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Abstract. In this paper, we give general formulas for some weighted binomial sums, using the
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1. INTRODUCTION

For n > 1; define the binary recurrences fUng and fVng by

Un D pUn�1�Un�2 and Vn D pVn�1�Vn�2

where U0 D 0; U1 D 1 and V0 D 2; V1 D p; respectively.
The Fibonacci subsequence fF2ng and the Pell subsequence fP2ng are the special

cases of the sequence fUng for p D 3 and p D 6; respectively. It is also known that
the natural numbers are special cases of the sequence fUng for p D 2:

The Binet formulas of fUng and fVng are as follows:

Un D
˛n�ˇn

˛�ˇ
and Vn D ˛nCˇn; (1.1)

where ˛;ˇ D
�
p˙

p
p2�4

�
=2:

From [4], we have that for k � 0 and n > 1;

Ukn D VkUk.n�1/�Uk.n�2/;

Vkn D VkVk.n�1/�Vk.n�2/:

Wiemann and Cooper [9] mentioned some conjectures of Melham for the sum:
nX
hD1

F 2mC1
2h

;
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where Fn stands for the nth Fibonacci number.
Ozeki [6] considered Melham’s sum and gave an explicit expansion for it as a

polynomial in F2nC1.
In general, Prodinger [7] derived a general formula for the sum:

nX
hD0

F 2mC"
2hCı

;

where ";ı 2 f0;1g, as well as for the evaluations of the corresponding sums for Lucas
numbers.

In [5], we considered alternating Melham’s sums for Fibonacci and Lucas numbers
of the form

Pn
hD1 .�1/

hF 2mC"
2hCı

and
Pn
hD1 .�1/

hL2mC"
2hCı

; where ";ı 2 f0;1g.
Recently Khan and Kwong [3] considered the sums

nX
hD0

hm

 
n

h

!
Uh and

nX
hD0

.�1/nChhm

 
n

h

!
Uh; (1.2)

and expressed them in terms of two associated sequences. The special cases of mD
2;3 leads to interesting binomial and Fibonacci identities.

In this paper, we shall give general formulas for the sums
nX
hD0

 
n

h

!
hmU 2mC"

ht
;

nX
hD0

 
n

h

!
hmV 2mC"

ht
;

nX
hD0

 
n

h

!
.�1/nChhmU 2mC"

ht
;

nX
hD0

 
n

h

!
.�1/nChhmV 2mC"

ht
;

where t is a positive integer and " 2 f0;1g. In order to do this, firstly we will consider
general cases of the sums given by (1.2) and we shall derive similar formulas for their
Lucas counterparts in the second section. After this, by using these results, we state
our main results in the third section.

2. GENERALIZED WEIGHTED BINOMIAL IDENTITIES

In this section, we will give generalizations of the results of [3] by considering the
sequence fUnkg instead of the sequence fUng : We also give similar formulas for the
Lucas sequence fVng. While deriving these results, we follow the proof strategy of
[3].

Define the sequences fXkng ; fYkng ; fWkng and fZkng for n� 2 as follows:

X0 D 0; Xk D Uk; Xkn D .VkC2/
�
Xk.n�1/�Xk.n�2/

�
;

Y0 D 0; Yk D Uk; Ykn D .Vk �2/
�
Yk.n�1/CYk.n�2/

�
;

W0 D 2; Wk D VkC2; Wkn D .VkC2/
�
Wk.n�1/�Wk.n�2/

�
;

Z0 D 2; Zk D Vk �2; Zkn D .Vk �2/
�
Zk.n�1/CZk.n�2/

�
:
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The Binet formulas of fXkng ; fYkng ; fWkng and fZkng are

Xkn D

�
1C˛k

�n
�

�
1Cˇk

�n
˛�ˇ

; Ykn D

�
˛k �1

�n
�

�
ˇk �1

�n
˛�ˇ

;

Wkn D
�
1C˛k

�n
C

�
1Cˇk

�n
; and Zkn D

�
˛k �1

�n
C

�
ˇk �1

�n
;

where ˛k; ˇk D
�
Vk˙

q
V 2
k
�4
�
=2.

Lemma 1. For n� 0; we have
nX
hD0

 
n

h

!
Uhk DXnk; (2.1)

nX
hD0

 
n

h

!
hUhk D n

�
Xkn�Xk.n�1/

�
; (2.2)

nX
hD0

 
n

h

!
.�1/nChUhk D Ykn; (2.3)

nX
hD0

 
n

h

!
.�1/nChhUhk D n

�
YknCYk.n�1/

�
: (2.4)

Proof. Since
nX
hD0

 
n

h

!
˛hk D

�
1C˛k

�n
and

nX
hD0

 
n

h

!
ˇhk D

�
1Cˇk

�n
;

the first claim follows from the Binet formula of fUhkg : Similarly by considering
nX
hD0

 
n

h

!
.�1/nCh˛hk D

�
˛k �1

�n
,
nX
hD0

 
n

h

!
.�1/nChˇhk D

�
ˇk �1

�n
;

we have the third claim.
Considering
nX
hD0

 
n

h

!
h˛hk D

˛

k
:
d

d˛

"
nX
hD0

 
n

h

!
˛hk

#
D
˛

k

d

d˛

��
1C˛k

�n�
D n˛k

�
1C˛k

�n�1
D n

��
1C˛k

�n
�

�
1C˛k

�n�1�
; (2.5)

and similarly
nX
hD0

 
n

h

!
hˇhk D n

��
1Cˇk

�n
�

�
1Cˇk

�n�1�
; (2.6)
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one can easily obtain the rest of claimed identities. �

Define the operators DU and �U on Xkn and Ykn for n � 1; respectively, as
follows:

DU .Xkn/D n
�
Xkn�Xk.n�1/

�
;

�U .Ykn/D n
�
YknCYk.n�1/

�
:

Lemma 2. For n� 0
nP
hD0

�
n
h

�
Vhk DWnk;

nP
hD0

�
n
h

�
hVhk D n

�
Wkn�Wk.n�1/

�
;

nP
hD0

�
n
h

�
.�1/nChVhk DZkn;

nP
hD0

�
n
h

�
.�1/nChhVhk D n

�
ZknCZk.n�1/

�
:

Proof. The proof is similar to the proof of Lemma 1. �

Define the operators DV and �V on Wkn and Zkn for n � 1; respectively, as
follows:

DV .Wkn/D n
�
Wkn�Wk.n�1/

�
;

�V .Zkn/D n
�
ZknCZk.n�1/

�
:

In [3], the authors stated that if
Pn
hD0h

m
�
n
h

�
Uh is of the form

P
k�0akXk; thenPn

hD0h
m
�
n
h

�
Uh DD

�P
k�0akXk

�
: Hence the coefficients ak can be computed it-

eratively as follows.
For m� 0; define the polynomials am;r .n/ recursively as follows [3]:

am;r .n/D .n� r/am�1;r .n/� .n� rC1/am�1;r�1 .n/ ; m� 1; (2.7)

with the initial value a0;0 .n/ D 1 and the convention that am;r .n/ D 0 if r < 0 or
r > m.

Thus, we see that a similar statement is also valid for the sum
Pn
hD0

�
n
h

�
hmUhk ,

so we can give the following result.

Theorem 1. For n� 0
nX
hD0

 
n

h

!
hmUhk D

mX
rD0

am;r .n/Xk.n�r/; (2.8)

nX
hD0

 
n

h

!
.�1/nChhmUhk D

mX
rD0

.�1/r am;r .n/Yk.n�r/; (2.9)
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nX
hD0

 
n

h

!
hmVhk D

mX
rD0

am;r .n/Wk.n�r/; (2.10)

nX
hD0

 
n

h

!
.�1/nChhmVhk D

mX
rD0

.�1/r am;r .n/Zk.n�r/: (2.11)

Proof. It is known that
nX
hD0

 
n

h

!
hmUhk DD

"
nX
hD0

 
n

h

!
hm�1Uhk

#
:

Thus
mX
rD0

am;r .n/Xk.n�r/ DD

"
m�1X
rD0

am�1;r .n/Xk.n�r/

#

D

m�1X
rD0

am�1;r .n/.n� r/
�
Xk.n�r/�Xk.n�r�1/

�
D am�1;0 .n/Xkn

C

m�1X
rD1

.n� r/am�1;r .n/� .n� rC1/am�1;r .n/Xk.n�r/

� .n�mC1/am�1;m�1 .n/Xk.n�m/:

Since am;r .n/D 0 if r < 0 or r > m; we write
mX
rD0

am;r .n/Xk.n�r/ D

mX
rD0

.n� r/am�1;r .n/� .n� rC1/am�1;r .n/Xk.n�r/:

The recurrence for am;r .n/ follows directly by comparing coefficients. The rest of
the claimed identities could be proved similarl. �

For example, when pD 2 in (2.8), we have that ˛D ˇD 1, soXnD n2n�1, which
was also given in [3]. In order to get different examples of our results, suppose that
k DmD 2; then by using the results above, we obtain

nX
hD0

 
n

h

!
h2U2h D

2X
rD0

a2;r .n/X2.n�r/ D 2
n�2n2 .nC3/ :

Now let p D 3, k D 2 and mD 1: Then U2h D F4h, so we have

Y2n D

nX
hD0

 
n

h

!
.�1/nChF4h D

�
5.n�1/=2L2n; if n is odd,
5n=2F2n; if n is even.

(2.12)
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By (2.12), we also get
nX
hD0

 
n

h

!
.�1/nChhF4h D

1X
rD0

.�1/r a1;r .n/Y2.n�r/

D a1;0 .n/Y2n�a1;1 .n/Y2.n�1/

D

�
n5.n�1/=2 .L2nCF2n�2/ ; if n is odd,
n5.n�2/=2 .5F2nCL2n�2/ ; if n is even.

Similar to the above examples, one can obtain various results for different values of
k and p from the results above.

3. THE MAIN RESULTS

In this section, we give general formulas for the sums:
nX
hD0

 
n

h

!
hmU 2mC"

ht
;

nX
hD0

 
n

h

!
hmV 2mC"

ht
;

nX
hD0

 
n

h

!
.�1/nChhmU 2mC"

ht
and

nX
hD0

 
n

h

!
.�1/nChhmV 2mC"

ht
;

where t is an positive integer and " 2 f0;1g.
We shall assume that p in the definition of the sequence fUng is a positive integer

different from 2 throughout in this section.
For the readers convenience and for later use, it would be convenient to recall some

facts from [8]: For any real numbers m and n;

.mCn/t D

8̂̂̂<̂
ˆ̂:

.t�1/=2P
iD0

�
t
i

�
.mn/i

�
mt�2i Cnt�2i

�
if t is odd,

t=2�1P
iD0

�
t
i

�
.mn/i

�
mt�2i Cnt�2i

�
C
�
t
t=2

�
.mn/t=2 if t is even,

(3.1)
and

.m�n/t D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.t�1/=2P
iD0

�
t
i

�
.mn/i .�1/i

�
mt�2i �nt�2i

�
if t is odd,

t=2�1P
iD0

�
t
i

�
.mn/i .�1/i

�
mt�2i Cnt�2i

�
C
�
t
t=2

�
.mn/t=2 .�1/t=2

if t is even.
(3.2)

Theorem 2. i/ For t;m > 0;
nX
hD0

 
n

h

!
hmU 2mht D

U 2mt�
V 2t �4

�m m�1X
iD0

.�1/i

 
2m

i

!
mX
rD0

am;r .n/Wt.2m�2i/.n�r/
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C
U 2mt�

V 2t �4
�m
 
2m

m

!
.�1/m 2n�mP .n/ ;

whereP .n/ is a monic polynomial of degreem satisfying
Pn
hD0

�
n
h

�
hmD 2n�mP .n/.

i i/ For t;m > 0,

nX
hD0

 
n

h

!
hmU 2mC1

ht
D

U 2mt�
V 2t �4

�m mX
iD0

.�1/i

 
2m

i

!
mX
rD0

am;r .n/Xt.2mC1�2i/.n�r/:

Proof. i/ For t > 0; by the Binet formula of fUng ; we have

nX
hD0

 
n

h

!
hmU 2mht D

nX
hD0

 
n

h

!
hm

 
˛ht �ˇht

˛�ˇ

!2m
:

Using (3.2), we write

nX
hD0

 
n

h

!
hmU 2mht

D
1

.˛�ˇ/2m

nX
hD0

 
n

h

!
hm

"
m�1X
iD0

 
2m

i

!
.�1/i

�
˛ht.2m�2i/Cˇht.2m�2i/

�
C

 
2m

m

!
.�1/m

#

D
1�

p2�4
�m m�1X

iD0

.�1/i

 
2m

i

!
nX
hD0

 
n

h

!
hmVht.2m�2i/

C

 
2m

m

!
.�1/m

nX
hD0

 
n

h

!
hm:

By taking k D 2t .m� i/ in (2.10) and
nP
hD0

�
n
h

�
hm D 2n�mP .n/, where P .n/ is

a monic polynomial of degree m (for the coefficients of this polynomials, see the
sequence A102573 in the OEIS or see [1], p. 135), we write

nX
hD0

 
n

h

!
hmU 2mht

D
U 2mt�

V 2t �4
�m m�1X

iD0

.�1/i

 
2m

i

!
mX
rD0

am;r .n/Wt.2m�2i/.n�r/
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C
U 2mt�

V 2t �4
�m
 
2m

m

!
.�1/m 2n�mP .n/ :

i i/ The proof is similar to the proof of i/. �

For example, when p D 6; mD 3 and t D 2; we derive
nX
hD0

 
n

h

!
h3U 72h D

1

32

3X
iD0

.�1/i

 
6

i

!
3X
rD0

a3;r .n/X.7�2i/.n�r/

D
1

32

 
3X
rD0

a3;r .n/X7.n�r/�6

3X
rD0

a3;r .n/X5.n�r/

C15

3X
rD0

a3;r .n/X3.n�r/�20

3X
rD0

a3;r .n/X.n�r/

!
:

For p D 6 in the definition of sequence fUng ; we have Un D 1
2
P2n; where Pn is the

nth Pell number. Thus

Xn D
1

2

nX
hD0

 
n

h

!
P2n D Un.

p
2/; (3.3)

where Un .x/ is the Chebyshev’s polynomials of the second kind. We have also
another formula for Xn as shown:

Xn D
1

2

nX
hD0

 
n

h

!
P2n DWnC1 .0;1I8;�8/ ;

where Wn .a;bIp;q/ is the Horadam sequence (see [2]).
Using (3.3), we get

nX
hD0

 
n

h

!
h3U 72h

D
1

32

h
n3U7n.

p
2/�n

�
2n2C2n�1

�
U7.n�1/.

p
2/

C3n.n�1/2U7.n�2/.
p
2/�n.n�1/.n�2/U7.n�3/.

p
2/

�6
�
n3U5n.

p
2/�n

�
2n2C2n�1

�
U5.n�1/.

p
2/

C3n.n�1/2U5.n�2/.
p
2/�n.n�1/.n�2/U5.n�3/.

p
2/
�

C15
�
n3U3n.

p
2/�n

�
2n2C2n�1

�
U3.n�1/.

p
2/

C3n.n�1/2U3.n�2/.
p
2/�n.n�1/.n�2/U3.n�3/.

p
2/
�
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�20
�
n3Un.

p
2/�n

�
2n2C2n�1

�
U.n�1/.

p
2/

C3n.n�1/2U.n�2/.
p
2/�n.n�1/.n�2/U.n�3/.

p
2/
�i
:

Theorem 3. i/ For t; m > 0;

nX
hD0

 
n

h

!
.�1/nChhmU 2mht

D
U 2mt�

V 2t �4
�m m�1X

iD0

.�1/i

 
2m

i

!
mX
rD0

.�1/r am;r .n/Z2t.m�i/.n�r/

C
U 2mt�

V 2t �4
�m
 
2m

m

!
.�1/mnŠS .m;n/ ;

where S .m;n/ is the Stirling numbers of the second kind.
i i/ For t; m > 0;

nX
hD0

 
n

h

!
.�1/nChhmU 2mC1

ht

D
U 2mt�

V 2t �4
�m mX

iD0

.�1/i

 
2mC1

i

!
mX
rD0

.�1/r am;r .n/Yt.2mC1�2i/.n�r/:

Proof. i/ For t > 0; consider

nX
hD0

 
n

h

!
.�1/nChhmU 2mht D

nX
hD0

 
n

h

!
.�1/hhm

 
˛ht �ˇht

˛�ˇ

!2m
:

By (3.2), we write

nX
hD0

 
n

h

!
.�1/nChhmU 2mht

D
1

.˛�ˇ/2m

nX
hD0

 
n

h

!
.�1/nChhm

"
m�1X
iD0

 
2m

i

!
.�1/i

�
˛ht.2m�2i/Cˇht.2m�2i/

�
:C

 
2m

m

!
.�1/m

#

D
1

.˛�ˇ/2m

m�1X
iD0

.�1/i

 
2m

i

!
nX
hD0

 
n

h

!
.�1/nChhmVht.2m�2i/
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C
1

.˛�ˇ/2m

 
2m

m

!
.�1/m

nX
hD0

 
n

h

!
.�1/nChhm:

By taking k D 2t .m� i/ in (2.11) and since
nX
hD0

 
n

h

!
.�1/nChhm D nŠS .m;n/

where S .m;n/ is the Stirling numbers of the second kind, the claim is obtained.
i i/ The proof is similar to the proof of i/: �

For example, when p D 3; we get Un D F2n: For mD t D 2; we have

nX
hD0

 
n

h

!
.�1/nChh2U 52h

D
1

52

2X
iD0

.�1/i

 
5

i

!
2X
rD0

.�1/r a2;r .n/Y2.5�2i/.n�r/

D
1

52

 
2X
rD0

.�1/r a2;r .n/Y10.n�r/�5

2X
rD0

.�1/r a2;r .n/Y6.n�r/

C10

2X
rD0

.�1/r a2;r .n/Y2.n�r/

!
:

Since

Yn D

nX
hD0

 
n

h

!
.�1/nChF2h D Fn;

we get
nX
hD0

 
n

h

!
.�1/nChh2U 52h D

1

52

�
nF10nCn.2n�1/F10.n�1/Cn.n�1/F10.n�2/

�5
�
nF6nCn.2n�1/F6.n�1/Cn.n�1/F6.n�2/

�
C 10

�
nF2nCn.2n�1/F2.n�1/Cn.n�1/F2.n�2/

��
:

Theorem 4. i/ For t; m > 0;

nX
hD0

 
n

h

!
hmV 2mht D

m�1X
iD0

 
2m

i

!
mX
rD0

am;r .n/Wt.2m�2i/.n�r/C

 
2m

m

!
2n�mP .n/ ;

where the polynomial P .n/ is defined as before.
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i i/ For t; m > 0;
nX
hD0

 
n

h

!
hmV 2mC1

ht
D

mX
iD0

 
2mC1

i

!
mX
rD0

am;r .n/Wt.2mC1�2i/.n�r/:

Proof. i/ For t > 0; by the Binet formula of fVng, we write
nX
hD0

 
n

k

!
hmV 2mht D

nX
hD0

 
n

h

!
hm
�
˛ht Cˇht

�2m
;

which, by (3.1) and since ˛ˇ D 1, satisfies

nX
hD0

 
n

h

!
hmV 2mht D

nX
hD0

 
n

h

!
hm

"
m�1X
iD0

 
2m

i

!�
˛ht.2m�2i/Cˇht.2m�2i/

�
C

 
2m

m

!
.˛ˇ/thm

#

D

m�1X
iD0

 
2m

i

!
nX
hD0

 
n

h

!
hmVht.2m�2i/C

 
2m

m

!
nX
hD0

 
n

h

!
hm:

By taking k D 2t .m� i/ in (2.10) and since
nP
hD0

�
n
h

�
hm D 2n�mP .n/ ; where

P .n/ is defined as before, we get

nX
hD0

 
n

h

!
hmV 2mht D

m�1X
iD0

 
2m

i

!
mX
rD0

am;r .n/Wt.2m�2i/.n�r/C

 
2m

m

!
2n�mP .n/ :

i i/ The proof is similar to the proof of i/: �

Theorem 5. i/ For t;m > 0;
nX
hD0

 
n

h

!
.�1/nChhmV 2mht

D

m�1X
iD0

 
2m

i

!
mX
rD0

.�1/r am;r .n/Zt.2m�2i/.n�r/C

 
2m

m

!
nŠS .m;n/ ;

where S .m;n/ is the Stirling numbers of the second kind.

i i/ For t; m > 0;
nX
hD0

 
n

h

!
.�1/nChhmV 2mC1

ht
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D

mX
iD0

 
2mC1

i

!
mX
rD0

.�1/r am;r .n/Zt.2mC1�2i/.n�r/:

Proof. i/ From the Binet formula of fVng ; we write
nX
hD0

 
n

h

!
.�1/nChhmV 2mht D

nX
hD0

 
n

h

!
.�1/nChhm

�
˛ht Cˇht

�2m
;

which, by (3.1) and since ˛ˇ D 1, is equivalent to
nX
hD0

 
n

h

!
.�1/nChhmV 2mht

D

nX
hD0

 
n

h

!
.�1/nChhm

 
m�1X
iD0

 
2m

i

!�
˛ht.2m�2i/Cˇht.2m�2i/

�
C

 
2m

m

!
.˛ˇ/thm

!

D

m�1X
iD0

 
2m

i

!
nX
hD0

 
n

h

!
.�1/nChhmVht.2m�2i/

C

 
2m

m

!
nX
hD0

 
n

h

!
.�1/nChhm:

By taking k D 2t .m� i/ in (2.11) and since
nX
hD0

 
n

h

!
.�1/nChhm D nŠS .m;n/ ;

where S .m;n/ is defined as before, the claim is obtained.
i i/ The proof is similar to the proof of i/: �
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