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Abstract. This paper includes four finite element methods which are based on quadratic, cubic,
quartic and quintic trigonometric B-spline functions for space discretization and Crank-Nicolson
method for time discretization, to be achieved the numerical solution of the Schrödinger equation
(SE). The algorithms obtained by different degrees trigonometric B-spline Galerkin methods are
new for getting numerical solution of the SE. To see the accuracy of the proposed methods, two
numerical experiments are investigated and the comparison of the methods are given in the test
problem section.

2010 Mathematics Subject Classification: 35C08; 41A15; 65M60

Keywords: Schrödinger equation, Galerkin finite element method, quadratic trigonometric B-
spline function, cubic trigonometric B-spline function, quartic trigonometric B-spline function,
quintic trigonometric B-spline function

1. INTRODUCTION

The SE with the conditions is

iut +uxx +q |u|2 u = 0, i =
√
−1, (1.1)

u(a, t) = 0, u(b, t) = 0, t ≥ 0, (1.2)

ux(a, t) = 0, ux(b, t) = 0, (1.3)

u(x,0) = f (x), (1.4)

where u is a complex function, q is a real number corresponds to a focusing
(q > 0) or defocusing (q < 0) effect of the cubic nonlinearity and f (x) will be defined
later. The SE has application to problems in nonlinear physical phenomena such as
the propagation of optical pulses, waves in water and plasmas, superconductivity,
self-focussing effects in laser pulses, quantum hydro dynamics and Bose-Einstein
condensates. The lack of an analytical solution for the general initial conditions of
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the SE has led to the search for numerical solutions. Although the studies [3, 5, 6, 8,
9, 12, 16, 18, 19], which obtain the numerical solutions of the SE by using Galerkin
method, have been included in the literature before, the use of trigonometric B-splines
base for the Galerkin method to solve the SE is new.

The trigonometric B-spline function was worked out by Schoenberg in 1964 [17].
Lyche and Winther showed that a recurrence relation similar to the one for poly-
nomial splines was satisfied by trigonometric B-splines [13]. The some properties
of the trigonometric B-spline were studied by Walz in 1997 [20]. Cubic trigono-
metric B-spline was used for numerical solution of an important equation system in
celestial mechanics [15]. Abbas et al. obtained the approximate solution of nonclas-
sical diffusion problem using the two-time level implicit technique based on cubic
trigonometric B-spline function [2]. The wave equation was solved using the cubic
trigonometric B-spline collocation method in study [1]. Dag et al. solved the regu-
larized long wave equation by using the trigonometric B-spline collocation method
[7]. The studies [4] included the different finite element method based on trigono-
metric B-spline function to solve numerically the Burgers’ equation. The cubic and
quadratic trigonometric B-spline Galerkin finite element methods were introduced by
Irk and Keskin to achieve the numerical solution of regularized long wave equation
[10, 11]. Cubic trigonometric B-spline collocation method was applied to have the
numerical solution of the fractional sub-diffusion equation and second-order hyper-
bolic telegraph equation [14, 21]. Zhu et al. suggested the cubic trigonometric B-
spline based differential quadrature method for the numerical solution of fractional
advection-diffusion equation [23]. Zahra interested the numerical solutions of the
PHI-Four and Allen-Cahn equations by applying the trigonometric B-spline colloc-
ation method in study [22]. In this paper, we develop four finite element methods
which are based on quadratic, cubic, quartic and quintic trigonometric B-spline func-
tions. In the first section, the trigonometric B-spline functions are introduced. In the
next section, the space and time discretization of the equation are described to obtain
a fully discretized form of the SE for both of the methods. In the test problems sec-
tion, the accuracy of the proposed methods are discussed with the help of the results
obtained from the two test problems, and the obtained results are compared with each
others.

Consider Ω = [a,b] × [0,T ] be smooth region with the grid points (xm, tn), where

xm = a+mh, m = 0,1,2, . . . ,N, tn = n∆t, n = 0,1,2, . . . ,

h and ∆t are mesh size in the space and time direction respectively.
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2. TRIGONOMETRIC B-SPLINES

The trigonometric B-spline which is of order 0 is indicated as:

T 0
i (x) =

{
1, x ∈ [xi,xi+1)
0 otherwise.

The others which are of orders k = 1,2,3, . . . can be obtained by using the following
recursive equation

T k
i (x) = sin

(
x− xi

2

)
Bk−1

i (x)+ sin
(

xi+k− x
2

)
Bk−1

i+1 (x) ,

where

Bk−1
j (x) =


T k−1

j (x)

sin
(

x j+k−1− x j

2

) , x j < x j+k−1,

0, x j = x j+k−1,

for j = i or j = i+1. Accordingly, for k = 2 the quadratic trigonometric B-spline is
obtained as:

T 2
i (x) =

1
ψ


ϕ2 (xi−1) , x ∈ [xi−1,xi) ,
−ϕ(xi−1)ϕ(xi+1)−ϕ(xi+2)ϕ(xi) , x ∈ [xi,xi+1) ,
ϕ2 (xi+2) , x ∈ [xi+1,xi+2) ,
0 otherwise,

(2.1)

and for k = 3 the cubic trigonometric B-spline is obtained as:

T 3
i (x) =

1
φ



ϕ3 (xi−2) , x ∈ [xi−2,xi−1) ,
−ϕ2 (xi−2)ϕ(xi)−ϕ(xi−2)ϕ(xi−1)ϕ(xi+1)
−ϕ(xi+2)ϕ2 (xi−1) , x ∈ [xi−1,xi) ,
ϕ(xi−2)ϕ2 (xi+1)+ϕ(xi+2)ϕ(xi+1)ϕ(xi−1)
+ϕ2 (xi+2)ϕ(xi) , x ∈ [xi,xi+1) ,
−ϕ3 (xi+2) , x ∈ [xi+1,xi+2) ,
0 otherwise,

(2.2)

and for k = 4 the quartic trigonometric B-spline is obtained as:
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T 4
i (x)=

1
ϑ



ϕ4 (xi−2) , x ∈ [xi−2,xi−1) ,
−ϕ3 (xi−2)ϕ(xi)−ϕ2 (xi−2)ϕ(xi+1)ϕ(xi−1)
−ϕ(xi+2)ϕ(xi−2)ϕ2 (xi−1)−ϕ(xi+3)ϕ3 (xi−1) ,

x ∈ [xi−1,xi) ,

ϕ2 (xi−2)ϕ2 (xi+1)+ϕ(xi+2)ϕ(xi+1)ϕ(xi−1)ϕ(xi−2)
+ϕ2 (xi+2)ϕ(xi)ϕ(xi−2)+ϕ(xi+3)ϕ(xi+1)ϕ2 (xi−1)
+ϕ(xi+3)ϕ(xi+2)ϕ(xi)ϕ(xi−1)+ϕ2 (xi+3)ϕ2 (xi) ,

x ∈ [xi,xi+1) ,

−ϕ(xi−2)ϕ3 (xi+2)−ϕ(xi+3)ϕ2 (xi+2)ϕ(xi−1)
−ϕ2 (xi+3)ϕ(xi+2)ϕ(xi)−ϕ3 (xi+3)ϕ(xi+1) ,

x ∈ [xi+1,xi+2) ,

ϕ4 (xi+3) , x ∈ [xi+2,xi+3) ,
0 otherwise,

(2.3)
and for k = 5 the quintic trigonometric B-spline is obtained as:

T 5
m(x)=

1
τ



ϕ5(xm−3), xm−3 ≤ x < xm−2
−ϕ4(xm−3)ϕ(xm−1)−ϕ3(xm−3)ϕ(xm)ϕ(xm−2)
−ϕ2(xm−3)ϕ(xm+1)ϕ

2(xm−2)
−ϕ(xm−3)ϕ(xm+2)ϕ

3(xm−2)−ϕ(xm+3)ϕ
4(xm−2),

xm−2 ≤ x < xm−1

ϕ3(xm−3)ϕ
2(xm)+ϕ2(xm−3)ϕ(xm+1)ϕ(xm−2)ϕ(xm)

+ϕ2(xm−3)ϕ
2(xm+1)ϕ(xm−1)

+ϕ(xm−3)ϕ(xm+2)ϕ
2(xm−2)ϕ(xm)

+ϕ(xm−3)ϕ(xm+2)ϕ(xm−2)ϕ(xm+1)ϕ(xm−1)
+ϕ(xm−3)ϕ

2(xm+2)ϕ
2(xm−1)+ϕ(xm+3)ϕ

3(xm−2)ϕ(xm)
+ϕ(xm+3)ϕ

2(xm−2)ϕ(xm+1)ϕ(xm−1)
+ϕ(xm+3)ϕ(xm−2)ϕ(xm+2)ϕ

2(xm−1)
+ϕ2(xm+3)ϕ

3(xm−1),

xm−1 ≤ x < xm

−ϕ2(xm−3)ϕ
3(xm+1)−ϕ(xm−3)ϕ(xm+2)ϕ(xm−2)ϕ

2(xm+1)
−ϕ(xm−3)ϕ

2(xm+2)ϕ(xm−1)ϕ(xm+1)
−ϕ(xm−3)ϕ

3(xm+2)ϕ(xm)−ϕ(xm+3)ϕ
2(xm−2)ϕ

2(xm+1)
−ϕ(xm+3)ϕ(xm−2)ϕ(xm+2)ϕ(xm−1)ϕ(xm+1)
−ϕ(xm+3)ϕ(xm−2)ϕ

2(xm+2)ϕ(xm)
−ϕ2(xm+3)ϕ

2(xm−1)ϕ(xm+1)
−ϕ2(xm+3)ϕ(xm−1)ϕ(xm+2)ϕ(xm)−ϕ3(xm+3)ϕ

2(xm),

xm ≤ x < xm+1

ϕ(xm−3)ϕ
4(xm+2)+ϕ(xm+3)ϕ(xm−2)ϕ

3(xm+2)
+ϕ2(xm+3)ϕ(xm−1)ϕ

2(xm+2)
+ϕ3(xm+3)ϕ(xm)ϕ(xm+2)+ϕ4(xm+3)ϕ(xm+1),

xm+1 ≤ x < xm+2

−ϕ5(xm+3), xm+2 ≤ x < xm+3
0 otherwise,

(2.4)
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where

h = xi− xi−1,ϕ(xi) = sin
(

x− xi

2

)
,ψ = sin

(
h
2

)
sin(h) ,φ = sin

(
h
2

)
sin(h)sin

(
3h
2

)
,

ϑ = sin
(

h
2

)
sin(h)sin

(
3h
2

)
sin(2h) ,τ = sin

(
h
2

)
sin(h)sin

(
3h
2

)
sin(2h)sin

(
5h
2

)
.

3. FINITE ELEMENT SOLUTIONS OF SE

Let take the complex function u as

u(x, t) = r(x, t)+ is(x, t), (3.1)

where r(x, t) and s(x, t) are real functions. With substituting (3.1) into (1.1), the real
and imaginary parts of the obtained function can be rewritten as two real differential
equations:

rt + sxx +q(r2 + s2)s = 0, (3.2)

st − rxx−q(r2 + s2)r = 0. (3.3)

Using the Crank-Nicolson method the time discretized forms of (3.2) and (3.3) are
obtained as:

rn+1 +
∆t
2
(sxx)

n+1 +q
∆t
2
((

r2 + s2)s
)n+1

= rn− ∆t
2
(sxx)

n−q
∆t
2
((

r2 + s2)s
)n
, (3.4)

sn+1− ∆t
2
(rxx)

n+1−q
∆t
2
((

r2 + s2)r
)n+1

= sn +
∆t
2
(rxx)

n +q
∆t
2
((

r2 + s2)r
)n
. (3.5)

3.1. Quadratic trigonometric B-spline Galerkin method (Method 1)

By applying Galerkin finite element method to (3.4) and (3.5) and using integration
by parts, we get

b∫
a

[
W (x)

(
rn+1 +q

∆t
2
((

r2 + s2)s
)n+1

)
− ∆t

2
Wx(x)(sx)

n+1
]

dx

=

b∫
a

[
W (x)

(
rn−q

∆t
2
((

r2 + s2)s
)n
)
+

∆t
2

Wx(x)(sx)
n
]

dx, (3.6)

b∫
a

[
W (x)

(
sn+1−q

∆t
2
((

r2 + s2)r
)n+1

)
+

∆t
2

Wx(x)(rx)
n+1
]

dx

=

b∫
a

[
W (x)

(
sn +q

∆t
2
((

r2 + s2)r
)n
)
− ∆t

2
Wx(x)(rx)

n
]

dx, (3.7)



368 M. A. MERSIN, D. IRK, AND M. ZORSAHIN GORGULU

where W (x) is a weight function. Let divide [a,b] by N equally subintervals with the
knots x j, j = 1, . . . ,N. The approximate function U over all elements [xm,xm+1] is

u(x, t)'U(x, t) =
m+1

∑
j=m−1

δ j(t)T 2
j (x), (3.8)

where δ j = α j + iβ j. The approximate function and its first derivative can be written
by using the quadratic trigonometric B-spline as

U(xm, t) =
sin2(

h
2
)

ψ
(δm−1 +δm), U ′(xm, t) =

sin(h)
ψ

(−δm−1 +δm).

Let choose the weight function W (x) as the quadratic trigonometric B-spline shape
function (2.1) and by substituting approximate function (3.8) into (3.6) and (3.7), we
have the following approximation over the subinterval [xm,xm+1]:

m+1

∑
j=m−1


 xm+1∫

xm

TiTjdx

α
n+1
j − 1

2
∆t

 xm+1∫
xm

T ′i T ′j dx

β
n+1
j

+
1
2

q∆t
m+1

∑
j=m−1

m+1

∑
l=m−1

 xm+1∫
xm

Ti
[
Tkβ

n+1
k Tlβ

n+1
l +Tkα

n+1
k Tlα

n+1
l

]
Tjdx

β
n+1
j


−

m+1

∑
j=m−1


 xm+1∫

xm

TiTjdx

α
n
j +

1
2

∆t

 xm+1∫
xm

T ′i T ′j dx

β
n
j

− 1
2

q∆t
m+1

∑
k=m−1

m+1

∑
l=m−1

 xm+1∫
xm

Ti [Tkβ
n
kTlβ

n
l +Tkα

n
kTlα

n
l ]Tjdx

β
n
j

 (3.9)

and
m+1

∑
j=m−1


 xm+1∫

xm

TiTjdx

β
n+1
j +

1
2

∆t

 xm+1∫
xm

T ′i T ′j dx

α
n+1
j

−1
2

q∆t
m+1

∑
k=m−1

m+1

∑
l=m−1

 xm+1∫
xm

Ti
[
Tkβ

n+1
k Tlβ

n+1
l +Tkα

n+1
k Tlα

n+1
l

]
Tjdx

α
n+1
j


−

m+1

∑
j=m−1


 xm+1∫

xm

TiTjdx

β
n
j −

1
2

∆t

 xm+1∫
xm

T ′i T ′j dx

α
n
j

+
1
2

q∆t
m+1

∑
k=m−1

m+1

∑
l=m−1

 xm+1∫
xm

Ti [Tkβ
n
kTlβ

n
l +Tkα

n
kTlα

n
l ]Tjdx

α
n
j

 . (3.10)
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Denoting the integrals in the systems (3.9) and (3.10) by

Ae
i j =

xm+1∫
xm

TiTjdx, Be
i j =

xm+1∫
xm

T
′

i T
′
j dx,

Ce
i j =

xm+1∫
xm

Ti
[
Tkβ

n+1
k Tlβ

n+1
l +Tkα

n+1
k Tlα

n+1
l

]
Tjdx,

De
i j =

xm+1∫
xm

Ti [Tkβ
n
kTlβ

n
l +Tkα

n
kTlα

n
l ]Tjdx

and the systems (3.9), (3.10) are gathered over all elements, the matrix form of (3.9)
and (3.10) can be written as

Aα
n+1− ∆t

2
Bβ

n+1 +
∆tq
2

Cβ
n+1 = Aα

n +
∆t
2

Bβ
n− ∆tq

2
Dβ

n, (3.11)

Aβ
n+1 +

∆t
2

Bα
n+1− ∆tq

2
Cα

n+1 = Aβ
n− ∆t

2
Bα

n +
∆tq
2

Dα
n, (3.12)

where A,B,C and D are the element matrices, α = (α−1,α0, . . . ,αN−1,αN)
T and

β = (β−1,β0, . . . ,βN−1,βN)
T . The set of equations consists of 2N +4 equations with

2N +4 unknown parameters. For the nonlinear terms in these systems, we apply an
inner iteration procedure. Before starting the procedure, boundary conditions must
be adapted into the system. For this purpose, we delete first and last equations from
the systems (3.11) and (3.12), and eliminate the terms α−1,β−1 and αN ,βN from the
remaining systems (3.11) and (3.12) by using boundary conditions (1.2). So, we
obtain a new matrix system with the dimension (2N)× (2N).

Using the boundary conditions (1.3) and initial condition (1.4), the initial para-
meters (α0

−1,β
0
−1,α

0
0,β

0
0, . . . ,α

0
N−1,β

0
N−1,α

0
N ,β

0
N) can be obtained. Once the initial

parameters α0 and β
0 are determined, the unknown parameters αn and β

n at time
tn = n∆t,n = 1,2,3, . . . are obtained. Thus the approximate solution (3.8) can be
determined by using these values.

3.2. Cubic trigonometric B-spline Galerkin method (Method 2)

Let take the approximate function U over all elements [xm,xm+1] as

u(x, t)'U(x, t) =
m+2

∑
j=m−1

δ j(t)T 3
j (x) (3.13)

where δ j = α j + iβ j. The approximate function U and its first two derivatives can be
obtained by using the cubic trigonometric B-spline functions (2.2). When we repeat
the same procedure with selecting the cubic trigonometric B-spline shape function
(2.2) as weight function W (x) in the Galerkin discretized form of SE (3.6) and (3.7),
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and using the approximate function (3.13) and its derivatives in (3.6) and (3.7), we
have the following approximation over the subinterval [xm,xm+1]:

m+2

∑
j=m−1


 xm+1∫

xm

TiTjdx

α
n+1
j +

1
2

∆t

 xm+1∫
xm

TiT
′′
j dx

β
n+1
j

+
1
2

q∆t
m+2

∑
k=m−1

m+2

∑
l=m−1

 xm+1∫
xm

Ti
[
Tk
(
β

n+1
k

)
Tl
(
β

n+1
l

)
+Tk

(
α

n+1
k

)
Tl
(
α

n+1
l

)]
Tjdx

β
n+1
j


−

m+2

∑
j=m−1


 xm+1∫

xm

TiTjdx

α
n
j −

1
2

∆t

 xm+1∫
xm

TiT
′′
j dx

β
n
j

− 1
2

q∆t
m+2

∑
k=m−1

m+2

∑
l=m−1

 xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx

β
n
j

 . (3.14)

m+2

∑
j=m−1


 xm+1∫

xm

TiTjdx

β
n+1
j − 1

2
∆t

 xm+1∫
xm

TiT
′′
j dx

α
n+1
j

− 1
2

q∆t
m+2

∑
k=m−1

m+2

∑
l=m−1

 xm+1∫
xm

Ti
[
Tk
(
β

n+1
k

)
Tl
(
β

n+1
l

)
+Tk

(
α

n+1
k

)
Tl
(
α

n+1
l

)]
Tjdx

α
n+1
j


−

m+2

∑
j=m−1


 xm+1∫

xm

TiTjdx

β
n
j +

1
2

∆t

 xm+1∫
xm

TiT
′′
j dx

α
n
j

+
1
2

q∆t
m+2

∑
k=m−1

m+2

∑
l=m−1

 xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx

α
n
j

 . (3.15)

Denoting the integrals in (3.14) and (3.15) by

Ae
i j =

xm+1∫
xm

TiTjdx, Be
i j =

xm+1∫
xm

TiT
′′
j dx,

Ce
i j =

xm+1∫
xm

Ti
[
Tk
(
β

n+1
k

)
Tl
(
β

n+1
l

)
+Tk

(
α

n+1
k

)
Tl
(
α

n+1
l

)]
Tjdx,

De
i j =

xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx



NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION 371

and collecting the element matrices over all elements [xm,xm+1] , we get the following
matrix form of (3.14) and (3.15):

Aα
n+1 +

∆t
2

Bβ
n+1 +

∆tq
2

Cβ
n+1 = Aα

n− ∆t
2

Bβ
n− ∆tq

2
Dβ

n, (3.16)

Aβ
n+1− ∆t

2
Bα

n+1− ∆tq
2

Cα
n+1 = Aβ

n +
∆t
2

Bα
n +

∆tq
2

Dα
n, (3.17)

where α = (α−1,α0, . . . ,αN ,αN+1)
T and β = (β−1,β0, . . . ,βN ,βN+1)

T . The lineariz-
ation of the obtained systems are done in the same way as in method 1. Similarly, by
eliminating the terms α−1,β−1 and αN+1,βN+1 from the systems (3.16) and (3.17),
the obtained matrix system with dimension (2N + 2)× (2N + 2) is solved by Gauss
elimination method. Again, firstly we attain the initial parameters α0 and β

0, then the
value of the approximate function U becomes computable.

3.3. Quartic trigonometric B-spline Galerkin method (Method 3)

In this method, the approximate function U over all elements [xm,xm+1] with the
quartic trigonometric B-spline functions is taken as

u(x, t)'U(x, t) =
m+2

∑
j=m−2

δ j(t)T 4
j (x) (3.18)

where δ j = α j + iβ j. This approximate function and first and second derivatives of
this can be obtained by the quartic trigonometric B-spline functions (2.3). With a
similar procedure applied in the previous methods, by choosing the weight function
as the quartic trigonometric B-spline functions in (3.6) and (3.7), the following ex-
pressions are obtained over the subinterval [xm,xm+1]:

m+2

∑
j=m−2


 xm+1∫

xm

TiTjdx

α
n+1
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1
2
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xm
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′′
j dx

β
n+1
j

+
1
2

q∆t
m+2

∑
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m+2

∑
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Ti
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(
β

n+1
k

)
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(
β

n+1
l

)
+Tk

(
α

n+1
k

)
Tl
(
α

n+1
l

)]
Tjdx

β
n+1
j


−

m+2

∑
j=m−2


 xm+1∫

xm

TiTjdx

α
n
j −

1
2

∆t

 xm+1∫
xm

TiT
′′
j dx

β
n
j

− 1
2

q∆t
m+2

∑
k=m−2

m+2

∑
l=m−2

 xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx

β
n
j

 , (3.19)
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m+2

∑
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(
α
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α
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j
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m+2
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
 xm+1∫

xm

TiTjdx

β
n
j +

1
2

∆t

 xm+1∫
xm

TiT
′′
j dx

α
n
j

+
1
2

q∆t
m+2

∑
k=m−2

m+2

∑
l=m−2

 xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx

α
n
j

 . (3.20)

Denoting the above integrals by

Ae
i j =

xm+1∫
xm

TiTjdx, Be
i j =

xm+1∫
xm

TiT
′′
j dx,

Ce
i j =

xm+1∫
xm

Ti
[
Tk
(
β

n+1
k

)
Tl
(
β

n+1
l

)
+Tk

(
α

n+1
k

)
Tl
(
α

n+1
l

)]
Tjdx,

De
i j =

xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
l )]Tjdx

and collecting the element matrices over all elements [xm,xm+1] , we get the following
matrix forms of (3.19) and (3.20):

Aα
n+1 +

∆t
2

Bβ
n+1 +

∆tq
2

Cβ
n+1 = Aα

n− ∆t
2

Bβ
n− ∆tq

2
Dβ

n, (3.21)

Aβ
n+1− ∆t

2
Bα

n+1− ∆tq
2

Cα
n+1 = Aβ

n +
∆t
2

Bα
n +

∆tq
2

Dα
n, (3.22)

where α = (α−2,α−1,α0, . . . ,αN ,αN+1)
T and β = (β−2,β−1,β0, . . . ,βN ,βN+1)

T . By
the same linearization procedure as shown in Methods 1 and 2, and the elimination
of the terms α−2,β−2 and αN+1,βN+1 from the systems (3.21) and (3.22), a mat-
rix system with dimension (2N + 4)× (2N + 4) is obtained. Then the value of the
approximate function (3.18) is found similarly to the Methods 1 and 2.
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3.4. Quintic trigonometric B-spline Galerkin method (Method 4)

By the fourth method, the approximate function U over all elements [xm,xm+1] is
choosen as

u(x, t)'U(x, t) =
m+3

∑
j=m−2

δ j(t)T 5
j (x) (3.23)

where δ j = α j + iβ j. The approximate function, first and second derivatives of this
can be obtained by the quintic trigonometric B-spline function (2.4). By choosing
the weight function as the quintic trigonometric B-spline functions in (3.6) and (3.7),
over the subinterval [xm,xm+1] the following expressions are obtained:
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 , (3.24)
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Denoting the above integrals with

Ae
i j =

xm+1∫
xm

TiTjdx, Be
i j =

xm+1∫
xm

TiT
′′
j dx,

Ce
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)
Tl
(
β

n+1
l

)
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(
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xm+1∫
xm

Ti [Tk (β
n
k)Tl (β

n
l )+Tk (α

n
k)Tl (α

n
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and collecting the element matrices over all elements [xm,xm+1] , we get the following
matrix forms of (3.24) and (3.25):

Aα
n+1 +

∆t
2

Bβ
n+1 +

∆tq
2

Cβ
n+1 = Aα

n− ∆t
2

Bβ
n− ∆tq

2
Dβ

n, (3.26)

Aβ
n+1− ∆t

2
Bα

n+1− ∆tq
2

Cα
n+1 = Aβ

n +
∆t
2

Bα
n +

∆tq
2

Dα
n, (3.27)

where α= (α−2,α−1,α0, . . . ,αN+1,αN+2)
T and β= (β−2,β−1,β0, . . . ,βN+1,βN+2)

T .
Then, by eliminating the terms α−2,β−2 and αN+2,βN+2 from the matrix systems
(3.26) and (3.27), the obtained matrix system with dimension (2N +6)× (2N +6) is
solved similarly to the previous methods and the approximate function (3.23) can be
computed.

4. TEST PROBLEMS

In this section, we investigate the propagation of single soliton and the interaction
of two solitons to demonstrate the efficiency of the given algorithms. Accuracy of
the methods are measured by the error norm

L∞ = ‖u−UM‖∞
= max

0≤ j≤N

∣∣∣‖(u) j ‖−‖(UM) j ‖
∣∣∣ .

The conservation laws which are verified by the SE are

C1 =

b∫
a

|U |2 dx, C2 =

b∫
a

[
|Ux|2−

1
2

q |U |4
]

dx,

which are calculated by using the trapezoidal rule. The order of convergence for
space and time steps are computed by the formulas

order =
log
∣∣(L∞)hi

/(L∞)hi+1

∣∣
log |hi/hi+1|

, order =
log
∣∣(L∞)∆ti /(L∞)∆ti+1

∣∣
log |∆ti/∆ti+1|

,

where (L∞)hi
is the error norm for space step and (L∞)∆ti is the error norm for time

step.



NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION 375

4.1. The propagation of single soliton

The single soliton solution of the SE, which is formed by the equilibrium between
nonlinearity and dispersion is

U (x, t) = λ

√
2
q

eiηsechλ(x−ξt) ,

where η = ξ

2 x − 1
4

(
ξ2−λ2

)
t. This soliton, whose magnitude depends on the

parameters ξ, λ and q, travels with the velocity ξ. In this experiment, we choose
ξ = 4, λ = 1, q = 2, ∆t = 0.00001 and h = 0.05 with range [−30,30], the simulation
is done up to t = 1, the initial condition is obtained from the solution for t = 0 and
the conditions U (−30, t) , U (30, t) , Ux (−30, t) and Ux (30, t) are selected as zero.
The values of the error norm L∞ and the conservation invariants are listed in Table 1.
Method 3 has the smallest value of the error norm. The simulation of the travelling
wave for Method 3 is plotted in Figure 1 and it is observed that there is no change
in its form throughout the simulation period. The absolute errors calculated for the
wave up to t = 1 can be seen in Figure 2 for all of the proposed methods.
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Fig. 1 The simulation of the travelling wave for Method 3
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Fig. 2 The absolute error profiles
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The rate of convergence of the proposed methods for space and time are shown in
Tables 2 and 3. For all of the methods the rate of convergence for time is almost same
and 2, and the rate of convergence for space is over 4 for Methods 1 and 2, over 6
for Methods 3 and 4. In addition, it can be said that all of the proposed methods give
more accurate results as the space and time steps become smaller in Tables 2 and 3.

TABLE 1. The error norm L∞ and the conservation invariants with
range [−30,30], h = 0.05 and ∆t = 0.00001 at time t = 1.

Method C1 C2 L∞

Method 1 2.0000000000 7.3501541167 3.19e−06
Method 2 2.0000000000 7.3333173459 2.69e−07
Method 3 2.0000000000 7.3333357360 6.52e−10
Method 4 2.0000000000 7.3333333281 1.17e−09
Exact 2.0000000000 7.3333333333 0

TABLE 2. The error norm L∞ and the order of convergence with
range [−30,30], h = 0.05 at time t = 1.

Method 1 Method 2 Method 3 Method 4
∆t L∞ order L∞ order L∞ order L∞ order
1e−1 1.12e−1 1.12e−1 1.12e−1 1.12e−1
5e−2 2.72e−2 2.04 2.72e−2 2.04 2.72e−2 2.04 2.72e−2 2.04
2e−2 4.22e−3 2.03 4.22e−3 2.04 4.22e−3 2.03 4.22e−3 2.03
1e−1 1.05e−3 2.01 1.05e−3 2.01 1.05e−3 2.01 1.05e−3 2.01
5e−3 2.62e−4 2.00 2.62e−4 2.00 2.62e−4 2.00 2.62e−4 2.00
2e−3 4.20e−5 2.00 4.20e−5 2.00 4.19e−5 2.00 4.19e−5 2.00
1e−3 1.05e−5 2.00 1.05e−5 2.00 1.05e−5 2.00 1.05e−5 2.00

TABLE 3. The error norm L∞ and the order of convergence with
range [−30,30], ∆t = 0.00001 at time t = 1.

Method 1 Method 2 Method 3 Method 4
h L∞ order L∞ order L∞ order L∞ order
1 5.93e−1 1.94e−1 3.80e−1 1.54e−1
0.5 4.90e−2 3.60 4.95e−3 5.29 5.07e−3 6.23 8.98e−4 7.42
0.2 8.96e−4 4.37 7.16e−5 4.62 5.06e−6 7.54 1.27e−6 7.16
0.1 5.19e−5 4.11 4.33e−6 4.05 6.71e−8 6.24 1.30e−8 6.61
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4.2. The interaction of two solitons

As a second test problem, let take the initial condition

U (x,0) =U1 (x,0)+U2 (x,0) , U j (x,0) = λ j

√
2
q

eiη j sechλ j (x− x j) ,

η j =
ξ j

2
(x− x j) .

By choosing the parameters q = 2,h = 0.1,∆t = 0.01,λ1 = λ2 = 1,ξ1 = 4,x1 =
−10,ξ2 =−4,x2 = 10 over the interval [−30,30], two solitons appear and they move
in opposite directions, so a collision is occurred. These interacted profiles obtained
by Method 3 are shown in Figure 3 at various times. It can be seen in Figure 3 that
two waves moving in the opposite direction collide, then separate and they appear to
maintain their first forms.
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Fig. 3 The interaction of two solitons for Method 3

TABLE 4. The conservation invariants with ∆t = 0.01 at time t = 5.

h = 0.1 h = 0.01
Method C1 C2 C1 C2
Method 1 3.9999994111 14.8023658179 3.9999994314 14.6679992477
Method 2 3.9999994469 14.6661385046 3.9999994314 14.6666558174
Method 3 3.9999994311 14.6667354303 3.9999994314 14.6666558762
Method 4 3.9999994314 14.6666551815 3.9999994314 14.6666558685
Exact 4 14.6666666667 4 14.6666666667
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The calculated values of the conservation constants are tabulated in Table 4. The
best approximation value to the conservation constants has been obtained by Method
3 when h = 0.01 is chosen and Method 4 when h = 0.1 is chosen.

5. CONCLUSION

In this study, the fully discretized form of the SE has been obtained by the help
of the four various trigonometric B-spline Galerkin methods and the accuracy of the
proposed methods are investigated by comparing with each others. According to
the results obtained in the first test problem in which the motion of soliton wave is
examined, it is seen that by the too small selection for the time step ∆t, the errors due
to time discretization are minimized. Also it is seen that the errors decreases when
the degree of spline function used in the calculations increases. By the use of high
degree spline functions the better results have been obtained, although the cost of
the process increases. From the second test problem in which the interaction of two
solitary wave is examined, it can be said that the conservation conditions are nearly
the same by selecting the various values of the h for all of the methods. In conclusion,
the methods give the considerable results for both of the test problems.
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