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Abstract. In this paper, we consider the higher-order multi-point fractional boundary value prob-
lem. We establish the criteria for the existence of at least one and three positive solutions for
higher order nonlinear m-point fractional boundary value problem by using the Krasnosel’skii
fixed point theorem and the Legget-Williams fixed point theorem, respectively.

2010 Mathematics Subject Classification: 34B07; 34D05; 34L20; 34K37

Keywords: boundary value problems, cone, fixed point theorems, positive solutions, Riemann-
Liouville fractional derivative

1. INTRODUCTION

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary (non-integer) order. Fractional differential equations arise in many engin-
eering and scientific disciplines as the mathematical models of systems and processes
in the fields of physics, chemistry, aerodynamics, electrodynamics of complex me-
dium, polymer rheology, [1, 2, 6, 7, 13, 17–21].

Among all the researches on the theory of the fractional differential equations, the
study of the boundary value problems for fractional differential equations recently
has attracted a great deal of attention from many researchers. Some results have been
obtained on the existence of positive solutions of the boundary value problems for
some specific fractional differential equations [3–5, 8–11, 15, 22, 23].

In [16], Nyamoradi and Javidi were interested in the fractional order multi-point
boundary value problem

Dσ

0+(φp(u′′(t)))−g(t) f (u(t)) = 0, t ∈ [0,1], 1 < σ ≤ 2,

φp(u′′(0)) = φp(u′′(1)) = 0,

au(0)−bu′(0) =
m−2

∑
i=1

aiu(ξi),

cu(1)+du′(1) =
m−2

∑
i=1

biu(ξi),
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where Dσ

0+ is the standard Riemann-Liouville fractional derivative of order σ. Some
existence results for at least one positive solutions were established by using Krasno-
sel’skii fixed point theorem.

In this paper, we study the existence of positive solutions to multi-point boundary
value problem (BVP) for higher order fractional differential equations:

−Dη−2
0+ (u′′(t))+ f (t,u(t)) = 0, t ∈ [0,1],

u′′(0) = u′′′(0) = ...= u(n−2)(0) = 0, u′′′(1) = 0,

αu(0)−βu′(0) =
m−2

∑
p=1

apu′(ξp),

γu(1)+δu′(1) =
m−2

∑
p=1

bpu′(ξp),

(1.1)

where Dη−2
0+ is the Riemann-Liouville fractional derivative of order η−2. Through-

out the paper, we suppose that m,n ≥ 3 and n − 1 < η ≤ n, where n,m ∈ N and
β > α > 1, γ, δ > 0, ap, bp ≥ 0 are given constants and 0 < ξ1 < .. . < ξm−2 < 1. We
assume that f : [0,1]× [0,∞)→ [0,∞) is continuous.

We have organized the paper as follows. First, we provide some definitions and
preliminary lemmas which are key tools for our main results. Second, we obtained the
existence of at least one positive solution for the BVP (1.1) by using the Krasnosel’skii
fixed point theorem. Finally, we use the Legget-Williams fixed-point theorem to show
that the existence of at least three positive solutions to the BVP (1.1).

We assume that the following conditions are satisfied:

(H1) If m ≥ 3, then γ
m−2
∑

k=1
ak ≥ α

m−2
∑

k=1
bk and

if m > 3, then αδ > γ

j−1
∑

k=1
ak ≥ α

j−1
∑

k=1
bk > βγ, where 2 ≤ j ≤ m−2.

(H2) αδ > α
m−2
∑

p=1
bp + γ

m−2
∑

p=1
ap.

2. PRELIMINARIES

To state the main results of this paper, we will need the following lemmas and we
present some notation.

Definition 1. The Riemann-Liouville fractional derivative of order α > 0 for a
function u : (0,∞)→ R is defined by

Dα

0+u(t) =
1

Γ(n−α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds,

where n = [α]+1.
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Definition 2. The Riemann-Liouville fractional integral of order α > 0 of a func-
tion u : (0,∞)→ R is given by

Iα

0+u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

where Γ(·) is the Euler gamma function.

Lemma 1 ([13]). The equality Dγ

0+Iγ

0+ f (t) = f (t), γ > 0 holds for f ∈ L(0,1).

Lemma 2 ([13]). Let α > 0. Then the differential equation

Dα

0+u = 0 (2.1)

has a unique solution u(t) = c1tα−1 +c2tα−2 + ...+cntα−n, ci ∈R, i = 1, ...,n, where
n−1 < α ≤ n.

Lemma 3 ([13]). Let α > 0. Then the following equality holds for u ∈ L(0,1),
Dα

0+u ∈ L(0,1):

Iα

0+Dα

0+u(t) = u(t)+ c1tα−1 + c2tα−2 + ...+ cntα−n, (2.2)

ci ∈ R, i = 1, ...,n, where n−1 < α ≤ n.

If −u′′(t) = y(t) and η−2 = σ, then the problem{
−Dη−2

0+ (u′′(t))+ f (t,u(t)) = 0, t ∈ [0,1],

u′′(0) = u′′′(0) = ...= u(n−2)(0) = 0, u′′′(1) = 0
(2.3)

is turned into the problem{
Dσ

0+y(t)+ f (t,u(t)) = 0, t ∈ [0,1],

y(0) = y′(0) = ...= y(n−4)(0) = 0, y′(1) = 0.
(2.4)

Lemma 4. The boundary value problem (2.4) has a unique solution

y(t) =
1∫

0

H(t,s) f (s,u(s))ds, (2.5)

where

H(t,s) =



(1− s)σ−2tσ−1

Γ(σ)
, t ≤ s,

(1− s)σ−2tσ−1 − (t − s)σ−1

Γ(σ)
, t ≥ s.

(2.6)
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Proof. According to Lemma 3, we obtain

y(t) =− 1
Γ(σ)

t∫
0

(t − s)σ−1 f (s,u(s))ds+ c1tσ−1 + c2tσ−2 + ...+ cn−2tσ−n+2. (2.7)

By boundary conditions of (2.4) we get c2 = c3 = ...= cn−2 = 0 and

c1 =
1

Γ(σ)

1∫
0

(1− s)σ−2 f (s,u(s))ds.

Thus, the unique solution of problem (2.4) is

y(t) =
t∫

0

(1− s)σ−2tσ−1 − (t − s)σ−1

Γ(σ)
f (s,u(s))ds+

1∫
t

(1− s)σ−2tσ−1

Γ(σ)
f (s,u(s))ds

=
∫ 1

0
H(t,s) f (s,u(s))ds.

The proof is complete. □

Lemma 5. If (H1) and (H2) hold and

K := αγ+αδ−α

m−2

∑
p=1

bp + γβ+ γ

m−2

∑
p=1

ap,

then for y ∈C[0,1], the boundary value problem

−u′′(t) = y(t), t ∈ [0,1],

αu(0)−βu′(0) =
m−2

∑
p=1

apu′(ξp),

γu(1)+δu′(1) =
m−2

∑
p=1

bpu′(ξp)

(2.8)

has a unique solution

u(t) =
1∫

0

G(t,s)y(s)ds, (2.9)
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where

G(t,s) =
1
K



(αs+β)(γ(1− t)+δ−
m−2

∑
p=1

bp),0 ≤ s ≤ ξ1, t ≥ s

(γ(1− s)+δ−
m−2

∑
p=1

bp)(αt +β)+ γ

m−2

∑
p=1

ap(t − s), 0 ≤ s ≤ ξ1, t ≤ s

(αs+β+
j−1

∑
k=1

ak)(γ(1− t)+δ−
m−2

∑
p= j

bp)+
j−1

∑
k=1

bk(α(t − s)+
m−2

∑
p= j

ap),

ξ j−1 < s ≤ ξ j, t ≥ s, 2 ≤ j ≤ m−2

(γ(1− s)+δ−
m−2

∑
p= j

bp)(αt +β+
j−1

∑
k=1

ak)+
m−2

∑
p= j

ap(γ(t − s)+
j−1

∑
k=1

bk),

ξ j−1 < s ≤ ξ j, t ≤ s, 2 ≤ j ≤ m−2

(αs+β+
m−2

∑
k=1

ak)(γ(1− t)+δ)+α

m−2

∑
k=1

bk(t − s), ξm−2 < s ≤ 1, t ≥ s

(γ(1− s)+δ)(αt +β+
m−2

∑
k=1

ak), ξm−2 < s ≤ 1, t ≤ s.

(2.10)

Proof. A direct calculation gives that if y ∈C[0,1], then the boundary value prob-
lem (2.8) has the unique solution

u(t) =−
t∫

0

(t − s)y(s)∆s+
t
K

{
α

1∫
0

(γ(1− s)+δ)y(s)∆s+
m−2

∑
p=1

(γap −αbp)

ξp∫
0

y(s)∆s
}

+
1
K

{
(β+

m−2

∑
p=1

ap)

1∫
0

(γ(1− s)+δ)y(s)∆s+(−(β+
m−2

∑
p=1

ap))
m−2

∑
p=1

bp

ξp∫
0

y(s)∆s

+


γ(β+

m−2
∑

p=1
ap)

α
− K

α

m−2

∑
p=1

ap

ξp∫
0

y(s)∆s
}
.

Hence, we obtain (2.9). □

Lemma 6. The Green’s function G(t,s) in (2.10) satisfies

0 < G(t,s)≤ G(s,s)

for (t,s) ∈ [0,1]× [0,1].
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Proof. From (H1), (H2) and (2.10), G(t,s)> 0. Now, we will show that G(t,s)≤
G(s,s).

(i) Let s ∈ [0,ξ1] and t ≥ s. Since G(t,s) is decreasing in t, we get G(t,s) ≤
G(s,s).

(ii) Let s ∈ [0,ξ1] and t ≤ s. Since G(t,s) is increasing in t, we have G(t,s) ≤
G(s,s).

(iii) Take s ∈ (ξ j−1,ξ j], 2 ≤ j ≤ m−2 and t ≥ s. From (H1), G(t,s) is decreasing
in t. So we obtain G(t,s)≤ G(s,s).

(iv) Take s ∈ (ξ j−1,ξ j], 2 ≤ j ≤ m−2 and t ≤ s. Since G(t,s) is increasing in t,
we get G(t,s)≤ G(s,s).

(v) Let s ∈ (ξm−2, 1] and t ≥ s. From (H1), G(t,s) is decreasing in t. So we have
G(t,s)≤ G(s,s).

(vi) Let s∈ (ξm−2, 1] and t ≤ s. Since G(t,s) is increasing in t, we obtain G(t,s)≤
G(s,s).

□

Lemma 7. Green’s function G(t,s) in (2.10) satisfies

min
t∈[0,1]

G(t,s)≥ z∥G(.,s)∥,

with

z = min{z1, z2, z3, z4, z5, z6}, (2.11)

where

z1 =

δ−
m−2
∑

p=1
bp

γ+δ−
m−2
∑

p=1
bp

, z2 =

(αδ−α
m−2
∑

p=1
bp − γ

m−2
∑

p=1
ap)

(γ+δ−
m−2
∑

p=1
bp)(α+β)

, z3 =

δ−
m−2
∑

p= j
bp

γ+δ−
m−2
∑

p= j
bp

,

z4 =
β

α
−1

α+β+
j−1
∑

k=1
ak

, z5 =
δ

γ+δ
, z6 =

β

α
−1

α+β+
m−2
∑

k=1
ak

and ∥.∥ is defined by ∥x∥= max
t∈[0,1]

|x(t)|.

Proof. (i) Take s ∈ [0,ξ1] and t ≥ s. Since G(t,s) is decreasing in t and
0 < z1 < 1, we get min

t∈[0,1]
G(t,s) = G(1,s) and min

t∈[0,1]
G(t,s) ≥ z1G(s,s) =

z1∥G(.,s)∥.
(ii) Take s ∈ [0,ξ1] and t ≤ s. Since G(t,s) is increasing in t and 0 < z2 < 1, we

have min
t∈[0,1]

G(t,s) = G(0,s) and min
t∈[0,1]

G(t,s)≥ z2G(s,s) = z2∥G(.,s)∥.



HIGHER-ORDER MULTI-POINT FRACTIONAL BOUNDARY VALUE PROBLEMS 1019

(iii) Let s ∈ (ξ j−1,ξ j], 2 ≤ j ≤ m−2 and t ≥ s. From (H1), G(t,s) is decreasing
in t. It is clear that 0 < z3 < 1. So min

t∈[0,1]
G(t,s) = G(1,s) and min

t∈[0,1]
G(t,s)≥

z3G(s,s) = z3∥G(.,s)∥.
(iv) Let s ∈ (ξ j−1,ξ j], 2 ≤ j ≤ m− 2 and t ≤ s. Since G(t,s) is increasing in t

and 0< z4 < 1, we have min
t∈[0,1]

G(t,s) =G(0,s) and min
t∈[0,1]

G(t,s)≥ z4G(s,s) =

z4∥G(.,s)∥.
(v) Take s ∈ (ξm−2, 1] and t ≥ s. From (H1), G(t,s) is decreasing in t. It is

clear that 0 < z5 < 1. So we get min
t∈[0,1]

G(t,s) = G(1,s) and min
t∈[0,1]

G(t,s) ≥

z5G(s,s) = z5∥G(.,s)∥.
(vi) Take s ∈ (ξm−2, 1] and t ≤ s. Since G(t,s) is increasing in t and 0 < z6 < 1,

we have min
t∈[0,1]

G(t,s) = G(0,s) and min
t∈[0,1]

G(t,s)≥ z6G(s,s) = z6∥G(.,s)∥.

Thus min
t∈[0,1]

G(t,s)≥ z∥G(.,s)∥, where z = min{z1, z2, z3, z4, z5, z6}. □

Lemma 8. For t,s ∈ [0,1], we have 0 ≤ H(t,s)≤ H(1,s).

Proof. From (2.6), we obtain 0≤H(t,s). Now we will show that H(t,s)≤H(1,s).

(i) Let t ≤ s. H(t,s) = (1−s)σ−2tσ−1

Γ(σ) ≤ (1−s)σ−2

Γ(σ) = H(1,s).
(ii) Let t ≥ s. Since H(t,s) is increasing in t, we have H(t,s)≤ H(1,s).

□

Lemma 9. min
t∈[ξm−2,1]

H(t,s)≥ kσ−1H(1,s) for 0 ≤ t,s ≤ 1, where k ∈ (0,ξm−2) is a

constant.

Proof. (i) Take t ≤ s. Since H(t,s) is an increasing function, we get

min
t∈[ξm−2,1]

H(t,s) =
(1− s)σ−2ξ

σ−1
m−2

Γ(σ)
≥ (1− s)σ−2(k)σ−1

Γ(σ)
= kσ−1H(1,s).

(ii) For s ≤ t, we have

min
t∈[ξm−2,1]

H(t,s) =
(1− s)σ−2ξ

σ−1
m−2 − (ξm−2 − s)σ−1

Γ(σ)

>
(1− s)σ−2ξ

σ−1
m−2 − (ξm−2 −ξm−2s)σ−1

Γ(σ)

=
ξ

σ−1
m−2((1− s)σ−2 − (1− s)σ−1)

Γ(σ)

= ξ
σ−1
m−2H(1,s)

> kσ−1H(1,s).

Thus min
t∈[ξm−2,1]

H(t,s)≥ kσ−1H(1,s). □
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From Lemma 4 and Lemma 5, we know that u(t) is a solution of the problem (1.1)
if and only if

u(t) =
1∫

0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds. (2.12)

Let E denote the Banach space C[0,1] with the norm ∥u∥= max
t∈[0,1]

|u(t)|. Define the

cone P ⊂ E by
P = {u ∈ E : u(t)≥ 0, min

t∈[0,1]
u(t)≥ z∥u∥} (2.13)

where z is given in (2.11).
We can define the operator A : P → E by

Au(t) =
1∫

0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds, (2.14)

where u ∈ P. Therefore solving (2.12) in P is equivalent to finding fixed points of the
operator A.

Lemma 10. If the conditions (H1) and (H2) hold, then AP ⊂ P.

Proof. If u ∈ P, then Au(t)≥ 0 on [0,1] by using Lemma 6 and Lemma 8. On the
other hand, we have

min
t∈[0,1]

Au(t) =
1∫

0

min
t∈[0,1]

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≥ z
1∫

0

max
t∈[0,1]

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

= z∥Au∥,
by Lemma 7. Thus Au ∈ P and therefore AP ⊂ P. □

In order to follow the main results of this paper easily, now we state the fixed point
theorems which we applied to prove main theorems.

Theorem 1 (Krasnosel’skii Fixed Point Theorem, [12]). Let E be a Banach space,
and let K ⊂ E be a cone. Assume Ω1 and Ω2 are open bounded subsets of E with
0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \Ω1)→ K
be a completely continuous operator such that either

(i) ∥Au∥ ≤ ∥u∥ for u ∈ K ∩∂Ω1, ∥Au∥ ≥ ∥u∥ for u ∈ K ∩∂Ω2 or
(ii) ∥Au∥ ≥ ∥u∥ for u ∈ K ∩∂Ω1, ∥Au∥ ≤ ∥u∥ for u ∈ K ∩∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \Ω1).



HIGHER-ORDER MULTI-POINT FRACTIONAL BOUNDARY VALUE PROBLEMS 1021

Theorem 2 (Leggett-Williams Fixed Point Theorem, [14]). Let P be a cone in the
real Banach space E. Set

Pr := {x ∈ P : ∥x∥< r},

P(ψ,a,b) := {x ∈ P : a ≤ ψ(x), ∥x∥ ≤ b}.
Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative
continuous concave functional on P with ψ(u) ≤ ∥u∥ for all u ∈ Pr. If there exists
0 < p < q < l ≤ r such that the following conditions hold,

(i) {u ∈ P(ψ,q, l) : ψ(u)> q} ̸=∅ and ψ(Au)> q for all u ∈ P(ψ,q, l),
(ii) ∥Au∥< p for ∥u∥ ≤ p,

(iii) ψ(Au)> q for u ∈ P(ψ,q,r) with ∥Au∥> l,
then A has at least three fixed points u1,u2 and u3 in Pr satisfying

∥u1∥< p, ψ(u2)> q, p < ∥u3∥ with ψ(u3)< q.

3. MAIN RESULTS

For convenience, we introduce the following notations. Let

M =

1∫
0

H(1,τ)dτ, (3.1)

L =

1∫
0

G(s,s)ds, (3.2)

I =
1∫

ξm−2

G(s,s)ds. (3.3)

Now, we will give the sufficient conditions to have at least one positive solution for
the BVP (1.1). Krasnosel’skii fixed point theorem will be used to prove the next
theorem.

Theorem 3. Suppose (H1) and (H2) hold. In addition, let there exist numbers
0 < r < R < ∞ such that the function f satisfies the following conditions:

(i) f (t,u)< 1
LM u(t) for (t,u) ∈ [0,1]× [0,r],

(ii) f (t,u)> 1
kσ−1z2IM u(t) for (t,u) ∈ [0,1]× [R,∞).

Then the BVP (1.1) has at least one positive solution.

Proof. Define the open bounded subsets of E by Ω1 = {u ∈ P : ∥u∥ < r} and

Ω2 =

{
u ∈ P : ∥u∥< R

z

}
. It is easy to check that A : P∩(Ω2 \Ω1)→ P is completely

continuous operator.
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If u ∈ P∩∂Ω1, then ∥u∥= r. Therefore, by using the hypothesis (i), Lemma 6 and
Lemma 8,

Au(t) =
1∫

0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

<
1

LM

1∫
0

G(t,s)
1∫

0

H(s,τ)u(τ)dτds

≤ 1
LM

∥u∥
1∫

0

G(t,s)
1∫

0

H(s,τ)dτds

≤ 1
LM

∥u∥
1∫

0

G(s,s)
1∫

0

H(1,τ)dτds

= ∥u∥,

for all t ∈ [0,1]. Thus ∥Au∥ ≤ ∥u∥ for u ∈ P∩∂Ω1. On the other hand, u ∈ P∩∂Ω2
implies

u(t)≥ z∥u∥= R,

for t ∈ [0,1] and

Au(t) =
1∫

0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

>
1

kσ−1z2IM

1∫
0

G(t,s)
1∫

0

H(s,τ)u(τ)dτds

≥ 1
kσ−1z2IM

z∥u∥
1∫

0

G(t,s)
1∫

0

H(s,τ)dτds

≥ 1
kσ−1z2IM

z∥u∥zkσ−1
1∫

ξm−2

G(s,s)
1∫

0

H(1,τ)dτds

= ∥u∥,

from (ii), Lemma 7 and Lemma 9. Consequently, ∥Au∥ ≥ ∥u∥ for u ∈ P∩∂Ω2.
By the first part of Theorem 1, A has a fixed point in P∩ (Ω2 \Ω1), such that

r ≤ ∥u∥ ≤ R
z . Therefore BVP (1.1) has at least one positive solution. □
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Now we will use the Legget-Williams fixed point theorem to prove the next the-
orem.

Theorem 4. Assume that (H1) and (H2) hold. Suppose that there exist numbers
0 < p < q < q

z ≤ r such that the function f satisfies the following conditions:

(i) f (t,u)≤ r
ML for (t,u) ∈ [0,1]× [0,r],

(ii) f (t,u)< p
ML for (t,u) ∈ [0,1]× [0, p],

(iii) f (t,u)> q
kσ−1zIM for (t,u) ∈ [0,1]× [q, q

z ],

where z, M, L and I are as in (2.11), (3.1), (3.2) and (3.3), respectively and k is
defined in Lemma 9. Then the BVP (1.1) has at least three positive solutions u1, u2
and u3 satisfying

max
t∈[0,1]

u1(t)< p, min
t∈[0,1]

u2(t)> q

max
t∈[0,1]

u3(t)> p with min
t∈[0,1]

u3(t)< q.

Proof. Define the nonnegative, continuous, concave functional ψ : P → [0,∞) to
be ψ(y) = min

t∈[0,1]
u(t) and the cone P as in (2.13). For all u ∈ P, we have ψ(u)≤ ∥u∥.

Now we show that A : Pr → Pr is completely continuous operator. If u ∈ Pr, then
0 ≤ u(t)≤ r for all t ∈ [0,1]. We get,

∥Au∥= max
t∈[0,1]

|Au(t)|

=

1∫
0

max
t∈[0,1]

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≤
1∫

0

G(s,s)
1∫

0

H(1,τ) f (τ,u(τ))dτds

≤ r
ML

1∫
0

G(s,s)
1∫

0

H(1,τ)dτds

≤ r

by hypothesis (i), Lemma 6 and Lemma 8. Thus A : Pr → Pr. It easy to check that
A : Pr → Pr is completely continuous.

Since z < 1, u(t) = q
z ∈ P(ψ,q, q

z ) and ψ(q
z )> q. Then, we have

{u ∈ P(ψ,q,
q
z
) : ψ(u)> q} ̸=∅.
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On the other hand, for all u ∈ P(ψ,q, q
z ), we have q ≤ u(t) ≤ q

z for t ∈ [0,1]. Using
assumption (iii), Lemma 7 and Lemma 9, we find

ψ(Au) = min
t∈[0,1]

1∫
0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≥ z
1∫

0

G(s,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≥ z
1∫

ξm−2

G(s,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≥ kσ−1z
1∫

ξm−2

G(s,s)
1∫

0

H(1,τ) f (τ,u(τ))dτds

≥ kσ−1z
q

kσ−1zIM

1∫
ξm−2

G(s,s)
1∫

0

H(1,τ)dτds = q.

Thus condition (i) of Theorem 2 holds.
For ∥u∥ < p, we have 0 ≤ u(t) ≤ p for t ∈ [0,1]. Then from assumption (ii),

Lemma 6 and Lemma 8, we obtain

∥Au∥= max
t∈[0,1]

1∫
0

G(t,s)
1∫

0

H(s,τ) f (τ,u(τ))dτds

≤
1∫

0

G(s,s)
1∫

0

H(1,τ) f (τ,u(τ))dτds

<
p

ML

1∫
0

G(s,s)
1∫

0

H(1,τ)dτds = p.

It follows that condition (ii) of Theorem 2 is satisfied.
Finally, we will check condition (iii) of Theorem 2. We suppose that u ∈ P(ψ,q,r)

with ∥Au∥> q
z . Then we obtain

ψ(Au) = min
t∈[0,1]

Au(t)≥ z∥Au∥> q. (3.4)

Since all conditions of the Legget-Williams fixed point theorem are satisfied, the BVP
(1.1) has at least three positive solutions u1, u2 and u3 such that

max
t∈[0,1]

u1(t)< p, min
t∈[0,1]

u2(t)> q
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max
t∈[0,1]

u3(t)> p with min
t∈[0,1]

u3(t)< q.

□

Example 1. Taking n = 5, m = 3, ξ1 =
1
2 , α = γ = δ = 3, β = 4, a1 = b1 = 1, k = 1

4
and σ = 5

2 , we consider the following boundary value problem:

−D
5
2
0+(u

′′(t)) =
100000u2

u2 +1
, t ∈ [0,1],

u′′(0) = u′′′(0) = 0, u′′′(1) = 0,

3u(0)−4u′(0) = u′(
1
2
),

3u(1)+3y′(1) = u′(
1
2
).

(3.5)

Then we get K = 30, M = 16
45

√
π
, L = 47

60 , I = 0,45, z = 3
35 and kσ−1 = k

3
2 = 0.125.

If we take p = 7.10−7,q = 10 and r = 130000, then 0 < p < q < q
z < r and all the

conditions in Theorem 4 are fulfilled. Hence, by Theorem 4, the BVP (3.5) has at
least three positive solutions u1, u2 and u3 satisfying

max
t∈[0,1]

u1(t)< p, min
t∈[0,1]

u2(t)> q

max
t∈[0,1]

u3(t)> p with min
t∈[0,1]

u3(t)< q.
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