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Abstract. In induction heating process, there is a problem of uniform heating. In this paper,
an optimal applied electric field control problem for induction heating process of conductive
materials is considered. The cost function is defined such that the temperature profile at the
final stage has a relative uniform distribution in the field. The controlled system is a coupled by
Maxwell’s equations with nonlinear heat equation. The existence of solutions for weakly coupled
system is proved. We show that there exists an optimal applied electric field which minimizes
the cost functional. Moreover, a fist-order necessary condition is derived.
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1. INTRODUCTION

Induction heating uses induction eddy current for heating materials. As the char-
acteristics of high heating speed, high heat efficiency and no pollution, induction
heating is widely used in metal smelting, casting, welding, heat treatment, hot for-
ging and other modern industrial manufacturing. Meanwhile, the output power of the
power source has good controllable conditions. Since 1990s, induction heating and
its corresponding control problems have attracted extensive attention(see [1,17,18]).

In the process of induction heating, the temperature distribution of the heated
object is not uniform. In recent years, many researchers have studied the uniform
distribution of heating workpiece temperature and the shortening of heating time
through simulation control, which has improved the quality and efficiency of heat-
ing (see[14, 21]). However, the mathematical model of induction heating involves
the coupling of three-dimensional electromagnetic field and nonlinear temperature
field, which is difficult to simulate. Therefore, it is inevitable for the control mode
to develop from traditional analog control to digital control. In view of this, we can
select suitable applied electric field to improve the uniformity of temperature distri-
bution. In this paper, we formulate this model as an optimal control problem in which
the underlying dynamics is governed by Maxwell’s equations coupled with nonlinear
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heat conduction associated with a heat source generated by induction waves. The
goal of the control is to reach a relatively uniform heat profile at a specific time by
controlling the applied field on the boundary of the domain.

Optimal control associated with partial differential equations or systems as under-
lying states have been studied by many researchers. There are several classical books,
see e.g., [13,20], and more recent ones,see e.g., [4,11,12,23]. Especially for optimal
control problems of microwave heating, Li, Tang and Yin [9] considered a similar
problem where the control is chosen from the heat source. Wei and Yin [10, 22]
considered a boundary control problem where the external electric field is chosen as
the control function. But induction heating is different from microwave heating, in-
duction heating is a parabolic system with the unknown quantity of magnetic field
intensity. Therefore, we study induction heating in different ways.

Since the local induction heating model of conductive materials is expressed by
Maxwell’s equations with the mixed boundary value coupled with nonlinear heat
conduction associated with a heat source in this paper, this poses numerous math-
ematical challenges. Maxwell’s equations in a quasi-stationary electromagnetic field
with only one boundary value have been studied by Yin in[6]. But we study the
corresponding mixed boundary value problem, which needs to deal with some re-
lated problems by introducing two trace operators. In addition, the heat equation is
strongly nonlinear. Invoking similar ideas in reference [24], we prove the existence
of a solution for the coupled system. One of the difficulties in the present paper is the
nonlinear heat source often belongs to L1(QT ) for this type of coupled systems. This
causes a serious problem when one needs to prove the existence of an optimal con-
trol. By applying properties of space H(curl,Ω) and Sobolev’s imbedding theorems,
we can overcome the difficulties to establish the existence result.

This paper is organized as follows. In Section 2, the mathematical model for induc-
tion heating is derived. Moreover,we present the optimal control problem, in which
the control function is the applied electric field on a partial boundary. In Section 3, we
prove that the controlled system has a unique weak solution for any applied electric
field. In Section 4, we prove an existence theorem for the optimal control problem.
Finally in Section 5 the state variables are differentiable with respect to the control
variable. Based on the previous results the necessary condition is derived.

2. THE FORMULATION OF AN OPTIMAL CONTROL FOR UNIFORMLY
TEMPERATURE

Recalling Maxwell’s equations, a simplified version has already appeared in [5].
Suppose that a targeted substance is placed in a inductive processor cavity, denoted
by Ω ⊂ R with C1-boundary S = ∂Ω. Let H(x, t) denote the magnetic fields at x ∈ Ω

and time t. Hereafter, a bold letter represents a vector function in R3. Noting that the
induction material is highly conductive,therefore from electromagnetic theory [2,16],
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Maxwell’s equations in Ω can be expressed by

µHt +∇× [ρ(x, t)∇×H] = 0,

where the constant µ = µ1 − iµ2 (µ1 > 0,µ2 > 0) and ρ(x, t) = 1
σ(x,t) (σ is the electric

conductivity) are a complex value coefficient of permeability and the electric resistiv-
ity, respectively.

The heat source produced by Joule’s heat is Q(x, t) = ρ(x, t)|∇×H|2. With this,
by using Fourier’s law and the conservation of energy, one can easily see that the tem-
perature u(x, t) satisfies a nonlinear heat equation with an internal source generated
by induction:

ρ0c0ut −∇ · (k(x,u)∇u) = ρ(x, t)|∇×H|2,(x, t) ∈ QT ,

where QT = Ω× (0,T ),ρ0 is the density, c0 the specific heat, and k(x,u) the heat
conductivity .

We sum up the above derivation and normalize certain physical constants to obtain
the following mathematical model:

Ht +∇× [ρ(x, t)∇×H] = 0, (x, t) ∈ QT , (2.1)

ut −∇ · (k(x,u)∇u) = ρ(x, t)|∇×H|2, (x, t) ∈ QT , (2.2)

n×H = 0, (x, t) ∈ SΓ1 = Γ1 × (0,T ), (2.3)

n× [ρ(x, t)∇×H(x, t)] = n×G(x, t),(x, t) ∈ SΓ2 = Γ2 × (0,T ), (2.4)

H(x,0) = H0(x), x ∈ Ω, (2.5)

un(x, t) = 0, (x, t) ∈ SΓ = ∂Ω× (0,T ), (2.6)

u(x,0) = u0(x), x ∈ Ω, (2.7)

where the boundary ∂Ω = Γ1∪Γ2 is split into two disjoint measurable subsets Γ1 and
Γ2, both of which are nonempty, n is the outward unit normal on S = ∂Ω, un = ∇u ·n
is the normal derivative on S, and G(x, t) is the electric field generated by external
optoelectronic devices which is considered as a control variable.

Remark 1. The boundary condition (2.4) on Γ2 is the external electric field applied
to the system [8].

The admissible control set is

Uad = {G ∈ L2(0,T ;L2(Γ2)) : ∥G∥L2(0,T ;L2(Γ2)) ≤ A0 < ∞},

where A0 is a constant.
Optimal control problem (P): Given T > 0 and a desired temperature uT (·) ∈

L2(Ω) at time T , find an optimal control G∗ ∈Uad such that the cost functional

J(G;H,u) =
1
2

∫
Ω

|u(x,T )−uT (x)|2dx+
λ

2

∫ T

0

∫
Γ2

|G(x, t)|2dsdt (2.8)
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reaches its minimum at (H∗,u∗) for all G ∈Uad , where (H,u) and (H∗,u∗) are weak
solutions of the coupled system (2.1)-(2.7) corresponding to G and G∗, respectively.
Where the number λ > 0 is a typical regularization parameter.

3. EXISTENCE AND UNIQUENESS OF SOLUTION FOR THE UNDERLYING SYSTEM

We recall some standard Banach spaces which we will use in this paper. For
convenience, a product space Dn is often simply denoted by D. Let

H(curl,Ω) = {M ∈ L2(Ω) : ∇×M ∈ L2(Ω)},
X = {M ∈ L2(Ω) : ∇×M ∈ L2(Ω),n×M = 0 on Γ1}.

Obviously, X is a linear subspace of H(curl,Ω). H(curl,Ω) is a Hilbert space
equipped with inner product

(M,N) =
∫

Ω

[(∇×M)× (∇×N∗)+M ·N∗]dx

where N∗ represents the complex conjugate of N. A norm on H(curl,Ω) is given by
∥ · ∥H(curl,Ω) =

√
(·, ·) (see[19]).

Since the boundary consists of two parts, we need to introduce the two trace map-
ping ϒt : H(curl,Ω)→Y (∂Ω) and ϒT : H(curl,Ω)→Y ′(∂Ω) (the dual space of Y (∂Ω))
defined by ϒt(M)=n×M|∂Ω and ϒT (M)=n×(n×M|∂Ω) for every M∈H(curl,Ω),
respectively. Where n is the above description and Y (∂Ω) is a Hilbert space (see[19])
as follow

Y (∂Ω) = {f ∈ H− 1
2 (Ω) : there exists M ∈ H(curl,Ω) with ϒt(M) = f}.

with norm
∥f∥Y (∂Ω) = inf

M∈H(curl,Ω),ϒt(M)=f
∥M∥H(curl,Ω).

We impose some basic assumptions which ensure the well-posedness of the underly-
ing system.

H(1) Functions u0(·) and uT (·) are nonnegative with u0(·),uT (·) ∈ L2(Ω).
H(2) The function k(x,u) is measurable in x, uniformly Lipschitz continuous with

respect to u, and 0 < k1 ≤ k(x,u)≤ k2, for positive constants k1 and k2.
H(3) (a) The function ρ(x, t) is real, measurable and bounded. Moreover,

0 < ρ1 ≤ ρ(x, t)≤ ρ2

for some constants ρ1 > 0,ρ2 > 0.
(b) The vector function H0(·) ∈ L2(Ω).

In the following, we will show that the system (2.1) and (2.3)-(2.5) have a solution
under the codition H(3) for any given G ∈Uad .
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Definition 1. A vector function H ∈ L2(0,T ;X) is said to be a weak solution of
problem (2.1) and (2.3)-(2.5) if

−
∫ T

0

∫
Ω

H ·Φtdxdt +
∫ T

0

∫
Ω

ρ(x, t)(∇×H) · (∇×Φ)dxdt

=
∫

Ω

H0 ·Φ(x,0)dx−
∫ T

0
⟨n×G,ϒT (Φ)⟩Γ2dt,

for any vector function Φ ∈ H1(0,T ;X) with Φ(x,T ) = 0 a.e. x ∈ Ω.

Remark 2. Note that ∂Ω = Γ1 ∪Γ2, we need to consider the boundary conditions
in Definition 1. On Γ1 the boundary condition (2.3) gives no information about n×
[ρ(x, t)∇×H], so we choose Φ such that ϒT (Φ) = 0 on Γ1. Using this fact, the
integral of boundary contains only the portion on Γ2 .

We will use the Galerkin’s method to derive the existence of solutions for the
system (2.1).

Note that we have a compactness embedding H(curl,Ω) ↪→ L2(Ω) and X is a
linear subspace of H(curl,Ω), we may choose a countable set of linearly independent
elements {wk(x)}∞

k=1 in X . After possibly performing an orthogonalization process
with respect to the scalar product of L2(Ω), we may assume that {wk(x)}∞

k=1 forms
an orthonormal system in L2(Ω) which is also complete in L2(Ω).

Now fix a positive integer m, we will look for a vector-valued function Hm :
[0,T ]→ X of the form

Hm(t) =
m

∑
k=1

dk
m(t)wk. (3.1)

We hope to select the coefficients dk
m(t)(0 ≤ t ≤ T,k = 1,2, · · · ,m) so that(dHm(t)

dt
,wk

)
+a(Hm,wk; t) =−⟨n×G,ϒT (wk)⟩Γ2 , (3.2)

dk
m(0) = (H0,wk), (3.3)

where we write (·, ·) and ⟨·, ·⟩Γ2 for two scalar products, respectively, in L2(Ω) and
L2(Γ2), a(Hm,wk; t) =

∫
Ω

ρ(x, t)(∇×H) · (∇×wk)dxdt.

Theorem 1. (Galerkin approximate). For each integer m = 1,2, · · ·, there exists a
unique vector function Hm of the form (3.1) satisfying (3.2) and (3.3).

Proof. Assuming Hm has the structure (3.1), we first note that(dHm(t)
dt

,wk

)
=
(

dk
m(t)

)′
.

Furthermore

a(Hm,wk; t) =
m

∑
l=1

ekldl
m(t)
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for ekl = a(wl,wk; t),(k, l = 1,2, · · · ,m). Let us further write

bk(t) :=−⟨n×G,ϒT (wk)⟩Γ2(k = 1,2, · · · ,m).

Then (3.2) becomes the linear system of ODE(
dk

m(t)
)′
+

m

∑
l=1

ekldl
m(t) = bk(t) (k = 1,2, · · · ,m),

subject to the initial condition (3.3). Owing to Carathéodory’s theorem, this initial
value problem for a system of n linear ordinary differential equations on [0,T ] for
the unknown vector function dm = (d1

m(t),d
2
m(t), · · · ,dm

m(t)) has a unique absolutely
continuous solution dm ∈ Xm. Then Hm defined by (3.1) satisfying (3.2) and (3.3).

□

Theorem 2. (Estimates for {Hm}.) There exists constant C3, depending only on
Ω,T and the known data ρ1, such that

∥Hm∥C([0,T ];L2(Ω))+∥Hm∥L2(0,T ;H(curl,Ω)) ≤C3(∥H0∥L2(Ω)+∥G∥L2(0,T ;L2(Γ2))). (3.4)

Proof. Multiplying (3.2) by dk
m(t) and adding the resulting equations from k = 1

to k = m, we obtain, for almost every t ∈ (0,T ),(dHm

dt
,Hm

)
+a(Hm,Hm; t) =−⟨n×G,ϒT (Hm)⟩Γ2 . (3.5)

For any arbitrary but fixed τ ∈ (0,T ], we have the identity∫
τ

0

(dHm(t)
dt

,Hm(t)
)

dt =
1
2
∥Hm(τ)∥2

L2(Ω)−
1
2
∥Hm(0)∥2

L2(Ω).

Integration of (3.5) over [0,τ] therefore yields that
1
2
∥Hm(τ)∥2

L2(Ω)+
∫

τ

0
a[Hm(t),Hm(t); t]dt

=
1
2
∥Hm(0)∥2

L2(Ω)−
∫

τ

0
⟨n×G,ϒT (Hm)⟩Γ2dt. (3.6)

By virtue of Bessel’s inequality, we have

∥Hm(0)∥2
L2(Ω) =

m

∑
k=1

|dk
m(0)|2 =

m

∑
k=1

|(H0,wk)|2 ≤ ∥H0∥2
L2(Ω). (3.7)

Choosing δ sufficiently small and using the assumption H(3), we have

|⟨n×G,ϒT (Hm)⟩| ≤ δ∥G∥2
L2(Γ2)

+C(δ)∥Hm∥2
L2(Γ2)

≤ δ∥G∥2
L2(Γ2)

+C0C(δ)∥Hm∥2
H(curl,Ω). (3.8)

for almost every t ∈ (0,T ). Invoking Gronwall’s inequality, we can infer from (3.6)-
(3.8) that

max
t∈[0,T ]

∥Hm∥L2(Ω) ≤ K∥H0∥L2(Ω +∥G∥L(0,T ;L2(Γ2))
.
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It’s easy to get inequalities C∥H∥2
H(curl,Ω) ≤ a(H,H; t)+∥H∥2

L2(Ω), where C depends
on known data ρ1. Inserting this estimate for Hm in C([0,T ],L2(Ω)) into (3.6) with
τ = T , we see that there is a constantC3 > 0 such that

∥Hm∥C([0,T ];L2(Ω))+∥Hm∥L2(0,T ;H(curl,Ω)) ≤C3
(
∥H0∥L2(Ω)+∥G∥L2(0,T ;L2(Γ2))

)
.

□

Theorem 3. (Existence and uniqueness of weak solution). Assume that con-
dition H(3) holds, the problem (2.1) and (2.3)-(2.5) has a unique weak solution
H ∈ L2(0,T ;X) .

Proof. First, we shall show that the existence of weak solution. From (3.4) and in
view of the orthonormality, we have

m

∑
k=1

|dk
m(t)|2 = ∥Hm(t)∥2

L2(Ω) ≤C2,∀t ∈ [0,T ],m ∈ N, (3.9)

where C is a constant. Hence, we have
∣∣dk

m(t)
∣∣ ≤ C for all t,k, and m. Moreover,

it follows from (3.2) by integration over time that for any fixed k ∈ N the sequence{
dk

m(t)
}∞

m=1 forms an equicontinuous set in C[0,T ]. Recalling the Arzelà-Ascoli
theorem , there exists a subsequence of {dk

m(t)}∞
m=1 , denoted by {dkl

m (t)}∞
m=1, such

that

lim
l→∞

dk
ml
(t) = dk(t) strongly in C[0,T ] ∀k ∈ N.

With the limit functions dk(t), we define the function

H(x, t) :=
∞

∑
k=1

dk(t)wk(x),(x, t) ∈ QT .

It can be shown that Hml (·, t)→ H(·, t) weakly in L2(Ω), uniformly with respect to
t ∈ [0,T ]. Owing to the weak lower sequential semicontinuity of the norm, we infer
from the estimate (3.4) that

∥H∥L2(Ω) ≤C(∥G∥2
L2(0,T ;L2(Γ2))

+∥H0∥2
L2(Ω))

for almost all t , which means that H ∈ L∞(0,T ;L2(Ω)).

Since
∞

∑
k=1

|dk
m(0)|2 < ∞ by (3.7), we have

∥Hml (0)−H0∥L2(Ω) = ∥
ml

∑
k=1

dk
ml
(0)wk −

∞

∑
k=1

(H0,wk)wk∥L2(Ω) =
∞

∑
k=ml+1

|dk
ml
(0)|2 → 0

as l → ∞. This means that Hml (0) converges strongly in L2(Ω) to H0(0).
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From (3.4), we can assume that Hml (t)→ H weakly in L2(0,T ;H(curl,Ω)). We
take as test function in (3.2) any function Φn(x, t) of the form

Φn(x, t) =
n

∑
j=1

α j(t)w j(x),n ≤ m

where α j ∈C1[0,T ] satisfies α j(T ) = 0 for 1 ≤ j ≤ n. It then follows from (3.5) that(
dHml

dt
,Φn(x, t)

)
+a(Hml ,Φn; t) =−⟨n×G,ϒT (Φn)⟩Γ2 .

Furthermore, we integrate over [0,T ] by parts,

−
∫ T

0

(
Hml ,

d
dt

Φn(x, t)
)

dt +
∫ T

0
a(Hml ,Φn; t)dt

=−
∫ T

0
⟨n×G,ϒT (Φn)⟩Γ2dt +(Hml (0),Φn(0)) .

Note that Hml → H weakly in L2(0,T ;H(curl,Ω)) and Hml (0) → H0 strongly in
L2(Ω). Passage to the limit as l → ∞ in the above equation therefore yields

−
∫ T

0

(
H,

d
dt

Φn(x, t)
)

dt +
∫ T

0
a(H,Φn; t)dt

=−
∫ T

0
⟨n×G,ϒT (Φn)⟩Γ2dt +(H0,Φn(0)) .

Since the set of all functions Φn is dense in the class of all functions from H1(0,T ;
H(curl,Ω)), H satisfies the variational formulation of Definition 1 and is thus a weak
solution.

Finally, we shall show that the uniqueness of weak solution. Note again that
{Hml (t)}∞

l=1 converges weakly in L2(0,T ;H(curl,Ω)) to H and the norm has the
weak lower sequential semicontinuity, we infer from the estimate (3.4) that

∥H∥L2(0,T ;H(curl,Ω)) ≤C4(∥G∥2
L2(0,T ;L2(Γ2))

+∥H0∥2
L2(Ω)). (3.10)

To prove the uniqueness, it suffices to check that the only weak solution of (2.1) and
(2.3)-(2.5) with H0 ≡ G ≡ 0 is H ≡ 0. However, this is obvious from (3.10). □

Invoking (3.4) and (3.10), we immediately obtain the following theorem.

Theorem 4. Under the assumption H(3), the problem (2.1) and (2.3)-(2.5) has a
unique weak solution H ∈ L2(0,T ;X) and the following estimates is hold.

sup
t∈[0,T ]

∥H(·, t)∥L2(Ω)+∥H∥L2(0,T ;H(curl,Ω)) ≤C5, (3.11)

where C5 depend only on known data.
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Next fix the weak H ∈ L2(0,T ;X) of problem (2.1) and (2.3)-(2.5), we now turn
to the problem (2.2), (2.6) and (2.7). Let V = H1(Ω),H = L2(Ω), then V ∗ = H−1(Ω)
and V ↪→ H ↪→V ∗ is an evolution triple.

Define space W (0,T ) as

W (0,T ) =
{

u ∈ L2(0,T ;V ) : ut ∈ L2(0,T ;V ∗)
}
,

with the norm
∥u∥2

W (0,T ) = ∥u∥2
L2(0,T ;V )+∥ut∥2

L2(0,T ;V ∗) .

Then W (0,T ) is a Banach space, W (0,T ) ↪→C([0,T ] ;H) is continuous and W (0,T )
↪→ L2(0,T ;H) is compact, where d

dt means the generalized derivative of real func-
tions on [0,T ].

For almost every t ∈ [0,T ], we can see that ∇×H(·, t) ∈ H(curl,Ω) when H(·, t)
lies in X ⊂ H(curl,Ω) (see[19]). By using Sobolev’s embedding with the dimension
N = 3, we know that the ∇×H(·, t) ∈ L6(Ω). Finally, recalling assumption H(3), we
have that F(t) = ρ(·, t)|∇×H(·, t)|2 ∈ L2(Ω). With this result, the weak solution of
the problem (2.2), (2.6) and (2.7) will be well defined.

Theorem 5. (see[3,24]) Assume that conditions H(1)–H(3) hold, the system (2.2),
(2.6) and (2.7) has unique weak solution u ∈W (0,T ) for any given H ∈ L2(0,T ;X),
which satisfies the following integral identity

d
dt

∫
Ω

u(x, t)v(x)dx+
∫

Ω

k(x,u)∇u(x, t) ·∇v(x)dx =
∫

Ω

ρ(x, t)|∇×H(x, t)|2v(x)dx

with the initial condition u(0) = u0, for all v ∈V and for almost all t ∈ [0,T ] , where
d
dt means the generalized derivative.

Moreover,we have estimate

∥u∥W (0,T ) ≤C6, (3.12)

where positive constant C6 depends on known data.

Summarizing the above considerations, we obtain the existence of solutions of the
coupled system (2.1)-(2.7).

Theorem 6. If the assumptions H(1)-H(3) hold, then the coupled system (2.1)-
(2.7) has a unique weak solution (H,u) ∈ L2(0,T ;X)×W (0,T ).

4. EXISTENCE OF AN OPTIMAL CONTROL

In this section, we will prove the existence of an optimal control for problem (P).
Invoking Theorem 6, for any fixed G ∈ L2(0,T ;L2(Γ2)) ,there is unique weak solu-
tion (H,u)∈ L2(0,T ;X)×W (0,T ). Hence we can define an control-to-state mapping
P : G → (H,u) from L2(0,T ;L2(Γ2)) into L2(0,T ;X)×W (0,T ) for the system (2.1)-
(2.7).
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Theorem 7. Under the assumptions H(1)-H(3), and for any fixed G ∈ Uad , the
control-to-state mapping P is weakly sequentially continuous.

Proof. Let a sequences {Gm}∞

m=1 ⊂ L2(0,T ;L2(Γ2)) such that

Gm → G∗ weakly in L2(0,T ;L2(Γ2)), as m →+∞. (4.1)

We shall show that

(Hm,um) = P(Gm)→ P(G∗) = (H∗,u∗) weakly in L2(0,T ;X)×W (0,T ),as m → ∞.

According to the definition of mapping P, (Hm,um) is the weak solution of system
(2.1)-(2.7) corresponding to the control Gm for m = 1,2, · · ·. That is,

−
∫ T

0
∫

Ω
Hm ·Φtdxdt +

∫ T
0
∫

Ω
ρ(x, t)∇×Hm ·∇×Φdxdt

=
∫

Ω
Hm(x,0) ·Φ(x,0)dx−

∫ T
0 ⟨n×Gm,ϒT (Φ)⟩Γ2dt,

n×Hm(x, t) = 0, (x, t) ∈ SΓ1 ,

n× [ρ(x, t)∇×Hm] = n×Gm(x, t), (x, t) ∈ SΓ2 ,

Hm(x,0) = H0(x), x ∈ Ω,
d
dt

∫
Ω

umvdx+
∫

Ω
k(x,um) ∇um ·∇vdx =

∫
Ω

ρ(x, t)|∇×Hm|2vdx, a.e. t ∈ [0,T ],
(um)n(x, t) = 0, (x, t) ∈ SΓ,

um(x,0) = u0(x), x ∈ Ω,

where Φ ∈ H1(0,T ;X),v ∈V = H1(Ω).
From Theorems 4 and 5, (Hm,um) is bounded in reflexive space L2(0,T ;H(curl,Ω))

×W (0,T ). Hence, there exists a subsequence of (Hm,um), again denoted by(Hm,um),
such that

Hm → H∗ weakly in L2(0,T ;H(curl,Ω)), (4.2)

um → u∗ weakly in L2(QT ), (4.3)

∇um → ∇u∗ weakly in L2(0,T ;L2(Ω)), (4.4)

∇×Hm → ∇×H∗ weakly in L2(0,T ;L2(Ω)). (4.5)

Moreover, the compactness embedding H(curl,Ω) ↪→ L2(Ω) and W (0,T ) ↪→
L2(0,T ;L2(Ω)) imply that

Hm → H∗ strongly in L2(0,T ;L2(Ω)), (4.6)

um → u∗ strongly in L2(QT ). (4.7)

The definition of the spaces L6(Ω) and ∇×Hm(·, t) ∈ L6(Ω) imply that

∇×Hm(·, t)→ ∇×H∗(·, t) weakly in L6(Ω). (4.8)

From (4.6), we know

− lim
m→∞

∫ T

0

∫
Ω

Hm ·Φtdxdt =−
∫ T

0

∫
Ω

H∗ ·Φtdxdt,
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lim
m→∞

∫
Ω

Hm(x,0) ·Φ(x,0)dx =
∫

Ω

H∗
0(x) ·Φ(x,0)dx.

Computing∣∣∣∫ T

0

∫
Ω

ρ(x, t)(∇×Hm) · (∇×Φ)dxdt −
∫ T

0

∫
Ω

ρ(x, t)(∇×H∗) · (∇×Φ)dxdt
∣∣∣

≤ ρ2

∫ T

0

∫
Ω

∣∣∣(∇×Hm −∇×H∗) · (∇×Φ)
∣∣∣dxdt.

and using (4.5), we have∫ T

0

∫
Ω

(∇×Hm) · (∇×Φ)dxdt →
∫ T

0

∫
Ω

(∇×H∗) · (∇×Φ)dxdt

as m → ∞.
We can infer from (4.1) that∫ T

0
⟨n×Gm,ϒT (Φ)T ⟩Γ2dt →

∫ T

0
⟨n×G∗,ϒT (Φ)T ⟩Γ2dt

as m → ∞.
By performing integration by parts, for all η ∈C∞(0,T ) and Ψ ∈ H1(Ω), we have∫ T

0

∫
Ω

[(Hm)t ·ηtΨ(x)+Hm ·ηt(t)Ψ(x)]dxdt

=
∫

Ω

Hm(x,T ) ·η(T )Ψ(x)dx−
∫

Ω

Hm(x,0) ·η(0)Ψ(x)dx. (4.9)

Passage to the limit as m → ∞ in (4.9) therefore yields∫
Ω

H∗(x,T ) ·ηt(T )Ψ(x)dx−
∫

Ω

H0(x) ·ηt(0)Ψ(x)dx

=
∫

Ω

H∗(x,T ) ·η(T )Ψ(x)dx−
∫

Ω

H∗(x,0) ·η(0)Ψ(x)dx. (4.10)

Taking η(T ) = 0 and η(0) = 1 in (4.10), we have∫
Ω

[H0(x)−H∗(x,0)] ·η(0)Ψ(x)dx = 0.

Since H1(Ω) is dense in L2(Ω), this implies

H∗(·,0) = H0(·) in L2(Ω).

Owing to the continuity of embedding L6(Ω) ↪→ L4(Ω) and (4.8), for any t ∈ [0,T ],
we have∫

Ω

∣∣∣|∇×Hm(x, t)|2 −|∇×H∗(x, t)|2
∣∣∣v(x)dx → 0 for all v ∈ H1(Ω).

Now recall that 0 < ρ1 ≤ ρ(x, t)≤ ρ2 . Then, for any t ∈ [0,T ], we obtain∣∣∣∫
Ω

ρ(x, t)|∇×Hm(x, t)|2v(x)dx−
∫

Ω

ρ(x, t)|∇×H∗(x, t)|2v(x)dx
∣∣∣
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≤ ρ2

∫
Ω

∣∣∣(|∇×Hm(x, t)|2 −|∇×H∗(x, t)|2
)

v(x)
∣∣∣dx → 0, (4.11)

as m → ∞. From Majorized convergence theorem and (4.11), for all ϕ ∈ C∞
0 (0,T ),

we have

lim
m→∞

∫ T

0

∫
Ω

ρ(x, t)|∇×Hm(x, t)|2v(x)ϕ(t)dxdt

=
∫ T

0

∫
Ω

ρ(x, t)|∇×H∗(x, t)|2v(x)ϕ(t)dxdt.

We can obtain from (4.7) that

− lim
m→∞

∫ T

0

∫
Ω

um(x, t)v(x)ϕt(t)dxdt =−
∫ T

0

∫
Ω

u∗(x, t)v(x)ϕt(t)dxdt

for all ϕ ∈C∞
0 (0,T ) and v ∈ H1(Ω)(see [24]).

By virtue of H(2), (4.4) and (4.7), one can easy to see that

lim
m→∞

∫ T

0

∫
Ω

k(x,um)∇um(x, t) ·∇v(x)ϕ(t)dxdt

=
∫ T

0

∫
Ω

k(x,u∗)∇u∗(x, t) ·∇v(x)ϕ(t)dxdt

for all ϕ ∈C∞
0 (0,T ) and v ∈ H1(Ω)(see [24]).

Since the condition u∗(·,0) = u0(·) ∈ L2(Ω) has the same structure as condition
H∗(·,0) = H0(·) ∈ L2(Ω), it may be shown by the same way.

Therefore, (H∗,u∗) is a weak solution of (2.1)-(2.7) corresponding to G∗. That
is, P(G∗) = (H∗,u∗). In the step above we have shown that (Hm,um)→ (H∗,u∗) for
a subsequence. With the arguments above , we can prove that every subsequence
has a subsequence converging to the same (H∗,u∗). Therefore, the entire sequence
(Hm,um) converges to (H∗,u∗) weakly. □

Theorem 8. (Existence of an Optimal Control). Under the assumptions H(1)-
H(3), there exists at least one global minimizer (G∗;H∗,u∗) of the problem (P) such
that

G∗ ∈Uad ,H∗ ∈ L2(0,T ;X),u∗ ∈W (0,T ).

Proof. Using the control-to-state map P : G → (H,u) , we reduce the functional
J(G) in (2.8) such that J(G) := J(G;H,u). Obviously, J(G) is bounded from (2.8).
Hence, we get the existence of an infimum J, that is,

J∗ := inf
G∈Uad

J(G) ∈ R.

Put {Gm}∞

m=1 ⊂Uad be a minimizing sequence such that lim
m→∞

J(Gm) = J∗.

Since {Gm}∞

m=1 ⊂ Uad and ∥Gm∥L2(0,T ;L2(Γ2)) < ∞, there exists a subsequence of
{Gm}∞

m=1 ⊂Uad , again denoted by {Gm}∞

m=1 ⊂Uad , such that

Gm → G∗ weakly in L2(0,T ;L2(Γ2)).
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where G∗ ∈Uad from the Mazur’s lemma.
Observe that J is weakly sequentially lower semi-continuous in (2.8) and P is

weakly sequentially continuous from Theorem 7. Therefore, we find

J∗ = lim
m→∞

J(Gm)≥ J(G∗)≥ J∗.

This means that G∗, also (G∗,H∗,u∗) is a global minimizer. □

5. NECESSARY OPTIMALITY CONDITION

Next, we will show the necessary optimality condition of (2.1)–(2.7).First, a vari-
ational inequality will be derived that still involves the states H and u; then, H and
u will be eliminated by means of the adjoint states to deduce a variational inequality
for the control.

Theorem 9. Suppose that the assumption H(3) holds. Then the mapping Λ1 :
Uad → L2(0,T ;X) is differentiable and the following limit

Ĥ(G;K) = lim
ε→0

H(G+ εK)−H(G)

ε
in L2(0,T ;X),

exists for any G,K ∈Uad such that G+ εK ∈Uad for small ε. Moreover, in the weak
sense, Ĥ satisfies

Ĥt +∇× [ρ(x, t)∇× Ĥ] = 0,(x, t) ∈ QT ,
n× Ĥ = 0,(x, t) ∈ SΓ1 ,
n× [ρ(x, t)∇× Ĥ] = n×K,(x, t) ∈ SΓ2 ,
Ĥ(x,0) = 0,x ∈ Ω,

(5.1)

Proof. Let H := H(G);Hε := H(G+ εK) and put Ĥε = (Hε −H)/ε, (x, t) ∈ QT .
where Hε and H is a solutions of (2.1) and (2.3)–(2.7) corresponding to G+ εK and
G, respectively. By computing, in the weak sense, we easily obtain that Ĥε satisfies

(Ĥε)t +∇× [ρ(x, t)∇× Ĥε] = 0,(x, t) ∈ QT ,
n× Ĥε = 0,(x, t) ∈ SΓ1 ,
n× [ρ(x, t)∇× Ĥε] = n×K,(x, t) ∈ SΓ2 ,
Ĥε(x,0) = 0,x ∈ Ω,

(5.2)

As several estimates were shown in Theorem 3.7, therefore under the condition H(3),
Ĥε can be estimated similarly:

sup
t∈[0,T ]

∥Ĥε∥L2(Ω)+∥Ĥε∥L2(0,T ;H(curl,Ω)) ≤C7, (5.3)

where C7 depend only on known data. From estimate (5.3), there exists a subsequence
of Ĥε, again denoted by Ĥε, and there exist Ĥ ∈ L2(0,T ;H(curl,Ω)) such that

Ĥε → Ĥ weakly in L2(0,T ;H(curl,Ω)), (5.4)

∇× Ĥε → ∇× Ĥ weakly in L2(0,T ;L2(Ω)) (5.5)
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as ε → 0. Again remember that two embeddings H(curl,Ω) ↪→ L2(Ω) is compact.
Thus we have

Ĥε → Ĥ strongly in L2(0,T ;L2(Ω)), (5.6)

In view of the system (5.2) and limits (5.4)–(5.6), we can obtain the system (5.1)
by taking limit as ε → 0 and using a similar technique as in Theorem 7.

Note that the system (5.1) and the boundary with respect to K are linear. Hence,
the solution Ĥ is unique and the mapping

∧1 : Uad → L2(0,T ;H(curl,Ω))

is Fréchet differentiable ,which Fréchet derivative is Ĥ. □

Secondly, in analogy to Theorem 9, we have the following theorem:

Theorem 10. Suppose that the assumptions H(1)–H(3) hold. Then the mapping
Λ2 : Uad →W (0,T ) is differentiable and the following limit

û(G;K) = lim
ε→0

u(G+ εK)−u(G)

ε
in W (0,T ),

exists for any G,K ∈Uad such that G+ εK ∈Uad for small ε. Moreover, in the weak
sense, û satisfies

ût −∇ · [k(x,u)∇û]−∇ · [ku(x,u)û∇u]
= 2ρ(x, t)∇× Ĥ ·∇×H,(x, t) ∈ QT ,

ûn(x, t) = 0,(x, t) ∈ SΓ,
û(x,0) = 0,x ∈ Ω,

(5.7)

where(H,u) is a weak solution of (2.1)–(2.7) corresponding to G.

Theorem 11. Suppose that the assumptions H(1)–H(3) hold and (H0,u0) is the
optimal solution of the system (2.1)–(2.7) corresponding to the optimal control G0 ∈
Uad . Then there exists a pair of functions (N, p)∈ L2(0,T ;X)×W (0,T ),which satisfy
the adjoint system

Nt −∇× [ρ(x, t)∇×N] =−∇× [2ρ(x, t)p∇×H0], (x, t) ∈ QT ,
pt +∇ · [k(x,u0)∇p]− ku(x,u0)∇u0 ·∇p = 0, (x, t) ∈ QT ,
n×N = 0, (x, t) ∈ SΓ1 ,
n× [ρ(x, t)∇×N] = n× [2ρ(x, t)p∇×H0], (x, t) ∈ SΓ2 ,
N(x,T ) = 0, x ∈ Ω,
pn(x, t) = 0, (x, t) ∈ SΓ,
p(x,T ) = u0(T )−uT , x ∈ Ω.

(5.8)

Moreover, the following inequality is satisfied:∫ T

0

∫
Γ2

[−n× (G−G0) ·ϒT (N)+λG0 · (G−G0)]dsdt ≥ 0,∀G ∈Uad . (5.9)
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Proof. Using the Lagrange technique, the adjoint system (5.8) is derived. Accord-
ing to similar ideas in some literatures [4, 7], one can show that there exists a unique
solution for the adjoint system. It remains to derive that the inequality (5.9) holds.
Since a similar derivation process of the inequality can be seen [15], we skip the
details here. □
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