harmonic numbers are Hn(1) = Hn and the generating function
of the generalized harmonic numbers is

∞

∑
n=1

Hn(α)xn =−
ln
(
1− x

α

)
1− x

.

In [10], for the generalized harmonic numbers Hn(α), the authors defined the gener-
alized hyperharmonic numbers of order r, Hr

n (α) as follows:

c© 2020 Miskolc University Press
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Definition 1. For r < 0 or n≤ 0, Hr
n (α) = 0 and for n≥ 1, the generalized hyper-

harmonic numbers of order r, Hr
n (α) are defined by

Hr
n (α) =

n

∑
i=1

Hr−1
i (α) , r ≥ 1,

where H0
n (α) =

1
nαn .

For α = 1, Hr
n (1) = Hr

n are the hyperharmonic numbers of order r. The generating
function of the generalized hyperharmonic numbers of order r is

∞

∑
n=1

Hr
n(α)x

n =−
ln
(
1− x

α

)
(1− x)r . (1.1)

In [8, 13], the generalized harmonic numbers H (n,r) of rank r are defined as for
n≥ 1, r ≥ 0,

H (n,r) = ∑
1≤n0+n1+···+nr≤n

1
n0n1 · · ·nr

or, equivalently, as

H (n,r) =
(−1)r+1

n!

(
dn

dxn
[ln(1− x)]r+1

1− x

)∣∣∣∣∣
x=0

.

It is clear that H(n,0) = Hn.
Some special numbers in areas of number theory that we will use in the future are

given as follows:
The Cauchy numbers of order r, showed by Cr

n, are defined by the generating
functions to be (

x
ln(1+ x)

)r

=
∞

∑
n=0

Cr
n

xn

n!
. (1.2)

The Daehee numbers of order r, showed by Dr
n, are defined by the generating

functions to be (
ln(1+ x)

x

)r

=
∞

∑
n=0

Dr
n

xn

n!
. (1.3)

For r = 1, D1
n = Dn are called Daehee numbers. It is clear that

D0 = 1,D1 =−
1
2
, · · · ,Dn = (−1)n n!

n+1
. (1.4)

The derangement numbers, denoted by dn, are defined by the generating functions
to be

e−x

1− x
=

∞

∑
n=0

dn
xn

n!
.
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It is well known that Stirling numbers play an important role in combinatorial ana-
lysis. The Stirling numbers of the first kind s(n, i) are given by

xn =
n

∑
i=0

s(n, i)xi,

where for n ≥ 0, s(n,0) = δn0, δni is the Kronecker delta [1, 14]. xn stands for the
falling factorial defined by xn = x(x−1) . . .(x−n+1) .

The Stirling numbers of the first kind s(n,k) satisfy the recurrence relation

s(n+1,k) = s(n,k−1)−ns(n,k) ,

and the generating function of these numbers is given by

ln(1+ x)k

k!
=

∞

∑
n=0

s(n,k)
xn

n!
.

The signed Stirling numbers of the first kind |s(n,k)| are defined such that the num-
ber of permutations of n elements which contain exactly k permutation cycles is the
nonnegative number

|s(n,k)|= (−1)n−k s(n,k).
This means that s(n,k) = 0 for k > n and s(n,n) = 1 and the generating function of
these numbers [2, 9] is given by

(− ln(1− x))k

k!
=

∞

∑
n=0
|s(n,k) |x

n

n!
. (1.5)

In [2], the authors obtained many relations between the Stirling numbers of first kind
and the generalized harmonic numbers H(n,r) of rank r. For example, for any posit-
ive integers n,r,

n

∑
i=1

(−1)i+1

i!
H (n+1, i) = Hn,

n−1

∑
i=r

r!
i!

s(i,r)H i+1
n−i = H (n,r) .

In [12], the authors gave some identities including the hyperharmonic, the Daehee
and the derangement numbers and derived some nonlinear differential equations from
the generating function of the hyperharmonic numbers. For example, for any positive
integers n,r,

Dn = n!
n

∑
i=0

(
r

n− i

)
(−1)i Hr

i+1,
n

∑
i=0

(−1)n−i

(n− i)!
Hr

i =
n

∑
i=0

dn−i

(n− i)!
Hr−1

i .

Harmonic numbers and generalized harmonic numbers have been studied since
the distant past and are involved in a wide range of diverse fields such as analysis,
computer science and various branches of number theory. Recently, there are a lot of
works about infinite series which are associated with the Riemann Zeta function, the
Digamma (and Polygamma) functions, the harmonic (and the generalized harmonic)
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numbers and also properties, generating functions including higher-order harmonic
numbers by using umbral type method [3, 4, 11].

In [5], the authors derived several generating functions involving harmonic num-
bers by making use of an interesting approach based on the umbral calculus.

In [18], the authors obtained closed-form expressions for three families of combin-
atorial series associated with the Digamma (or Psi) function ψ(z) and the generalized
harmonic number Hn (z) = ∑

n
j=1 1/(z+ j). They also considered several illustrative

examples and applications of their main results.
A. Sofo and H. M. Srivastava extended some results of Euler related sums [15,16].

In [16], they investigated products of the shifted harmonic numbers and the recip-
rocal binomial coefficients and in [15], integral and closed-form representations of
sums with products of harmonic numbers and binomial coefficients were developed
in terms of Polygamma functions.

In [6], the authors gave the properties of a class of generalized harmonic num-
bers H(n,r). By means of the method of coefficients, the authors established some
identities involving H(n,r). They obtained the asymptotic expansion of certain sums
involving these numbers and inverse of binomial coefficients by Laplace’s method.

In [17], the author obtained a set of identities for finite sums of products of har-
monic numbers higher-order and reciprocal binomial coefficients.

In this paper, we establish interesting sums including the generalized harmonic
numbers and special numbers by using generating functions of these numbers and
some combinatorial identities. For example, for any positive integers n,r and m,

n!Hr
n (α) = (−1)n−1

n−1

∑
i=0

(
n
i

)
(n− i)(−r)n−i−1

αi+1 Di,

H (n,r) =
n

∑
i=0

i

∑
j=0

(
m−1
n− i

)
(−1)n− j−r Hm

j (α)s(i− j,r)r!

αi− j (i− j)!
.

2. SOME IDENTITIES INVOLVING GENERALIZED HYPERHARMONIC NUMBERS
AND DAEHEE NUMBERS

In this section, using the generating functions of the generalized hyperharmonic
numbers of order r, Hr

n (α) , the Daehee numbers Dn, the derangement numbers dn
and the Cauchy numbers Cn, we will give some interesting sums including these
numbers.

Theorem 1. For any positive integers n,r, we have

Dn = α
n+1n!

n

∑
i=0

(
r

n− i

)
(−1)i Hr

i+1 (α) , (2.1)

Hn (α) =
n−1

∑
i=0

(−1)i

i!
Di

αi+1 . (2.2)
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Proof. From (1.3), we have
∞

∑
n=0

Dn

αn+1
xn

n!
=

ln
(
1+ x

α

)
x

=

(
−

ln
(
1+ x

α

)
(1+ x)r

)(
−1

x

)
(1+ x)r .

By (1.1) and Binomial theorem, we write
∞

∑
n=0

Dn

αn+1
xn

n!
=

(
−1

x

)
∞

∑
i=1

(−1)i Hr
i (α)x

i
∞

∑
j=0

(
r
j

)
x j.

and by product of generating functions, we get
∞

∑
n=0

Dn

αn+1
xn

n!
=

∞

∑
n=0

n

∑
i=0

(
r

n− i

)
(−1)i Hr

i+1(α)x
n.

Comparing the coefficients on both sides, we get the desired result.
Now, we will give second equality. Then from (1.4), we have

n−1

∑
i=0

(−1)i

i!
Di

αi+1 =
n−1

∑
i=0

(−1)i

i!
(−1)i i!

(i+1)αi+1

=
n−1

∑
i=0

1
(i+1)αi+1 = Hn (α) ,

as claimed result. �

Corollary 1. For any positive integers n,r, we have

Hn (α) =
n−1

∑
i=0

i

∑
j=0

(
r

i− j

)
(−1)i+ j Hr

j+1 (α) .

Proof. Combining (2.1) and (2.2), the result is clearly given. �

Theorem 2. For any positive integers n,r, we have

n!Hr
n (α) = (−1)n−1

n−1

∑
i=0

(
n
i

)
(n− i)(−r)n−i−1

αi+1 Di,

n

∑
i=0

(−1)n−i

(n− i)!
Hr

i (α) =
n

∑
i=0

dn−i

(n− i)!
Hr−1

i (α) .

Proof. By (1.1), we write
∞

∑
n=1

Hr
n(α)x

n =−
ln
(
1− x

α

)
(1− x)r =

1
α

ln
(
1− x

α

)
− x

α

x
(1− x)r ,

and from (1.3) and Binomial theorem,
∞

∑
n=1

Hr
n(α)x

n =
1
α

∞

∑
i=0

(−1)i Di

αi
xi

i!

∞

∑
n=0

(−1)n (−r)n xn+1

n!
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=
∞

∑
i=0

(−1)i Di

αi+1
xi

i!

∞

∑
n=1

(−1)n−1 (−r)n−1 xn

(n−1)!

=
∞

∑
n=1

n−1

∑
i=0

(−1)i Di

αi+1i!
(−1)n−i−1 (n− i)(−r)n−i−1

(n− i)!
xn

=
∞

∑
n=1

n−1

∑
i=0

(
n
i

)
(−1)n−1 (n− i)(−r)n−i−1

αi+1n!
Dixn.

Thus, we have the desired result.
We will give the other sum. By multiplying the generating function of generalized

hyperharmonic numbers of order r, Hr
n (α) by e−x, we get

−
ln
(
1− x

α

)
(1− x)r e−x =

∞

∑
n=0

Hr
n(α)x

n
∞

∑
i=0

(−1)i

i!
xi

=
∞

∑
n=0

n

∑
i=0

Hr
i (α)

(−1)n−i

(n− i)!
xn (2.3)

and

−
ln
(
1− x

α

)
(1− x)r e−x =

− ln
(
1− x

α

)
(1− x)r−1

e−x

1− x

=
∞

∑
n=0

Hr−1
n (α)xn

∞

∑
i=0

di

i!
xi

=
∞

∑
n=0

n

∑
i=0

dn−i

(n− i)!
Hr−1

i (α)xn. (2.4)

From (2.3) and (2.4), we have the desired identity. Hence we have the proof. �

Theorem 3. For any positive integers n,r,k, we have

Dr
n = n!αn+1

n

∑
i=0

i

∑
j=0

(−1) j kn−i

αi− j (i− j)!(n− i)!
Dr−1

i− j Hk
j+1 (α) ,

n!Hr
n (α) =

n−1

∑
i=0

n−i−1

∑
j=0

(
n
i

)(
n− i

j

)
(−1)n−1 (−r)n−i− j−1 (n− i− j)

αi+ j+1 Dr
iC

r−1
j .

Proof. From (1.3), we write

∞

∑
n=0

Dr
n

αn
xn

n!
=

(
ln
(
1+ x

α

)
x
α

)r

= α
− ln

(
1+ x

α

)
(−x)(1+ x)k

(
ln
(
1+ x

α

)
x
α

)r−1

(1+ x)k .

By (1.1), (1.3) and Binomial theorem, using product of generating functions, we have
∞

∑
n=0

Dr
n

αn
xn

n!
= α

∞

∑
n=0

(−1)n Hk
n+1(α)x

n
∞

∑
j=0

Dr−1
j

α j
x j

j!

∞

∑
i=0

ki xi

i!
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= α

∞

∑
n=0

n

∑
j=0

(−1) j Hk
j+1(α)

Dr−1
n− j

(n− j)!αn− j xn
∞

∑
i=0

ki xi

i!

= α

∞

∑
n=0

n

∑
i=0

i

∑
j=0

(−1) j kn−i

αi− j (n− i)!(i− j)!
Hk

j+1 (α)Dr−1
i− j xn.

Comparing the coefficients on both sides, we get the desired result. Similarly, from
(1.2) and (1.3), the proof of the other result is clearly obtained. �

3. SOME IDENTITIES INVOLVING GENERALIZED HARMONIC NUMBERS OF RANK
r AND STIRLING NUMBERS OF THE FIRST KIND

In this section, inspiring from the definition of H (n,r) of rank r in their works
[8, 13], H (n,r,α) are defined as for n≥ 1, r ≥ 0,

H (n,r,α) = ∑
1≤n0+n1+···+nr≤n

1
n0n1 · · ·nrα

n0+n1+···+nr
(3.1)

or, equivalently, as

H (n,r,α) =
(−1)r+1

n!

(
dn

dxn

[
ln
(
1− x

α

)]r+1

1− x

)∣∣∣∣∣
x=0

.

For α = 1, H (n,r,1) = H(n,r).

TABLE 1. H(n,r,2)

r
n 0 1 2 3 4

1
1
2

0

2
5
8

1
4

0

3
2
3

3
8

1
8

0

4
131
192

83
192

7
32

1
16

0

5
661
960

11
24

35
128

1
8

1
32
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The generating function of the generalized harmonic numbers of rank r, H (n,r,α)
is given by

∞

∑
n=0

H (n,r,α)xn =

(
− ln

(
1− x

α

))r+1

1− x
. (3.2)

Now, we will give some sums with the help of the generating functions.

Theorem 4. For any positive integers n,r, we have

H (n,r,α) = (−1)n−r
n

∑
i=0

(−1)i s(n− i,r)r!
αn−i (n− i)!

Hi (α)

= (−1)r+1
n

∑
i=0

(−1)i s(i,r+1)(r+1)!
αii!

.

Proof. By (1.5) and (3.2), we consider

∞

∑
n=0

H (n,r,α)xn =

(
− ln

(
1− x

α

))r+1

1− x

=
− ln

(
1− x

α

)
1− x

(
− ln

(
1− x

α

))r

=
∞

∑
n=0

Hn (α)xn
∞

∑
i=0

(−1)i−r s(i,r)r!
αii!

xi

=
∞

∑
n=0

n

∑
i=0

(−1)n−i−r s(n− i,r)r!
αn−i (n− i)!

Hi (α)xn.

Comparing the coefficients on both sides, we arrive at the desired result. Similarly,
using ∑

∞
i=0 xi = 1

1−x , the other result is obtained. �

Theorem 5. For any positive integers n,r,m, we have

H (n,r,α) =
n

∑
i=0

i

∑
j=0

(
m−1
n− i

)
(−1)n− j−r Hm

j (α)s(i− j,r)r!

αi− j (i− j)!
,

Dr+1
n = n!αn+1

n

∑
i=0

i

∑
j=0

(
k

n− i

)
(−1) j Dr

i− jH
k
j+1 (α)

αi− j (i− j)!
.

Proof. By (1.1), (1.5), (3.2) and Binomial theorem, we write

∞

∑
n=0

H (n,r,α)xn =

(
− ln

(
1− x

α

))r+1

1− x

=
− ln

(
1− x

α

)
(1− x)m

(
− ln

(
1− x

α

))r
(1− x)m−1
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=
∞

∑
n=0

Hm
n (α)xn

∞

∑
j=0

(−1) j−r s( j,r)r!
α j j!

x j
∞

∑
i=0

(
m−1

i

)
(−1)i xi,

and using product of generating functions, equals
∞

∑
n=0

n

∑
j=0

(−1)n− j−r s(n− j,r)r!
αn− j (n− j)!

Hm
j (α)xn

∞

∑
i=0

(
m−1

i

)
(−1)i xi

=
∞

∑
n=0

n

∑
i=0

i

∑
j=0

(
m−1
n− i

)
(−1)n− j−r Hm

j (α)s(i− j,r)r!

αi− j (i− j)!
xn.

Thus, comparing the coefficients on both sides, the desired result is given.
Similarly, considering(

ln
(
1+ x

α

)
x
α

)r+1

= α
− ln

(
1+ x

α

)
−x(1+ x)k

(
ln
(
1+ x

α

)
x
α

)r

(1+ x)k

and the generating function of Daehee numbers, the proof of the other equality is
complete. �

Theorem 6. For any positive integers n,r, we have

(−1)n+1−r s(n+1,r)r! = α
n+1 (n+1)!(H (n+1,r−1,α)−H(n,r−1,α)) .

Proof. By (1.5) and (3.2), we have
∞

∑
n=r

(−1)n−r s(n,r)r!
αnn!

xn−1 =

(
− ln

(
1− x

α

))r

x
=

(
− ln

(
1− x

α

))r

1− x

(
1
x
−1
)

=

(
− ln

(
1− x

α

))r

x(1− x)
−
(
− ln

(
1− x

α

))r

1− x

=
∞

∑
n=0

H (n,r−1,α)xn−1−
∞

∑
n=0

H (n,r−1,α)xn,

and from H (0,r,α) = 0, equals
∞

∑
n=1

H (n,r−1,α)xn−1−
∞

∑
n=0

H (n,r−1,α)xn

=
∞

∑
n=0

H (n+1,r−1,α)xn−
∞

∑
n=0

H (n,r−1,α)xn

=
∞

∑
n=0

(H (n+1,r−1,α)−H (n,r−1,α))xn. (3.3)

With the help of s(k,r) = 0 for 0≤ k < r, from here,
∞

∑
n=r

(−1)n−r s(n,r)r!
αnn!

xn−1 =
∞

∑
n=r−1

(−1)n+1−r s(n+1,r)r!
αn+1(n+1)!

xn
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=
∞

∑
n=0

(−1)n+1−r s(n+1,r)r!
αn+1(n+1)!

xn. (3.4)

From (3.3) and (3.4), we have the proof. �

Theorem 7. For any positive integers n,r, we have
n

∑
i=0

(
n− i+ r

r

)
(−1)i−r−1 s(i,r+1)(r+1)!

αii!
=

n

∑
i=0

(
n− i+ r−1

r−1

)
H (i,r,α) ,

n

∑
i=0

(
n
i

)
(−1)i−r s(i,r)r!

αi dn−i = n!
n

∑
i=0

(−1)n−i

(n− i)!
H (i,r−1,α) .

Proof. Observed that(
− ln

(
1− x

α

)
1− x

)r+1

=
(
− ln

(
1− x

α

))r+1 1

(1− x)r+1 .

From ∑
∞
n=0
(n

r

)
xn = xr

(1−x)r+1 and the generating functions of Stirling numbers of the
first kind, we have(

− ln
(
1− x

α

)
1− x

)r+1

=
∞

∑
n=0

(−1)n−r−1 s(n,r+1)(r+1)!
αnn!

xn
∞

∑
i=0

(
i+ r

r

)
xi

=
∞

∑
n=0

n

∑
i=0

(
n− i+ r

r

)
(−1)i−r−1 s(i,r+1)(r+1)!

αii!
xn, (3.5)

and (
− ln

(
1− x

α

)
1− x

)r+1

=

(
− ln

(
1− x

α

))r+1

1− x
1

(1− x)r

=
∞

∑
n=0

H (n,r,α)xn
∞

∑
i=0

(
i+ r−1

r−1

)
xi

=
∞

∑
n=0

n

∑
i=0

(
n− i+ r−1

r−1

)
H (i,r,α)xn. (3.6)

By (3.5) and (3.6), we have the result. The proof of the other result is similar to the
proof. Thus, the proof is complete. �

Theorem 8. For any positive integers n,r, we have
n

∑
i=0

H (i,r,α)H (n− i,r,α)

=
n

∑
i=0

{
(1+ i)H (i+1,r,α)

(−1)n−i−r−1 s(n− i,r+1)(r+1)!
αn−i (n− i)!
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−r+1
α

i

∑
j=0

(−1) j−r s( j,r)r!
αn−i+ j j!

H (i− j,r,α)

}
.

Proof. Define a function as

A(x) :=
∞

∑
n=0

H (n,r,α)xn = (−1)r+1

(
1− x(

ln
(
1− x

α

))r+1

)−1

.

Derivating of A(x) respect to x, we write

A′ (x) = (−1)r (A(x))2

(
−1(

ln
(
1− x

α

))r+1 +
(−1)r+1 (r+1)(A(x))−1

(α− x) ln
(
1− x

α

) )

=
(−1)r+1 (A(x))2(

ln
(
1− x

α

))r+1 −
(r+1)A(x)

(α− x) ln
(
1− x

α

) ,
and from here,

(A(x))2 =

(
A′ (x)+

(r+1)A(x)
(α− x) ln

(
1− x

α

))(− ln
(

1− x
α

))r+1

=A′ (x)
(
− ln

(
1− x

α

))r+1
−
(
− ln

(
1− x

α

))r (r+1)A(x)
(α− x)

=
∞

∑
n=0

(n+1)H (n+1,r,α)xn
∞

∑
i=0

(−1)i−r−1 s(i,r+1)(r+1)!
αii!

xi

− r+1
α

∞

∑
n=0

(−1)n−r s(n,r)r!
αnn!

xn
∞

∑
j=0

H ( j,r,α)x j
∞

∑
i=0

(
1
α

)i

xi.

Using product of generating functions, we get

(A(x))2 =
∞

∑
n=0

n

∑
i=0

(i+1)H (i+1,r,α)(−1)n−i−r−1 s(n− i,r+1)(r+1)!
αn−i (n− i)!

xn

− r+1
α

∞

∑
n=0

n

∑
i=0

i

∑
j=0

(−1) j−r s( j,r)r!H (i− j,r,α)
αn−i+ j j!

xn. (3.7)

After that, we also have

(A(x))2 =
∞

∑
n=0

n

∑
i=0

H (i,r,α)H (n− i,r,α)xn. (3.8)

By combining (3.7) and (3.8), the proof is over. �
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