
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 22 (2021), No. 2, pp. 663–679 DOI: 10.18514/MMN.2021.3450

STABILITY, NEIMARK-SACKER BIFURCATION AND CHAOS
CONTROL FOR A PREY-PREDATOR SYSTEM WITH

HARVESTING EFFECT ON PREDATOR
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Abstract. This paper deals with the dynamic behavior of a prey predator model obtained by
the forward Euler method. We investigate the complex dynamics of discrete-time prey-predator
system related to predator population which is subject to the effects of harvesting. The stability
of equilibrium point of the model and also the existence and the direction of Neimark-Sacker
bifurcation are analyzed. We show that the system undergoes Neimark-Sacker bifurcations by
using center manifold theorem and bifurcation theory. A state feedback method is applied in
order to control the Neimark-Sacker bifurcation. Moreover, numerical simulations are carried
out to demonstrate the theoretical results obtained for stability, bifurcation and chaos control
strategy.
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1. INTRODUCTION

Changes in population size result from interactions between species such as pred-
atory, cooperative, mutualistic, commensal interactions. One of the fundamental
structure in population dynamics is prey-predator interactions which has been de-
scribed firstly by two pioneers Lotka-Volterra [23, 33]. In recent times, many re-
searchers have considered effects of harvesting on various types of prey-predator
models [2, 10, 16, 24, 25, 34–36]. Prey-predator harvesting which is applied on pred-
ator population as well as prey population have a strong impact on the dynamic eval-
uation [3, 4]. Discrete-time and continuous-time models are used for predicting the
size of a population. Discrete-time models are suitable for obtaining more accur-
ate numerical simulations for non-overlapping generations [9, 11, 21, 22, 26]. There-
fore, the studies on discretization of prey-predator models governed by difference
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equations have received remarkable attention [15, 28, 29, 37, 38]. Bifurcation the-
ory is widely used in the mathematical research of dynamic systems [12, 20]. For
the some type of bifurcation analysis of discrete-time population models, we refer
to [1, 5, 7, 13–15, 17, 21, 22, 28, 29, 37, 38]. Dynamic models are also often used in
chaos theory studies. A chaotic behavior occurs suddenly and includes unpredictable
behavior. Chaos control theory offers some strategies avoid to the chaotic situation
that occurs with these unpredictable behaviors [5–8, 19, 27, 30–32]. So, the chaotic
behavior can be delayed or can be prevented completely. With this aspect, this theory
is one of the important study subjects for dynamic systems. Lotka-Volterra model
subject to harvesting effect on predator population is presented the following form:

dxn

dt
= axn(1− xn)− cxnyn (1.1)

dyn

dt
= bxnyn − eyn −Hyn.

where xn and yn denote the numbers of prey and predator, respectively. Moreover the
parameters a, b,c,e,H are positive and the initial conditions x0, y0 are positive real
numbers.

In this paper, we will focus discrete-time version of the system (1.1) by applying
the forward Euler scheme as follows:

xn+1 = xn +h[axn(1− xn)− cxnyn] (1.2)

yn+1 = yn +h[bxnyn − eyn −Hyn]

Here H denotes harvesting effect. The important ıssues in discrete-time models to
investigate the existence and the direction of the bifurcation and chaos phenomenon
which are performed either by using numerical simulations or by using the center
manifold theorem and bifurcation theory. Also, control of chaotic behavior in dy-
namic model using control strategies are remarkable .

Our purpose in this study is to obtain the equilibrium points of the system (1.2);
and to investigate the stability conditions of these equilibrium points. Additionally,
the direction and the existence of the Neimark-Sacker bifurcation of the system (1.2)
is studied by choosing b as the bifurcation parameter; and controlled the chaos beha-
vior of the model via control strategy. Moreover, we show the dynamic properties of
the system (1.2), by means of trajectories, bifurcation diagrams and phase portraits.

This study consists of four sections. In Section II, we investigate the existence
and local asymptotic stability of the equilibrium points of the system (1.2) in R2

+.
In Section III, we discuss the undergoing of the system (1.2) into a Neimark-Sacker
bifurcation. In Section IV, we apply chaos control method to provide control of the
system (1.2). Section V includes numerical simulations to support the theoretical
results. In the last section, the results are briefly presented.
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2. THE EXISTENCE AND STABILITY OF EQUILIBRIUM POINTS

In this section, we discuss the existence and stability of equilibrium points of the
system (1.2) in the close first quadrant R+

2 . A equilibrium point of (1.2) is a point
(x,y) that satisfies

x = f (x,y), (2.1)

y = g(x,y).

We easy obtain the equilibrium points of system (1.2) by using (2.1)

x = x+h[ax(1− x)− cxy] (2.2)

y = y+h[bxy− ey−Hy].

It is clear that the system (1.2) has the equilibrium points (0,0) and (1,0) for all
positive parameters. Additionaly, in the case of b > e+H, the system (1.2) has a
unique positive coexistence equilibria E2 = ( e+H

b , a(b−e−H)
bc ). So, we reach the results

for existence of the equilibrium points of the system (1.2) as follows:

Lemma 1. For the system (1.2), the following cases hold:
(i) The system (1.2) has two equilibrium points. These are an trivial (extinction)

equilibrium point E0 = (0,0) and an exclusion (axial) equilibrium point E1 =
(1,0) for all positive parameters;

(ii) If b > e+H , then the system (1.2) has a uniqe positive coexistence equilib-
rium point E2 = ( e+H

b , a(b−e−H)
bc ).

The Jacobian matrix of a system (1.2) evaluated at any equilibrium point (x,y) is
determined by

J(x,y) =
(

a11 a12
a21 a22

)
(2.3)

and the characteristic equation of matrix J(x,y) can be given with

λ
2 − trJ(x,y)λ+detJ(x,y) = 0. (2.4)

Suppose that λ1 and λ2 be two roots of F(λ) = 0. Then the equilibrium point
(x,y) is local asymptotic stable, if |λ1| < 1 and |λ2| < 1, and it is called as a sink
point. Otherwise, (x,y) is always unstable, and it is known source (repeller). And,
the equilibrium point (x,y) is called a saddle point if |λ1| < 1 and |λ2| > 1 (or |λ1|
> 1 and |λ2| < 1 ). If |λ1| = 1 or |λ2| = 1, then (x,y) is known as non-hyperboic
point.

Now, let us study the local dynamics of the equilibrium points by obtaining the
Jacobian matrix evaluated at E0, E1 and E2. Firstly, by considering (1.2), we can get
the Jacobian matrix as

JE0 =

(
1+ah 0

0 1− eh−hH

)
(2.5)
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evaluated at E0, and the eigenvalues of JE0 are

λ1 = 1+ah, λ2 = 1− eh−hH.

Thus, we can express the topological classification of the equilibrium point E0.

Lemma 2. For the extinction equilibrium point E0, the following cases hold:

(i) The equilibrium point E0 cannot be a sink point. It is a source point for
eh+hH > 2.

(ii) If eh+hH < 2, then the equilibrium point E0 is a saddle point.

Secondly, we can get the Jacobian matrix evaluated at E1 as

JE1 =

(
1−ah −ch

0 1+bh− eh−hH

)
(2.6)

and the eigenvalues of JE1 are

λ1 = 1−ah, λ2 = 1+bh− eh−hH.

From there, we can get the topological classification of the equilibrium point E1.

Lemma 3. For the extinction equilibrium point E1, the following cases hold:

(i) If ah < 2 and (b < e+H and (e+H −b)h < 2), then the equilibrium point
E1 is a sink point.

(ii) If ah < 2 and (b > e+H or (H +e−b)h > 2) or ah > 2 and (b < e+H and
(e+H −b)h < 2), then the equilibrium point E1 is a saddle point.

(iii) If ah > 2 and (b > e+H or (H +e−b)h > 2), then the equilibrium point E1
is a source point.

In order to investigate the dynamics of a unique positive equilibrium point E2, we
need the following lemma.

Lemma 4. [22] Let F(λ) = λ2 − trJλ+detJ. Suppose that F(1)> 0, and λ1 and
λ2 are two roots of F(λ) = 0. Then,

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1)> 0 and detJ < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1|> 1 and |λ2| < 1) if and only if F(−1)< 0;

(iii) |λ1|> 1 and |λ2| > 1 if and only if F(−1)> 0 and detJ > 1;
(iv) λ1 =−1 and |λ2| ̸= 1 if and only if F(−1) = 0 and −trJ ̸= 0,2;
(v) λ1 and λ2 are complex and |λ1|= |λ2|= 1 if and only if (−trJ)2−4detJ < 0

and detJ = 1.

At last, we can give the Jacobian matrix as

JE2 =

(
b−ah(e+H)

b − ch(e+H)
b

ah(b−e−H)
c 1

)
(2.7)
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evaluated at E2, and the characteristic polynomial of JE2 is

F(λ) = λ
2 −
[

1+
b−ah(e+H)

b

]
λ+

[
b−ah(e+H)

b
+

ach2(b− e−H)(e+H)

bc

]
.

By using Lemma 4, we can get the topological classification of the coexistence pos-
itive equilibrium E2.

Lemma 5. For the coexistence positive equilibrium point E2, the following cases
hold:

(i) If

2aeh+ae2h2 +2ahH +2aeh2 +ah2H2

4+aeh2 +ah2H
< b <

1+ eh+hH
h

,

then the equilibrium point E2 is a sink point.
(ii) If

b >
1+ eh+hH

h
,

then the equilibrium point E2 is a source point.
(iii) If

b <
2aeh+ae2h2 +2ahH +2aeh2 +ah2H2

4+aeh2 +ah2H
,

then the equilibrium point E2 is a saddle point.
(iv) If

b =
2aeh+ae2h2 +2ahH +2aeh2 +ah2H2

4+aeh2 +ah2H
or

b =
1+ eh+hH

h
,

then the equilibrium point E2 is non-hyperbolic point.

Example 1. For the parameter values a = 2.5, b = 2.25, e = 0.2, c = 1, H = 1
and h = 0.9 the initial conditons (x0,y0) = (0.3,0.4), the equilibrium point E2 of the
model (1.2) is locally asymptotically stable. Moreover, for b = 2.31, the equilibrium
point E2 of the model (1.2) is non-hyperbolic point. To confirm the theoretical result,
the trajectories of the model (1.2) are shown in Figure 1.

3. NEIMARK-SACKER BIFURCATIONS

In this section, the direction and existence of Neimark–Sacker bifurcation are ob-
tained for the system (1.2). Additionally, if the system (1.2) provides eigenvalue
assignment, transversality and non resonance conditions, then a Neimark–Sacker bi-
furcation occurs at a bifurcation point [12,30]. Considering Lemma 4-(v), the bifurc-
ation occurs in non-hyperbolic point E2 where the roots of JE2 are complex conjugate
with module one. In order to work Neimark–Sacker bifurcation in the system (1.2),
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FIGURE 1. (a) Trajectories of the prey-predator system (1.2) with
the parameter values a = 2.5, b = 2.25, e = 0.2, c = 1, H = 1 and
h = 0.9 the initial conditions (x0,y0) = (0.3,0.4). (b) Trajector-
ies of the prey-predator system (1.2) with the parameter values
a = 2.5, b = 2.31, e = 0.2, c = 1, H = 1 and h = 0.9 the initial con-
ditions (x0,y0) = (0.3,0.4).

we define the parameters providing non-hyperbolic conditions by taking the bifurca-
tion parameter b as follows:

NSBE2 =

{
a,b,c,eh, H ε R+ : b > e+H

2 + 1
2

√
ae+ e2 +(a+2e)H +H2

and b = b1 =
1+eh+hH

h

}
.

(3.1)
The eigenvalues of JE2 have a pair of conjugate complex numbers which are of mod-
ule one for b = b1. These eigenvalues are found as

λ,λ =
trJE2

2
∓
√

4detJE2 − (trJE2)
2

2
|b=b1 (3.2)

where

λ,λ =
1
2b

[
2b−aeh−ahH ∓ ih

√
a(e+H)[4b2 −ae−4be−aH −4bH]

]
|b=b1

(3.3)
such that

|λ|=
∣∣∣λ∣∣∣= 1.

For b ∈ NSBE2 , we get

∂ |λi(b)|
∂b

|b=b1 ̸= 0 , i = 1,2. (3.4)

Additionally, if
trJE2 |b=b1 ̸= 0,−1, (3.5)



ANALYSIS OF PREY-PREDATOR SYSTEM WITH HARVESTING EFFECT ON PREDATOR 669

then, we reach the following:

λ
k(b1) ̸= 1, k = 1,2,3,4. (3.6)

Here, the value trJE2 at the point b = b1 is

trJE2 =
2eH −ah2(e+H)+2(1+hH)

1+ eh+hH
.

Moreover, the eigenvalues of JE2 evaluated at the point b = b1 are obtained as

λ,λ =
−ah2(e+H)

2(eH +hH +1)
∓ ih

√
a(e+H)[( 4(eH+hH+1)(−h(e+H)+eH+hH+1)

h2 −a(e+H))]

2(eH +hH +1)
+1.

and

∂ |λi(b)|
∂b

|b=b1
=

ah2(e+H)h
√

a(e+H)4(eH+hH+1)(−h(e+H)+eH+hH+1)
h2

(2(eH +hH +1)2
√

a(e+H)4(eH+hH+1)(−h(e+H)+eH+hH+1)
h2 )−a(e+H)

−a(e+H)− iah(e+H)−2i(e+H)(eH +hH +1)

2(eH +hH +1)2
√

a(e+H)4(eH+hH+1)(−h(e+H)+eH+hH+1)
h2 −a(e+H)

.

Let q, p ∈ C2 be two eigenvectors which correspond to the eigenvalues λ of the mat-
rix J(ΩNSBE2) and the eigenvalues λ of the matrix J(ΩNSBE2)

T , respectively. These
eigenvectors are calculated as

q ∼

(
−1− 1

2 [−1−M− i
√

2M−1−M2 −4NS]
S

,1

)
(3.7)

and

p ∼

(
−1− 1

2 [−1+M+ i
√

2M−1−M2 −4NS]
N

,1

)
(3.8)

such that

M =
1+ eH −ah2(e+H)+hH

1+ eH +hH
,

N =− ch2(e+H)

1+ eH +hH
and

S =
a(1+ eH − eh)

c
.
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By using the scalar product in C2 :< p,q >= p1q1 + p2q2, we define the following
vector in order to normalize p according to q

p ∼

(
(M−1)− i

√
2M−1−M2 −4NS

R∗ ,
1

R∗

)
(3.9)

where R∗ = (M+1)+i
√

2M−1−M2−4NS
4NS +1 such that < p,q >= 1.

In order to translate the equilibrium point E2 of the system (1.2) into the origin
(0,0), we take

un = xn −
e+H

b
, vn = yn −

a(b− e−H)

bc
. (3.10)

Then, we get the following map:(
u
v

)
→ JE2

(
u
v

)
+

(
F1(u,v)
F2(u,v)

)
, (3.11)

where

F1(u,v) =−chuv−ahu2 +O(∥U∥3)

F2(u,v) = bhuv+O(∥U∥3).

such that Ut = (u,v)T . Additionally, the system (1.2) can be written as(
un+1
vn+1

)
→ JE2

(
un
vn

)
+

1
2

B(un,vn)+
1
6

C(un,vn,wn)+O(∥Un∥4), (3.12)

with the multi-linear vector functions of u;v;w ∈ R2 :

B(u,v) =
(

B1(u,v)
B2(u,v)

)
and

C(u,v) =
(

B1(u,v,w)
B2(u,v,w)

)
.

These vectors are expressed by

B1(u,v) =
2

∑
j,k=1

∂2F1

∂ξ j∂ξk
|ξ=0 u jvk =−2ahu1v1 − ch(u2v1 +u1v2),

B2(u,v) =
2

∑
j,k=1

∂2F2

∂ξ j∂ξk
|ξ=0 u jvk = bh(u2v1 +u1v2),

C1(u,v,w) =
2

∑
j,k=1

∂3F1

∂ξ j∂ξkξl
|ξ=0 u jvkwl = 0,

C2(u,v,w) =
2

∑
j,k=1

∂3F2

∂ξ j∂ξkξl
|ξ=0 u jvkwl = 0.
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∀U ∈ R2 can be uniquely shown as

U = zq+ zq (3.13)

for some z ∈ C. Here, z is the conjugate of the complex number z, and z =< p, U >.
For all sufficiently small |b|, we can transform the system (1.2) into the form,

z → λ(b)z+g(z,z,b), (3.14)

where λ(r) = (1+ω(b))eiarctan(b) with ω(b1) = 0 and g(z,z,b) is a complex valued
smooth function of z and z. The Taylor expression of g with respect to g(z,z) is as
follows:

g(z,z,b) = ∑
k+l≥2

1
k!l!

gkl(b)zkzl, (3.15)

with

g20(b1) =< p,B(q,q)>

g11(b1) =< p,B(q,q)>

g02(b1) =< p,B(q,q)>

g21(b1) =< p,C(q,q,q)> .

In order to come out as the Neimark-Sacker bifurcation for the system (3.11), we
need that the coefficient ϕ(b1) must not be zero. This coefficient is

ϕ(b1) = Re

(
e−iarctan(b1)

2
g21

)
−Re

(
(1−2eiarctan(b1))e−2iarctan(b1)

2(1− eiarctan(b1))
g20g11

)

− 1
2
|g11|2 −

1
4
|g02|2 (3.16)

where eiarctan(b1) = λ(b1). Consequently, we have the following theorem on Neimark-
Sacker bifurcation:

Theorem 1. If (3.5) holds, ϕ(b1) ̸= 0 and the parameter b changes its value in
a small vicinity of NSBE2, then the system (1.2) passes through a Neimark-Sacker
bifurcation at the only equilibrium point E2. Moreover, if ϕ(b1)< 0 (ϕ(b1)> 0), then
there exists a unique attracting (repelling) invariant closed curve which bifurcates
from E2.

4. CHAOS CONTROL

Stabilizing unstable periodic orbits in chaotic dynamics has been an interesting re-
search topic in recent years [5–7]. Chaos can be controlled by various methods (see
[8, 19, 27, 31, 37]). The first feedback control strategy known as the OGY method
was proposed by Ott et al. [27]. We study to control the chaos via chaos controlling
strategy based a state feedback control method [8, 19]. Now, we suppose that system
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(1.2) undergoes Neimark-Sacker bifurcation at equilibrium point (x,y), then corres-
ponding controlled system can be taken as follows:

xn+1 = xn +h(axn(1− xn)− cxnyn)− k1(xn − x)− k2(yn − y) (4.1)

yn+1 = yn +h[(bxnyn − eyn −Hyn]

such that −k1(xn − x)− k2(yn − y) is the control force; and k1 and k2 define as the
feedback gains. The Jacobian matrix of J(x,y) of controlled system (4.1) can be
written as

J(x,y) =

[
b−ah(e+H)−bk1

b
−ch(e+H)+bk2

b
ah(b−e−H)

c 1

]
.

The characteristic equation of the Jacobian matrix J(x,y) is given by

µ2 − 2b−ah(e+H)−bk1

b
µ (4.2)

+
c(−ah(e+H)(1+ eh+hH)+b(1+ah2(e+H))−bck1 +abh(b− e−h)k2

bc
= 0.

Let µ1 and µ2 be the roots of characteristic equation system (4.2), then we have

µ1 +µ2 =
2b−ah(e+H)−bk1

b
(4.3)

µ1µ2 =
c(−ah(e+H)(1+ eh+hH)+b(1+ah2(e+H))−bck1

bc

+
abh(b− e−h)k2

bc
. (4.4)

To determine the marginal stability lines, we must find the solution of the equations
µ1 = ±1 and µ1µ2 = 1. These conditions confirm that µ1 and µ2 have absolute value
less than 1. Let us take µ1µ2 = 1, then from Eq. (4.4), we get

l1 :=
bck1 +ah(c(e+H)(1+h(−b+ e+H)+b(−b+ e+H)k2)

bc
= 0. (4.5)

Now, we suppose that µ1 = 1, then Eq. (4.3) and Eq. (4.4) imply

l2 := 1+
c(−ah(e+H)(2+h(e+H))+b(4+ah2(e+H))−2bk1)

bc

+
abh(b− e−H)k2

bc
− −2b+ah(e+H)+bk1

h
= 0. (4.6)

Moreover, from µ1 =−1, by using Eq. (4.3) and Eq. (4.4), we obtain

l3 := 1+
c(−ah(e+H)(2+h(e+H))+b(4+ah2(e+H))−2bk1)

bc

+
abh(b− e−H)k2

bc
+

−2b+ah(e+H)+bk1

h
= 0. (4.7)
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The triangular region determined by the lines l1, l2 and l3 in k1k2 plane is the region
of the values that make the eigenvalues less than 1.

5. NUMERICAL SIMULATIONS

In this section, theoretical results are supported with graphics by using Maple
[32] and SageMath [18] programming. Some numerical simulations are given to
demonstrate the existence of Neimark-Sacker bifurcation for the system (1.2). Here,
bifurcation diagrams and phase portraits are illustrated by taking b as the bifurcation
parameter.

Example 2. Let us consider the following system for the parameter values e =
0.2, a = 2.5, c = 1, H = 1, h = 0.9 and b = 2.3111,

xn+1 = xn +2.25xn(1− xn)−0.9xnyn (5.1)
yn+1 = yn +2.07999xnyn −0.18yn −0.9yn.

The coexistence positive equilibrium point is (x,y) = (0.519233,1.20192), and the
Jacobian matrix evaluated (x,y) is as follows:

J(x,y) =
(

−0.168276 −0.46731
2.49998 1

)
.

If the eigenvalues are calculated, then we obtain

λ1,2 = 0.415862∓0.909422i

such that |λ1,2| = 1. Let the complex eigenvectors q, p ∈ C2 be correspond to λ1,2,
respectively.

q ∼ (−0.3637718555−0.233656893i, i)T

and
p ∼ (−0.3637718555+0.233656893i,−i)T

If the normalized vector is taken as

q ∼ (−0.3637718555−0.233656983i, i)T

to obtain the normalization < p, q >= 1, the vector is found as

p ∼ (0.336308−0.315341i,0.193293+1.04866i)T .

By transformation of variables

un = xn −0.519233, vn = yn −1.20192

the system (5.1) can be written as follows:

un+1 =−0.168277un −0.46731vn −0.9unvn −2.25u2
n

yn+1 = 2.49998un + vn +2.07999unvn.
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When the coefficients of the form (3.15) are calculated, we get

g20(b1) =−1.62334−1.59177i

g11(b1) =−0.313611+0.901413i

g02(b1) = 1.48092−0.932656i

g21(b1) = 0.

Here, θ = 1.141903497; and from (3.16), we get ϕ(bNS) = 0.606259 > 0. Con-
sequently, a sub critical Neimark-Sacker bifurcation emerges at bNS = 2.3111.

To confirm the theoretical result, bifurcation diagrams and phase portraits of the
prey-predator system (1.2) are shown in Figures 1-3 where the initial point is (x0,y0)=
(0.3,0.4). From Figure 2(a) and Figure 2(b), we see that the equilibrium point (x,y)

FIGURE 2. (a) Bifurcations Diagrams of the prey-predator system
(1.2) for different values b ∈ (2,2.5) with the parameter values
a = 2.5, e = 0.2, c = 1, H = 1 and h = 0.9 the initial conditions
(x0,y0) = (0.3,0.4). (b) Bifurcations Diagrams of the prey-predator
system (1.2) for different values b ∈ (2,3) with the parameter val-
ues a = 2.5, e = 0.2, c = 1, H = 1 and h = 0.9 the initial conditions
(x0,y0) = (0.3,0.4).

of the system (1.2) is stable for b < 2.3111 and loses its stability at b = 2.3111, and
close invariant curves appear around the positive equilibrium point if b > 2.3111.
More clearly, when the parameter b exceeds 2.3111, the equilibrium point is unstable
and a repelling invariant closed curve bifurcates from the positive equilibrium point.
The phase portaits of bifurcation diagrams in Figure 2(a) and 2(b) for different val-
ues of b are shown in Figure 3, which clearly demonstrates the process how smooth
invariant curve bifurcates from the stable equilibrium point and increases its radius.

Example 3. We consider system (1.2) with the parameter values a = 2.5, e = 0.2,
c = 1, H = 1, h = 0.9, and initial condition (x0,y0) = (0.3,0.4). When 2 ≤ b <
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FIGURE 3. The phase portraits of the prey-predator system (1.2) for
different values of b with the parameter values a = 2.5, e = 0.2, c =
1, H = 1, h = 0.9 and the initial conditions (x0,y0) = (0.3,0.4).

2.3111, the positive equilibrium points (x,y) are locally asymptotic stable and this
equilibrium point (x,y) are unstable for 2.3111 ≤ b ≤ 3. Furthermore, at the value
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b = 2.3111, the positive equilibrium point (x,y) becomes unstable and also is pro-
duced closed invariant curve enclosing the unique positive unstable equilibrium point
(x,y). So, Neimark Sacker bifurcation at b = 2.3111 can be emerge. To clarify this
situation, we obtain, λ2 − 0.837124λ+ 1.00541 = 0, the characteristic equation of
Jacobian matrix evaluated at (x,y) = (0.519233,1.20192) with the parametric values
(e,a,c,H,h,b) = (0.2,2.5,1,1,0.9,2.3111). The eigenvalues of characteristic equa-
tion are λ1,2 = 0.415862 ∓ 0.909422i with |λ1,2| = 1. Consequently; we say that
(e,a,c,H,h,b) = (0.2,2.5,1,1,0.9,2.3111) ∈ NSBE2

Example 4. In this example, we apply a state feedback control method by tak-
ing parameter values (e,a,c,H,h,b) = (0.2,2.5,1,1,0.9,2.5) and initial condition
(x0,y0) = (0.3,0.4). Then corresponding controlled form is given by

xn+1 = xn +0.9(2.5xn(1− xn − xnyn)− k1(xn −0.48)− k2(yn −1.3) (5.2)

yn+1 = yn +0.9[(2.5xnyn −0.2yn − yn].

If marginal lines l1, l2 and l3 in Eq.(4.5)-(4.7) are considered, we get

l1 =−0.1836+ k1 −2.925k2 = 0
l2 = 3.1036−2k1 +2.925k2 = 0

and
l3 = 1.2636+2.925k2 = 0.

The marginal lines l1, l2 and l3 determine the stable triangular region in the k1k2 plane.
The region bounded by this lines of the controlled system (5.2) is plotted in Figure 4.

6. CONCLUSIONS

This paper contains the complex dynamic behavior of a discrete-time the prey-
predator system (1.2). We investigate stability conditions of the equilibrium points of
the system (1.2), and show that the system (1.2) displays a Neimark-Sacker bifurca-
tions at coexistence equilibrium point. So, we apply the stabilizing feedback control
methods to avoid chaos.

We find that the system (1.2) has a trivial (extinction) equilibrium E0, an exclusion
equilibrium E1 and a coexistence equilibrium E2. We get the asymptotic stability
conditions of these equilibria by using the linearization method. It is clear that there
is a unique positive coexistence equilibrium E2 of the system (1.2) with b > e+H.
Moreover, it is proved that the system (1.2) undergoes Neimark-Sacker bifurcation
under the condition b = 1+eh+hH

h by using mathematical techniques of bifurcation
theory. It is seen that the Neimark–Saker bifurcation appears when the parameters
vary on the neighborhood

NSBE2 =

{
a,b,e ∈ R+ : b >

e+H
2

+
1
2

√
ae+ e2 +aH +2eH +H2 and b = b1

}
.
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FIGURE 4. Stability region of the controlled system (5.2) in k1k2 plane

Some Figures present the dynamic properties of system (1.2) which has an chaos
for b > 2.3111, e = 0.2, a = 2.5, c = 1, H = 1, h = 0.9 and the initial conditions
(x0,y0) = (0.3,0.4). We conclude that the parameter b has a different effects on the
dynamics of the system (1.2). Later, we obtain the conditions to control the chaos
of the model via a state feedback method with the parameter e = 0.2, a = 2.5, b =
2.5, c = 1, H = 1, h = 0.9. Chaos is successfully controlled by using control strategy.
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[1] P. Baydemir, H. Merdan, E. Karaoǧlu, and G. Sucu, “Complex dynamics of a discrete-time prey
predator system with leslie type: Stability bifurcation analysis and chaos,” International Journal
of Bifurcation and Chaos, vol. 30, no. 10, p. 2050149, 2020.

[2] S. Chakraborty, S. Pal, and N. Bairagi, “Predator-prey interaction with harvesting: Mathematical
study with biological ramifications.” Appl. Math. Model., vol. 36, no. 9, pp. 4044–4059, 2012,
doi: 10.1016/j.apm.2011.11.029.

[3] C. W. Clark, Bioeconomic modelling and fisheries management. New York: Wiley, 1985.
[4] C. W. Clark, Mathematical bioeconomics: The optimal management of renewable resource. New

York: Wiley, 1990.
[5] Q. Din, “Complexity and choas control in a discrete-time prey-predator model.” Commun Nonlin-

ear Sci. Numer. Simulat., vol. 49, pp. 113–134, 2017, doi: 10.1016/j.cnsns.2017.01.025.
[6] Q. Din, “Stability, bifurcation analysis and chaos control for a predator-prey system.” J. Vib. Con-

trol, vol. 25, no. 3, pp. 612–626, 2018, doi: 10.1177/1077546318790871.
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