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Abstract. In this paper, we study the following Choquard equation with logarithmic nonlinearity{
−∆u+V (x)u = k(Iα ∗ |u|p)|u|p−2u+H(x)u log |u|, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, k > 0 is real parameter, α ∈
(0,3), Iα is the Riesz potential. Under some mild assumptions on V and H, we obtain a ground
state solution by variational method and logarithmic inequality. In addition, we investigate the
limit profiles of Choquard equations as α → 0 or α → N.
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1. INTRODUCTION

In this paper, we consider the following Choquard equation{
−∆u+V (x)u = k(Iα ∗ |u|p)|u|p−2u+H(x)u log |u|, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, k > 0 is real para-
meter, p ∈ (1+α/3,3+α), α ∈ (0,3), Iα is the Riesz potential, V,H are potential
functions.

Choquard equation was firstly introduced by Pekar [16] in 1954 for describing the
quantum mechanics of a polaron at rest, an electron trapped in its hole by Choquard
[12]. Li and Tang [11] considered Choquard equation with the upper critical expo-
nent, where the nonlinearity satisfies ( f0) f ∈ C(R,R)is odd, ( f1) limt→0 f (t)/t =
limt→+∞ f (t)/t2∗−1 = 0, where 2∗ = 2N/(N − 2), ( f2) there exists µ > 4 such that
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0 < µF(t) ⩽ f (t)t for all t ̸= 0. When the nonlinear perturbation satisfies ( f0)
f (t) = o(t) as t → 0, ( f1) | f (t)| ⩽ a(|t|+ |t|q−1) for some a > 0 and q > 2 with
1/q > 1/2− 1/N, ( f2) there exists µ > 4 such that 0 < µF(t) ⩽ f (t)t for all t ̸= 0,
Choquard equations with lower critical exponent was studied in [22]. Multiple solu-
tions to Kirchhoff type equations with Hardy-Littlewood-Sobolev critical nonlin-
earity was solved [5, 6]. Next, [10] proved the existence and concentrate behavior
of ground state solutions for critical Choquard equations. Li, Gao and Liang [9]
considered the existence and concentration of nontrivial nonnegative ground state
solutions to Kirchhoff-type system with Hartree-type nonlinearity, where f satisfies
( f0) f ∈ C(R+,R+) and C > 0 such that | f ′(t)| ⩽ C(1+ |t|q−2) for all t ∈ R+, ( f1)
f (t)/t2p−1 is increasing on (0,∞), limt→∞ f (t)/t2p−1 = ∞ and p ∈ (3+α). More
results about Choquard equation, we can refer to [15, 20, 25].

Recently, logarithmic nonlinearity appears frequently in partial differential equa-
tions, which describe physical phenomena, for example continuum mechanics, phase
transition phenomena, and population dynamics. On the other hand, for the para-
bolic equations, we can refer to [2, 3, 8, 14] and the references therein. For partial
equations with logarithmic nonlinearity, we can refer to [1, 7, 13, 18, 21, 24] and the
references therein. Specially, multiple solutions for the semilinear elliptic equations
with logarithmic nonlinearity by Nehari manifold was studied in [18]. Liu and Xiao
[13] analyzed ground state solutions for a fourth-order nonlinear elliptic problem
with logarithmic nonlinearity, where H = 1. When H ∈ C1(R3),minR3 H > 0 and
minR3(V +H)> 0, multiple solutions to Schrödinger equation with periodic potential
and logarithmic nonlinearity was solved in [21]. Furthermore, the maxR3 V ∈ (−1,∞)
and H = 1 with ground sate solutions was seen [1]. Le [24] studied a fractional p-
Laplacian equation in the whole space with the sign-changing logarithmic nonlinear-
ity by using Nehari manifold.

However, the existence of ground state solutions for Choquard equation with log-
arithmic nonlinearity has not been studied. In this paper, we assume that V and H
satisfy:

(V ): V ∈ L3/2(Ω) and |V−|3/2 < S, where V+ = max{V,0},V− = min{V,0}, and
S = infu∈H1

0 (Ω)\{0} ∥u∥2
H1

0
/|u|26;

(H): H ∈C(Ω),µ := infΩ H > 0, satisfying

max
Ω

H ⩽ 2π(1−S−1|V−|3/2)/e−8|Ω|1/2+2.

According to the condition (V), there exists H ∈ C(Ω) and min Ω(V +H) < 0. So,
our conditions are more complex than [1, 13, 21]. Notice that the logarithmic nonlin-
earity does not satisfy ( f0),( f1) and ( f2), which means that the logarithmic nonlinear
does not satisfy the subcritical or Ambrosetti-Rabinowitz condition. Therefore, the
logarithmic nonlinearity can not be replaced by the general nonlinear term [9–11,22].
Meanwhile, there is no logarithmic Sobolev inequality concerning to the logarithmic
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nonlinearity with H. In order to overcome the above difficulties, we introduce a new
logarithmic inequality.

In this paper, it’s worth noting that we obtain a new existence Theorem 3 on the
ground state solution for the equation (1.1), which is quite different from these in the
polynomial case. On the other hand, our method and conclusion are different from
[18, 24]. In addition, we are interested in limit of behaviors of ground solution to
(1.1) as either α → 0 or α → N.

Theorem 1. Suppose that (V ) and (H) hold. Then there exists a ground solution
to (1.1).

Remark 1. Notice that the logarithmic nonlinearity contains potential H. There-
fore, the logarithmic Sobolev inequality cannot be applied directly. By condition (V ),
it is not difficult to find that our potential function is sign-change potential function.
In addition, (1.1) contains Hatree nonlinearity. To get our conclusions, it is crucial to
deal with the relationship between H, V and Hatree nonlinearity.

Theorem 2. Let {ua} be a family of ground solution to (1.1) for α close to 0. Then
there exists u0 such that uα → u0 and u0 is a nontrivial solution of the equation{

−∆u+V (x)u = k|u|2p−2u+H(x)u log |u|, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)

Let {ua} be a family of ground solution to (1.1) for α close to N. Then there exists uN
such that uα → uN and uN is a nontrivial solution of the equation{

−∆u+V (x)u = k (
∫

Ω
|u|p) |u|p−2u+H(x)u log |u|, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.3)

Remark 2. Seok [19] considered the limit profiles and uniqueness of ground states
to the nonlinear Choquard equations, namely, α → 0,α → N. When logarithmic
nonlinearity does not exist, as α → 0, it reduces to the Euler-Lagrange equation. On
the other hand, inspired by [19], we are interested to consider the case of α → N.
In addition, by studying the limit profiles, we can better understand the properties of
logarithmic nonlinearity.

Theorem 3. When k = 0, the equation (1.1) has a ground state solution.

Remark 3. Similarly, we can also consider the following fractional Schrödinger
equation {

(−∆)su+V (x)u = H(x)u log |u|, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

where Ω⊂R3 is a smooth bounded domain with boundary ∂Ω, s∈ (0,1). We assume
that the potential functions H and V satisfy:
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(V1) V ∈ L3/(2s)(Ω) and |V−|3/(2s) < S, where V+ = max{V,0},V− = min{V,0}
and S = infu∈Hs

0(Ω)\{0} ∥u∥2
Hs

0
/|u|26/(3−2s).

(H1) H ∈C(Ω),µ := infΩ H > 0, satisfying

max
Ω

H ⩽ π
s (1−S−1|V−|3/2s

)
/

(
Γ( 3

2s)

(3
2)

e
2|Ω|1/2−2

3

)6/s

.

Assume that (V1),(H1) hold, (1.4) has a ground state solution. A complete introduc-
tion to fractional Sobolev space and fractional logarithmic Sobolev inequality, we can
refer to [4, 17, 23].

2. PRELIMINARIES

In this paper, we make use of the following notation:
• H1

0 (Ω) is the usual Hilbert space with the norm

∥u∥H1
0
=

(∫
Ω

|∇u|2dx
)1/2

.

• Lp(Ω)(1 ⩽ p < ∞) is the Lebesgue space with the norm

|u|p =
(∫

Ω

|u|pdx
)1/p

.

• C,Ci, i = 1,2, . . . , denote various positive constants.
• M denotes max

Ω
H.

• |Ω|denotes the Lebesgue measure of Ω.
• From the Sobolev and Rellich embedding theorem, the embedding H1

0 (Ω) ↪→
Ls(Ω) is continuous for s ∈ [2,6] and is compact for s ∈ [2,6).

A weak solution to the equation (1.1) is a critical point of the following energy
functional J defined on H1

0 (Ω) by

J(u) =
1
2

∫
Ω

(|∇u|2 +Vu2)dx− k
2p

∫
Ω

(Iα ∗ |u|p)|u|pdx

−1
2

∫
Ω

Hu2 log |u|dx+
1
4

∫
Ω

Hu2dx, u ∈ H1
0 (Ω).

It is easy to proof that J is well defined on H1
0 (Ω) and J ∈ C1(H1

0 (Ω),R). Further-
more,

⟨J′(u),v⟩ =
∫

Ω

(∇u ·∇v+Vuv)dx− k
∫

Ω

(Iα ∗ |u|p)|u|p−2uvdx

−
∫

Ω

Huv log |u|dx, v ∈ H1
0 (Ω).
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For each u ∈ H1
0 (Ω), by the Hölder inequality and the condition (V), we have∫

Ω

|∇u|2dx+
∫

Ω

Vu2dx ⩾
∫

Ω

|∇u|2dx−
∫

Ω

|V−|u2dx (2.1)

⩾
(
1−S−1|V−|3/2

)∫
Ω

|∇u|2dx := δ

∫
Ω

|∇u|2dx,

where δ = 1−S−1|V−|3/2.

Proposition 1. (Logarithmic Sobolev inequality [8, 14]) Let u be a function in
H1(R3)\{0} and a > 0 be a constant. Then

2
∫
R3

u2 log
|u|
|u|2

dx+3(1+ loga)|u|22dx ⩽
a2

π

∫
R3

|∇u|2dx.

For any u ∈ H1
0 (Ω) \ {0}, we define u(x) = 0 for x ∈ R3 \Ω. According to the

logarithmic Sobolev inequality, we have

2
∫

Ω

u2 log
|u|
|u|2

dx+3(1+ loga)|u|22 ⩽
a2

π

∫
Ω

|∇u|2dx. (2.2)

Proposition 2. (Hardy-Littlewood-Sobolev inequality [5, 6]) Let s, t > 1 and α ∈
(0,3) with 1/s+1/r = 1+α/3. Then there exists a sharp constant C(α,s,r)> 0 such
that for any g ∈ Ls(Ω) and h ∈ Lr(Ω)∫

Ω

∫
Ω

g(x)h(y)
|x− y|3−α

dxdy ⩽C(α,s,r)|g|s|h|r.

3. PROOFS OF MAIN RESULTS

Lemma 1. There exists a C > 0 such that,

|t log |t||⩽C(1+ t2), t ∈ R. (3.1)

Proof. Define

f (t) =

{
|t log |t||

1+t2 , t ̸= 0.
0, t = 0.

Clearly,
lim
|t|→0

f (t) = 0, lim
|t|→∞

f (t) = 0. (3.2)

It follows from (3.2) that (3.1) holds. □

Lemma 2. For any u ∈ H1
0 (Ω)\{0}, then we have∫

Ω

Hu2 log
|u|
|u|2

dx ⩽ M
(

a2

2π

∫
Ω

|∇u|2dx− 3(1+ loga)
2

|u|22 +2|Ω|1/2|u|22
)
.
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Proof. For θ > 0, we have
logθ < θ. (3.3)

For any u ∈ H1
0 (Ω)\{0}, then we have∫

Ω

Hu2 log
|u|
|u|2

dx =
∫

Ω1

Hu2 log
|u|
|u|2

dx+
∫

Ω\Ω1

Hu2 log
|u|
|u|2

dx, (3.4)

where Ω1 = {x ∈ Ω : |u(x)|/|u|2 < 1}. According to the Hölder inequality and (3.3),
we deduce ∫

Ω1

Hu2 log
|u|
|u|2

dx ⩽ M
∫

Ω1

u2 log
|u|2
|u|

dx ⩽ M|Ω|1/2|u|22. (3.5)

Observing (2.2), (3.4) and (3.5) that∫
Ω\Ω1

Hu2 log
|u|
|u|2

dx ⩽ M
(∫

Ω

u2 log
|u|
|u|2

dx−
∫

Ω1

u2dx log
|u|
|u|2

dx
)

(3.6)

⩽ M
(∫

Ω

u2 log
|u|
|u|2

dx+ |Ω|1/2|u|22
)

⩽ M
(

a2

2π

∫
Ω

|∇u|2dx− 3(1+ loga)
2

|u|22 + |Ω|1/2|u|22
)
.

It follows from (3.5) and (3.6) that∫
Ω

Hu2 log
|u|
|u|2

dx ⩽ M
(

a2

2π

∫
Ω

|∇u|2dx− 3(1+ loga)
2

|u|22 +2|Ω|1/2|u|22
)
.

□

Lemma 3. The functional J has the mountain pass geometry:
(i) there exists ρ > 0 such that inf∥u∥=ρ J(u)> 0.

(ii) for any u ∈ H1
0 (Ω)\{0}, it holds limt→∞ J(tu) =−∞.

Proof. According to Hardy-Littlewood-Sobolev Inequality, we have∫
Ω

(Iα ∗ |u|p)|u|pdx ⩽C1|u|2p
pr , (3.7)

where r = 6/(3+α). For any u ∈ H1
0 (Ω)\{0}, by (2.1), (3.3), (3.7) and Lemma 2,

we get

J(u)⩾
1
2

∫
Ω

δ|∇u|2dx− 1
2

∫
Ω

Hu2 log
|u|
|u|2

dx− 1
2

∫
Ω

Hu2 log |u|2dx

−C1k|u|2p
pr

⩾
1
4

(
2δ− Ma2

π

)∫
Ω

|∇u|2dx+
1
4
(3+3loga−4|Ω|1/2)|u|22

− M
2
(
∫

Ω

u2dx)3/2 −C2k∥u∥2p. (3.8)
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According to the arbitrariness of a in logarithmic Sobolev inequality, we take a =

e
4|Ω|1/2−3

3 , we know
3+3loga−4|Ω|1/2 > 0.

According to the condition (H), we have

2δ− Ma2

π
> 0.

When ∥u∥ = ρ > 0 is small enough, according to (3.8) and the condition (H), we
complete the proof of (i). For any u ∈ H1

0 (Ω)\{0} and t > 0, we have

J(tu) =
1
2

∫
Ω

(|∇tu|2 +V (tu)2)dx− k
2p

∫
Ω

(Iα ∗ |tu|p)|tu|pdx

− 1
2

∫
Ω

H(tu)2 log |tu|dx+
1
4

∫
Ω

H(tu)2dx

=
t2

2

∫
Ω

(|∇u|2 +Vu2)dx− t2pk
2p

∫
Ω

(Iα ∗ |u|p)|u|pdx

− t2 log t
2

∫
Ω

Hu2dx− t2

2

∫
Ω

Hu2 log |u|dx+
t2

4

∫
Ω

Hu2dx,

and the conclusion (ii) follows. □

Lemma 4. Suppose that {un} is a sequence in H1
0 (Ω) such that un ⇀ u, then we

have

lim
n→∞

∫
Ω

(Iα ∗ |un|p)|un|pdx =
∫

Ω

(Iα ∗ |u|p)|u|pdx.

For any v ∈ H1
0 (Ω), we have

lim
n→∞

∫
Ω

(Iα ∗ |un|p)|un|p−1unvdx =
∫

Ω

(Iα ∗ |u|p)|u|p−1uvdx.

Proof. Firstly, by Fatou’s lemma, then we have∫
Ω

(Iα ∗ |u|p)|u|pdx ⩽ liminf
n→∞

∫
Ω

(Iα ∗ |un|p)|un|pdx. (3.9)

From that un ⇀ u in H1
0 (Ω) and 6p/(3 + α) ∈ [2,6), we have that un → u in

L6p/(3+α)(Ω). Therefore, |un|p → |u|p in L6/(3+α)(Ω). Combining with Proposition
2, we obtain∫

Ω

[Iα ∗ (|un|p −|u|p|)]|un|pdx ⩽Cα,p||un|p −|u|p|6/(3+α)|up
n |6/(3+α), (3.10)

According to (3.10), as n → ∞, we have∫
Ω

[Iα ∗ (|un|p −|u|p|)]|un|pdx → 0. (3.11)
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Similarly, we get ∫
Ω

(Iα ∗ |u|p)||un|p −|u|p|dx = o(1). (3.12)

According to (3.9), (3.11) and (3.12), we obtain

lim
n→∞

∫
Ω

[Iα ∗ (|un|p)]|un|pdx =
∫

Ω

[Iα ∗ (|u|p)]|u|pdx.

It follows from Proposition 2 that Iα ∗ (|u|p−2uv) ∈ L6/(3+α)(Ω).
As n → ∞, we get∣∣∣∣∫

Ω

(Iα ∗ |un|p) |un|p−1unvdx−
∫

Ω

(Iα ∗ |u|p)|u|p−1uvdx
∣∣∣∣

⩽
∫

Ω

|(Iα ∗ |un|p)[|un|p−1unv−|u|p−1uv]|dx

+

∣∣∣∣∫
Ω

[Iα ∗ |un|p − Iα ∗ |u|p]|u|p−1uvdx
∣∣∣∣

⩽ |Iα ∗ |un|p|6/(3−α)||un|p−1unv−|u|p−1uv|6/(3−α)

+

∣∣∣∣∫
Ω

[Iα ∗ |un|p − Iα ∗ |u|p]|u|p−1uvdx
∣∣∣∣→ 0. (3.13)

The proof is complete. □

Now, we prove that the functional J satisfies (PS) condition.

Lemma 5. J satisfies (PS) condition.

Proof. Assume that {un} ⊂ H1
0 (Ω) is a (PS) sequence certifies |J(un)| < b for

some positive constant b and J′(un) → 0, as n → ∞. We claim {un} is bounded in
H1

0 (Ω). Indeed, it follows from that for n large enough that

µ
4

∫
Ω

u2
ndx ⩽

1
4

∫
Ω

Hu2
ndx = J(un)−

1
2
⟨J′(un),un⟩

−
(

1
2
− 1

2p

)
k
∫

Ω

(Iα ∗ |un|p)|un|pdx ⩽ b+o(1)∥un∥. (3.14)

It follows from (3.3) and (3.14) that∫
Ω

H|un|2 log |un|2dx = log |un|2
∫

Ω

H|un|2dx ⩽ M|un|2
∫

Ω

|un|2dx

⩽
8M
µ3/2 (4b+o(1)∥un∥)3/2. (3.15)

setting γ = 1
2 −

1
2p , according to (3.14), (3.15) and Lemma 2, we have

b+o(1)∥un∥⩾ J(un)−
1

2p
⟨J′(un),un⟩
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⩾
γ

2

(
2δ− Ma2

π

)∫
Ω

|∇u|2dx+
γ

2
(3+3loga−4|Ω|1/2)|u|22

− γ

∫
Ω

H|un|2 log |un|2dx

⩾
γ

2

(
2δ− Ma2

π

)
∥un∥2 −

∣∣∣∣ γ

2µ
(3+3loga−4|Ω|1/2)

∣∣∣∣(b+o(1)∥un∥)

− 8Mγ

µ3/2 (4b+o(1)∥un∥)3/2,

which concludes the claim. So, going if necessary to a subsequence (still denote
{un}), we can assume that un ⇀ u in H1

0 (Ω). It follows from (3.1) that∣∣∣∣∫
Ω

(Hun log |un|−Hu log |u|)(un −u)dx
∣∣∣∣→ 0. (3.16)

By Lemma 4, we have∣∣∣∣∫
Ω

[(Iα ∗ |un|p)|un|p−2un − (Iα ∗ |u|p)|u|p−2u](un −u)dx
∣∣∣∣→ 0. (3.17)

On the other hand, we have

∥un −u∥2 = ⟨J′(un)− J′(u),un −u⟩+
∫

Ω

(un log |un|−u log |u|)(un −u)dx

+
∫

Ω

[(Iα ∗ |un|p)|un|p−2un − (Iα ∗ |u|p)|u|p−2u](un −u)dx

−
∫

Ω

(Vun −Vu)(un −u)dx. (3.18)

It is clear that
⟨J′(un)− J′(u),un −u⟩ → 0. (3.19)

and ∫
Ω

(Vun −Vu)(un −u)dx → 0. (3.20)

Therefore, according to (3.16)-(3.20), we get ∥un − u∥ → 0. The proof is complete.
□

Proof of Theorem 1. According to Lemma 3 and Lemma 5, (1.1) exists a non-
trivial solution. Set K = {u ∈ H1

0 (Ω)\{0} : J′(u) = 0}, we know K is nonempty. So
for any u ∈ K, then

J(u)− 1
2
⟨J′(u),u⟩=

(
1
2
− 1

2p

)
k
∫

Ω

(Iα ∗ |un|p)|un|pdx+
1
4

∫
Ω

Hu2dx

⩾
1
4

∫
Ω

Hu2dx ⩾ 0.
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So we may define cα = inf{J(u) : u ∈ K}. Let {un} ⊆ K be such that J(un)→ cα, as
n → ∞. By Lemma 5, there exists a subsequence (still denote {un}) and un → u0 in
H1

0 (Ω). By the continuation of J′, we imply that J(u0) = cα and J′(u0) = 0. We show
that u0 ̸= 0. Since un ∈ K, we have

∥un∥2 = k
∫

Ω

(Iα ∗ |un|p)|un|pdx+
∫

Ω

Hu2
n log |un|dx

⩽C2∥un∥2p +C4∥un∥4. (3.21)

It follows from un ∈ K and (3.21) that

1 ⩽C2∥un∥2p−2 +C4∥un∥2.

Therefore, we imply that u0 ̸= 0. It completes the proof. □

Proof of Theorem 2. A weak solution to the equation (1.2) is a critical point of the
following energy functional J1 defined on H1

0 (Ω) by

J1(u) =
1
2

∫
Ω

(|∇u|2 +Vu2)dx− k
2p

∫
Ω

|u|2pdx− 1
2

∫
Ω

Hu2 log |u|+ 1
4

∫
Ω

Hu2dx,

for all u ∈ H1
0 (Ω). It is easy to proof that J1 is well defined on H1

0 (Ω) and J ∈
C1(H1

0 (Ω),R). Furthermore,

⟨J′1(u),v⟩=
∫

Ω

(∇u ·∇v+Vuv)dx− k
∫

Ω

|u|p−2uvdx−
∫

Ω

Huv log |u|dx,

for all v ∈ H1
0 (Ω). □

Lemma 6. Fix 1 < p < 2N
N−2 . Let {α j} > 0 be a sequence converging to 0 and

let {u j} ⊂ H1
0 (Ω) be a sequence converging weakly in H1

0 (Ω) to some u0 ∈ H1
0 (Ω).

Then, as j → ∞, the following holds:∫
Ω

(Iα j ∗ |u j|p)|u j|pdx =
∫

Ω

|u0|2pdx.

For any v ∈ H1
0 (Ω), we have∫

Ω

(Iα j ∗ |u j|p)|u j|p−1u jvdx =
∫

Ω

|u0|2p−2u0vdx.

Proof. For the proof of the lemma, we refer to ([19], Proposition 2.7). □

Lemma 7. Let {ua} be a family of ground solution to (1.1) for α close to 0 and
then there exists u0 such that u0 is a nontrivial solution of the equation (1.2).

Proof. Let {ua} be a family of ground solutions to (1.1) for α close to 0. Similarly
to proof of Theorem 1, define c2p = inf{J1(u) : u ∈ K1}, where K1 = {u ∈ H1

0 (Ω) \
{0} : J′1(u) = 0}. Given u ∈ H1

0 (Ω)\{0}, as α → 0, we get

cα ⩽ max
t>0

J(tu) = max
t>0

t2

2

∫
Ω

(|∇u|2 +Vu2)dx− t2pk
2p

∫
Ω

(Iα ∗ |u|p)|u|pdx



CHOQUARD EQUATION WITH LOGARITHMIC NONLINEARITY 733

− t2 log t
2

∫
Ω

Hu2dx− t2

2

∫
Ω

Hu2 log |u|dx+
t2

4

∫
Ω

Hu2dx

→ max
t>0

t2

2

∫
Ω

(|∇u|2 +Vu2)dx− t2pk
2p

∫
Ω

|u|2pdx

− t2 log t
2

∫
Ω

Hu2dx− t2

2

∫
Ω

Hu2 log |u|dx+
t2

4

∫
Ω

Hu2dx

= max
t>0

J1(tu).

Taking the infimum with respect to u ∈ H1
0 (Ω)\{0}, we deduce that

limsup
α→0

cα ⩽ c2p. (3.22)

Since ua is a ground solution to (1.1), by Lemma 5 and (3.22), we obtain that {ua} is
bounded. So, there exists {u j} ⊂ H1

0 (Ω) be a sequence converging weakly in H1
0 (Ω)

to u0 ∈ H1
0 (Ω). We claim that u0 is a weak solution of the equation (1.2). Indeed,

lim
j→∞

∫
Ω

(∇u j ·∇v+Vu jv)dx− k
∫

Ω

(Iα ∗ |uα j |p)|u j|p−2uvdx−
∫

Ω

Hu jv log |u j|dx

=
∫

Ω

(∇u0 ·∇v+Vu0v)dx− k
∫

Ω

|u0|p−2u0vdx−
∫

Ω

Hu0v log |u0|dx. (3.23)

Since u j is a ground solution of equation (1.1), then we obtain

⟨J′(u j),v⟩=
∫

Ω

(∇u j ·∇v+Vu jv)dx− k
∫

Ω

(Iα j ∗ |u j|p)|u j|p−2uvdx

−
∫

Ω

Hu jv log |u j|dx = 0. (3.24)

It follows from (3.23) and (3.24) that∫
Ω

(∇u0 ·∇v+Vu0v)dx− k
∫

Ω

|u0|p−2u0vdx−
∫

Ω

Hu0v log |u0|dx

= 0 = ⟨J′1(u0),v⟩, (3.25)

which concludes the claim. According to (3.1), we have

lim
j→∞

∫
Ω

Hu2
j log |u j|dx =

∫
Ω

Hu2
0 log |u0|dx. (3.26)

Since u0 is a weak solution of the equation (1.2), by the (3.26) and Lemma 6, we
imply

lim
j→∞

∥u j∥= lim
j→∞

(∫
Ω

(Iα j ∗ |u j|p)|u j|pdx+
∫

Ω

Hu2
j log |u j|dx

)
=

∫
Ω

|u0|2pdx+
∫

Ω

Hu2
0 log |u0|dx = ∥u0∥. (3.27)
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According to (3.27) and u j ⇀ u0, we have u j → u0. Since u j is a ground solution of
equation (1.1), we get

∥u j∥2 = k
∫

Ω

(Iα ∗ |u j|p)|u j|pdx+
∫

Ω

Hu2
j log |u j|dx ⩽C2∥u j∥2p +C4∥u j∥4, (3.28)

Observe from (3.28) that

1 ⩽C2∥u j∥2p−2 +C4∥u j∥2. (3.29)

According to (3.29) and u j → u0, we imply that u0 is a nontrivial solution of the
equation (1.2). □

A weak solution to the equation (1.3) is a critical point of the following energy
functional J2 defined on H1

0 (Ω) by

J2(u) =
1
2

∫
Ω

(|∇u|2 +Vu2)dx− k
2p

(∫
Ω

|u|pdx
)2

− 1
2

∫
Ω

Hu2 log |u|dx+
1
4

∫
Ω

Hu2dx,

for all u ∈ H1
0 (Ω). It is easy to proof that J2 is well defined on H1

0 (Ω) and J2 ∈
C1(H1

0 (Ω),R). Furthermore,

⟨J′2(u),v⟩=
∫

Ω

(∇u ·∇v+Vuv)dx− k
∫

Ω

|u|p
∫

Ω

|u|p−2uvdx−
∫

Ω

Huv log |u|dx,

for all v ∈ H1
0 (Ω).

Lemma 8. Fix 1 < p < 2N
N−2 . Let {α j} > 0 be a sequence converging to N and

let {u j} ⊂ H1
0 (Ω) be a sequence converging weakly in H1

0 (Ω) to some uN ∈ H1
0 (Ω).

Then, as j → ∞, the following holds:∫
Ω

(Iα j ∗ |u j|p)|u j|pdx =
(∫

Ω

|uN |pdx
)2

.

For any v ∈ H1
0 (Ω), we have∫

Ω

(Iα j ∗ |u j|p)|u j|p−1unvdx =
∫

Ω

|uN |p
∫

Ω

|uN |p−2uNvdx.

Proof. For a proof of the lemma, we refer to ([19], Proposition 2.8). □

Lemma 9. Let {ua} be a family of ground solution to (1.1) for α close to N and
then there exists uN such that uN is a nontrivial solution of the equation (1.3).

Proof. Let {ua} be a family of ground solution to (1.1) for α close to N. Similarly
to proof of Theorem 1, define cp = inf{J2(u) : u∈K2}, where K2 = {u∈H1

0 (Ω)\{0} :
J′2(u) = 0}. Given u ∈ H1

0 (Ω)\{0}, as α → 0, we have

cα ⩽ max
t>0

J(tu)
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= max
t>0

t2

2

∫
Ω

(|∇u|2 +Vu2)dx− t2pk
2p

∫
Ω

(Iα ∗ |u|p)|u|pdx

− t2 log t
2

∫
Ω

Hu2dx− t2

2

∫
Ω

Hu2 log |u|dx+
t2

4

∫
Ω

Hu2dx

→ max
t>0

t2

2

∫
Ω

(|∇u|2 +Vu2)dx− t2pk
2p

(
∫

Ω

|u|pdx)2

− t2 log t
2

∫
Ω

Hu2dx− t2

2

∫
Ω

Hu2 log |u|dx+
t2

4

∫
Ω

Hu2dx

= max
t>0

J2(tu).

Taking the infimum with respect to u ∈ H1
0 (Ω)\{0}, we deduce that

limsup
α→0

cα ⩽ cp. (3.30)

According to Lemma 5 and (3.30), we obtain that {uα} is bounded. So, there exists
{u j} ⊂ H1

0 (Ω) be a sequence converging weakly in H1
0 (Ω) to uN ∈ H1

0 (Ω). We claim
that uN is a weak solution of the equation (1.1). Indeed,

lim
j→∞

∫
Ω

(∇u j ·∇v+Vu jv)dx− k
∫

Ω

(Iα ∗ |uα j |p)|u j|p−2uvdx

−
∫

Ω

Hu jv log |u j|dx

=
∫

Ω

(∇uN ·∇v+VuNv)dx− k
∫

Ω

|uN |pdx
∫

Ω

|uN |p−2uNvdx

−
∫

Ω

HuNv log |uN |dx. (3.31)

Since u j is a ground solution of equation (1.1), we obtain

⟨J′(u j),v⟩=
∫

Ω

(∇u j ·∇v+Vu jv)dx− k
∫

Ω

(Iα j ∗ |u j|p)|u j|p−2uvdx

−
∫

Ω

Hu jv log |u j|dx = 0. (3.32)

It follows from (3.31) and (3.32) that∫
Ω

(∇uN ·∇v+VuNv)dx− k
∫

Ω

|uN |pdx
∫

Ω

|uN |p−2uNvdx−
∫

Ω

HuNv log |uN |dx

= 0 = ⟨J′(uN),v⟩,
which concludes the claim. Since u0 is a weak solution of the equation (1.3), accord-
ing to (3.25) and Lemma 8, we have

lim
j→∞

∥u j∥= lim
j→∞

(∫
Ω

(Iα j ∗ |u j|p)|u j|pdx+
∫

Ω

Hu2
j log |u j|dx

)
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=
∫

Ω

(|u0|pdx)2 +
∫

Ω

Hu2
0 log |u0|dx = ∥u0∥. (3.33)

According to (3.33) and u j ⇀ u0, we have u j → u0. Since u j is a ground solution of
equation (1.1), we obtain

∥u j∥2 = k
∫

Ω

(Iα ∗ |u j|p)|u j|pdx+
∫

Ω

Hu2
j log |u j|dx

⩽C2∥u j∥2p +C4∥u j∥4, (3.34)

By (3.34), we deduce
1 ⩽C2∥u j∥2p−2 +C4∥u j∥2. (3.35)

According to (3.35) and u j → u0, we imply that u0 is a nontrivial solution of the
equation (1.3). □

According to Lemma 7 and Lemma 9, we complete the proof of Theorem 2.

Proof of Theorem 3. When k = 0, define K = {u ∈ H1
0 (Ω) \ {0} : J′(u) = 0}. It

follows from Lemma 3 and Lemma 5 that K is nonempty. So for any u∈K, according
to (2.1), the condition (H) and Lemma 2, we have

0 = ⟨J′(u),u⟩

⩾
∫

Ω

δ|∇u|2dx−
∫

Ω

Hu2 log
|u|
|u|2

dx−
∫

Ω

Hu2 log |u|2dx+
∫

Ω

Hu2dx−
∫

Ω

Hu2dx

⩾
1
4

(
2δ− Ma2

π

)∫
Ω

|∇u|2dx+M
(

3(1+ loga)
2

−2|Ω|1/2 −1
)
|u|22

+(1− log |u|2)
∫

Ω

Hu2dx. (3.36)

Take a = e
4|Ω|1/2−1

3 , we deduce

1− log |u|2 ⩽ 0. (3.37)

It follows from (3.37) that e1 ⩽
∫

Ω
u2. Next, we claim that J is bounded from below

on K. For any u ∈ K, we obtain

J(u)− 1
2
⟨J′(u),u⟩= 1

4

∫
Ω

Hu2dx ⩾
µe1

4
> 0. (3.38)

which concludes the claim. So we may define c1 = inf{J(u) : u ∈ K}. According to
(3.38), we get c1 > 0. Let {un} ⊆ K be such that J(un)→ c1, as n → ∞. By Lemma
5, we know that {un} is bounded. Therefore, there exists a subsequence (still denote
{un}) and un → u0 in H1

0 (Ω). By the continuation of J′, we imply that J(u0) = c1 and
J′(u0) = 0. Then, u0 is a ground state solution of equation (1.1). This completes the
proof of Theorem 3. □
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Proof of Remark 3. Define K1 = {u ∈ Hs
0(Ω)\{0} : J′(u) = 0}. Similarly to proof

of Lemma 3 and Lemma 5, we know that K1 is nonempty. So for any u ∈ K1, accord-
ing to the condition (H1), fractional logarithmic Sobolev inequality and similarly to
proof of Lemma 2, we have

0 = ⟨J′(u),u⟩

⩾ δ1

∫
Ω

|(−∆)s/2u|2dx−
∫

Ω

Hu2 log
|u|
|u|2

dx

−
∫

Ω

Hu2 log |u|2dx+
∫

Ω

Hu2dx−
∫

Ω

Hu2dx

⩾

(
δ1 −

a2M
πs

)∫
Ω

(−∆)s/2u|2dx+M(3+
3
s

loga

+ log
sΓ(3

2)

Γ( 3
2s)

−2|Ω|
1
2 −1)|u|22 +(1− log |u|2)

∫
Ω

Hu2dx, (3.39)

where δ1 = 1− S−1|V−|3/2s. Take a =

(
Γ( 3

2s )

( 3
2 )

e
2|Ω|1/2−2

3

)3/s

, according to (3.39), we

deduce
1− log |u|2 ⩽ 0. (3.40)

It follows from (3.40) that e1 ⩽
∫

Ω
u2. Next, we claim that J is bounded from below

on K. For any u ∈ K, we obtain

J(u)− 1
2
⟨J′(u),u⟩= 1

4

∫
Ω

Hu2dx ⩾
µe1

4
> 0. (3.41)

which concludes the claim. So we may define c1 = inf{J(u) : u ∈ K}. According
to (3.41), we get c1 > 0. Let {un} ⊆ K be such that J(un) → c1, as n → ∞. Simil-
arly to proof of Lemma 5, we know that {un} is bounded. Therefore, there exists a
subsequence (still denote {un}) and un → u0 in Hs

0(Ω). By the continuation of J′,
we imply that J(u0) = c1 and J′(u0) = 0. Then, u0 is a ground state solution. This
completes the proof of Remark 3. □

4. CONCLUSION

This paper considers the existence of ground state solutions for Choquard equa-
tion with logarithmic nonlinearity and the limit of behaviors of ground solution to
(1.1) as either α → 0 or α → N by variational method and logarithmic inequality.
In addition, we obtain a new existence theorem through the property of logarithmic
nonlinearity. Note that fractional Choquard has been widely studied in recent years.
In the forthcoming paper, we will consider the existence of ground state solutions
for fractional Choquard equation with logarithmic nonlinearity and sign-change po-
tential function on the whole space by variational method and fractional logarithmic
inequality. Lacking compactness will be the biggest difficulty.
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