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Abstract. In this paper, we obtain a new Menon-type identity:
n

∑
a1,...,as,b1,...,br=1
gcd(a1,...,as,n)=1

gcd(a1− c1, . . . ,as− cs,b1, . . . ,br,n)s
λ1(b1) · · ·λr(br)

= ϕs(n)σr(gcd(w1, . . . ,wr,n)),

where λ j(b) := exp(2πiw jb/n) is an additive character of Z/nZ for 1 ⩽ j ⩽ r, (c1, . . . ,cs) ∈
Zs is a fixed vector such that gcd(c1, . . . ,cs,n) = 1, ϕs(n) = ns

∏p|n(1− p−s) is the Jordan’s
totient function and σr(n) = ∑d|n dr is the rth divisor function. This extends Rao’s identity ([9])
and Sury’s identity ([11]) to additive characters. Following the method of Tóth [14], we also
generalize the above identity to arbitrary arithmetic function.
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1. INTRODUCTION

Classical Menon’s identity states that, for every n ∈ N := {1,2, . . .},
n

∑
a=1

gcd(a,n)=1

gcd(a−1,n) = ϕ(n)τ(n), (1.1)

where gcd( , ) represents the greatest common divisor, ϕ denotes Euler’s totient
function and τ(n) is the number of divisors of n. This interesting arithmetic identity
was proved by P. K. Menon [6] in 1965 and has lots of generalizations.

Using finite Fourier representations and Cauchy composite of totally even func-
tions, K. Nageswara Rao [9] generalized Menon’s identity as follows: for s ∈ N,

n

∑
a1,...,as=1

gcd(a1,...,as,n)=1

gcd(a1− c1, . . . ,as− cs,n)s = ϕs(n)τ(n), (1.2)

© 2021 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2021.3428


764 YAN LI, RAN CHEN, AND DAEYEOUL KIM

where (c1, . . . ,cs) ∈ Zs is a fixed vector such that gcd(c1, . . . ,cs,n) = 1 and

ϕs(n) := #{(a1, . . . ,as) ∈ Zs | 1 ⩽ a1, . . . ,as ⩽ n, gcd(a1, . . . ,as,n) = 1} (1.3)

is the well known arithmetic function defined by Jordan, usually called Jordan’s to-
tient function. Explicitly, Jordan’s totient can be computed by

ϕs(n) = ns
∏
p|n

(1− p−s), (1.4)

where p runs over all prime divisors of n ([1, p.147–155], [5, p.1–2]).
In 2009, B. Sury [11] proved that for r ⩾ 0,

n

∑
a,b1,...,br=1
gcd(a,n)=1

gcd(a−1,b1, . . . ,br,n) = ϕ(n)σr(n), (1.5)

where σr(n) = ∑d|n dr by using the Cauchy-Frobenius-Burnside lemma.
Recently, Zhao and Cao [19] derived the following elegant Menon-type identity

with Dirichlet character:
n

∑
a=1

gcd(a,n)=1

gcd(a−1,n)χ(a) = ϕ(n)τ
(n

d

)
, (1.6)

where χ is a Dirichlet character modulo n with conductor d.
In [4], Li, Hu and Kim further extended identities (1.5) and (1.6) to multiplicative

and additive characters:
n

∑
a,b1,...,br=1
gcd(a,n)=1

gcd(a−1,b1, . . . ,br,n)χ(a)λ1(b1) · · ·λr(br)

=ϕ(n)σr (gcd(n/d,w1, . . . ,wr)) ,

(1.7)

where for 1⩽ j ⩽ r, b 7→ λ j(b) := exp(2πiw jb/n) with w j ∈Z is an additive character
and d is the conductor of a Dirichlet character χ.

In [14], Tóth presented a generalization of (1.7) to arbitrary arithmetic function F ,
whose proof is short and elegant,

n

∑
a1,...,as,b1,...,br=1

F(gcd(a1− c1, . . . ,as− cs,b1, . . . ,br,n))χ1(a1) · · ·χs(as)

λ1(b1) · · ·λr(br) = ϕ(n)s
χ
∗
1(c1) · · ·χ∗s (cs) ∑

m|gcd(n/d1,...,n/ds,w1,...,wr)
gcd(n/m,c1···cs)=1

mr(µ∗F)(n/m)

ϕ(n/m)s ,

(1.8)

where (c1,c2, . . . ,cs) ∈ Zs is an arbitrary vector; χ j are Dirichlet characters modulo
n with conductors d j and associated primitive characters χ∗j(1 ⩽ j ⩽ s); µ ∗F is the
Dirichlet convolution of F and Möbius function µ.
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Note that when s = 1, c1 = 1 and F(a) = a, (1.8) reduces to (1.7) by µ∗F = ϕ.
For other related works on Menon’s identity, see [2, 3, 7, 8, 10, 12, 13, 15–18] and

references therein.
The initial aim of this note is to generalize Rao’s identity (1.2) and Sury’s identity

(1.5) to additive characters, which is the following theorem.

Theorem 1. Let n ∈ N. For s ∈ N, let (c1, . . . ,cs) ∈ Zs be a fixed vector such
that gcd(c1, . . . ,cs,n) = 1. For r ⩾ 0, denote b 7→ λ j(b) = exp(2πiw jb/n) to be an
additive character of Z/nZ where 1 ⩽ j ⩽ r. Then, the following identity holds.

n

∑
a1,...,as,b1,...,br=1
gcd(a1,...,as,n)=1

gcd(a1− c1, . . . ,as− cs,b1, . . . ,br,n)s
λ1(b1) · · ·λr(br)

=ϕs(n)σr(gcd(w1, . . . ,wr,n)),

(1.9)

where ϕs(n) is the Jordan’s totient function of order s determined by (1.3) or (1.4),
and σr(n) = ∑d|n dr is the r-th divisor function.

In fact, following the method of [14], we will get a more general result:

Theorem 2. Let F be an arbitrary arithmetic function. For s∈N, let (c1, . . . ,cs)∈
Zs be an arbitrary vector with gcd(c1, . . . ,cs,n) = g, and λ j be additive characters
as defined above, with w j ∈ Z(1 ⩽ j ⩽ r). Then

n

∑
a1,...,as,b1,...,br=1
gcd(a1,...,as,n)=1

F(gcd(a1− c1, . . . ,as− cs,b1, . . . ,br,n))λ1(b1) · · ·λr(br)

=ϕs(n) ∑
m|gcd(w1,...,wr,n)

gcd(n/m,g)=1

mr(µ∗F)(n/m)

ϕs(n/m)
.

(1.10)

Note that for F(n) = ns,µ ∗F = ϕs. Therefore, (1.10) reduces to (1.9) whenever
F(n) = ns and gcd(c1, . . . ,cs,n) = 1. So we will only prove Theorem 2.

2. PROOF OF THE MAIN RESULT

Denote Zn := Z/nZ to be the quotient ring of Z modulo n and let

Ms(n) := {(a1, . . . ,as) ∈ Zs
n | gcd(a1, . . . ,as,n) = 1} (2.1)

i.e., Ms(n) consists of vectors of Zs
n with maximal order. Clearly the cardinality of

Ms(n) is ϕs(n).
To prove Theorem 2, we need the following lemma.

Lemma 1. Assume m | n. Under the natural homomorphism

Zs
n

π−→ Zs
m : (a1, . . . ,as) 7−→ (a1, . . . ,as) mod m,
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Ms(n) maps surjectively to Ms(m) and each vector of Ms(m) has ϕs(n)/ϕs(m) pre-
images in Ms(n).

Proof. Clearly, π(Ms(n)) ⊂ Ms(m). For the left part, first consider the prime
power case: n = pu. Assume m = pv with 0 ⩽ v ⩽ u. The case v = 0 is trivial
since Ms(m) = Zs

m has only one element. For v > 0, a vector β of Zs
m belongs to

Ms(m) if and only if some component of β does not divide by p. This implies that
each pre-image of β ∈Ms(m) in Zs

n lies in Ms(n). Therefore, each vector of Ms(m)
has (n/m)s = ϕs(n)/ϕs(m) pre-images in Ms(n).

The general case can be deduced by the Chinese remainder theorem.

Let n =
t

∏
j=1

pu j
j be the prime factorization of n. Denote n j = pu j

j for 1 ⩽ j ⩽ t. We

have the natural isomorphism

Zs
n
∼= Zs

n1
×Zs

n2
×·· ·×Zs

nt
.

Under this isomorphism,

Ms(n)
1:1←→Ms(n1)×Ms(n2)×·· ·×Ms(nt). (2.2)

Similarly, let m =
t

∏
j=1

pv j
j and m j = pv j

j for 1 ⩽ j ⩽ t. Then

Ms(m)
1:1←→Ms(m1)×Ms(m2)×·· ·×Ms(mt). (2.3)

Clearly, the following diagram commutes.

Ms(n)
1:1−→ Ms(n1)×Ms(n2)×·· ·×Ms(nt)yπ

yπ1×·· ·×πt

Ms(m)
1:1−→ Ms(m1)×Ms(m2)×·· ·×Ms(mt)

(2.4)

We have proved that for each j, Ms(m j) has ϕs(n j)/ϕs(m j) pre-images in Ms(n j).
By (2.4) and the multiplicative property of ϕs, we get the desired result. □

Proof of Theorem 2. Let S be the left hand side of (1.10). Using the identity
F(n) = ∑m|n(µ∗F)(m), we get

S =
n

∑
a1,...,as,b1,...,br=1
gcd(a1,...,as,n)=1

λ1(b1) · · ·λr(br) ∑
m|gcd(a1−c1,...,as−cs,b1,...br,n)

(µ∗F)(m)

= ∑
m|n

(µ∗F)(m)
n

∑
a1,...,as=1

gcd(a1,...,as,n)=1
(a1,...,as)
≡(c1,...,cs) (mod m)

1
n

∑
b1,...,br=1
(b1,...,br)
≡(0,...,0) (mod m)

λ1(b1) · · ·λr(br).

(2.5)
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The condition (a1, . . . ,as)≡ (c1, . . . ,cs) (mod m) requires that

gcd(g,m) = gcd(c1, . . . ,cs,m) = gcd(a1, . . . ,as,m) = 1

since gcd(a1, . . . ,as,n) = 1. Then using Lemma 1, we get
n

∑
a1,...,as=1

gcd(a1,...,as,n)=1
(a1,...,as)
≡(c1,...,cs) (mod m)

1 =
ϕs(n)
ϕs(m)

(2.6)

if gcd(g,m) = 1; and otherwise it equals to 0.
Substituting (2.6) to (2.5) and using the orthogonality of characters, we get

S = ∑
m|n

gcd(m,g)=1
n
m |gcd(w1,...,wr)

(µ∗F)(m)
ϕs(n)
ϕs(m)

( n
m

)r

= ϕs(n) ∑
m|gcd(w1,...,wr,n)

gcd(n/m,g)=1

mr (µ∗F)(n/m)

ϕs(n/m)

(2.7)

which concludes the proof. □
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