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Abstract. In this paper, we study the complex dynamical behaviors of a discrete-time SIR epi-
demic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE)
point is globally asymptotically stable if the basic reproduction number is less than one while
the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction
number is greater than one. The results are further substantiated visually with numerical simu-
lations. Furthermore, numerical results demonstrate that the discrete model has more complex
dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behavi-
ors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical
behaviors of the model.
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1. INTRODUCTION

For centuries, infectious diseases have ranked with wars and famine as major chal-
lenges to human progress and survival [8]. The Black Death of fourteen century
and the 1918-1920, the SARS of 2003 and the global outbreak of covid-19 recently,
which have a huge impact on the world economy and people’s health without doubt.
To prevent and control the spread of infectious disease, we must understand its patho-
genesis. Epidemic dynamical model is one of the most useful tools to understand the
pathogenesis of diseases. Kermack and McKendrick pioneered compartment model
to predict the spread of disease. Hence then, various epidemic models are studied to
control infectious disease [3],[4],[5],[6],[7],[11],[12],[15].

Generally, epidemic dynamical models have two kinds: one is continuous-time
models described by differential equations, another is discrete-time models described
by difference equations. When the size of population is rarely small or the population
has no overlapping generation, the discrete-time models are more appropriate than the
continuous ones. In reality, most fish and insect populations have no overlap between
successive generations, and thus their population evolves in discrete-time steps [1],
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[13],[17]. In theory, discrete-time system has much more richer dynamical behaviors
than the continuous system.

Recently, many authors studied the dynamical behaviors of discrete epidemic model.
Hu et al. [19] discussed the dynamical behaviors of a discrete SIR epidemic model,
which derived by applying Euler scheme to corresponding continuous SIR epidemic
model. Cao et al. [9] investigated a discrete SIR epidemic model with bilinear in-
cidence rate and constant recovery. These all shows that the stability of discrete
model determined by the basic reproduction number and, discrete model undergoes
bifurcation and exhibit complex dynamical behaviors, such as the period-doubling
bifurcation in period-2,4,8, quasi-periodic orbits and chaotic sets.

In this paper, we mainly study the stability and bifurcation of the following discrete
SIR epidemic model by including vaccination to the model given by [16]

St+1 =(1− p)St −
α

N
ItSt +β(Rt + It),

It+1 =
α

N
ItSt +(1−β− γ)It ,

Rt+1 =(1−β)Rt + γIt + pSt ,

(1.1)

with initial conditions S0, I0 and R0, (S0 + I0 +R0 = N), which are positive real num-
bers. Here 0 < p+α < 1 and 0 < β+γ < 1. Also, β is the probability of death which
is equal to the probability of birth, γ is the probability of recovery, p is the proportion
vaccinated, α is the contact rate, and N is the total population size.

The organization of this paper is as follows. We first give the existence and stability
of equilibria in section 2. Then, the numerical simulations are stated in section 3. In
section 4, we simulate the complex dynamical behaviors including multiple periodic
orbits, quasi-periodic orbits and chaotic behaviors. Finally, we give a discussion in
the last section.

2. EXISTENCE AND STABILITY OF EQUILIBRIA

Since Sn + In +Rn = N is a constant, then the dynamical behaviors of model (1.1)
is equivalent to the dynamical behaviors of the following model

St+1 =(1− p)St −
α

N
ItSt +β(N −St),

It+1 =
α

N
ItS+(1−β− γ)It ,

(2.1)

where p, α, β, and γ are positive parameters.
On examining system (2.1), the equilibrium points P0 =

(
βN

β+p ,0
)

and

P1 =
(
(β+γ)N

α
, N(αβ−(β+γ)(p+β))

α(β+γ)

)
has been obtained in [14] by using St = St+1 = S∗

and It = It+1 = I∗.
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The condition for the equilibrium to be locally asymptotically stable is presented
in the following lemma.

Lemma 1. [2] Assume that Xn+1 = F(Xn), n = 0,1, . . . be a system of difference
equations and X is a steady state point of F. If all eigenvalues of the Jacobian matrix
JF about the steady state X lie inside the open unit disk |λ| < 1, then X is locally
asymptotically stable. If one of them has absolute value greater than one, then X is
unstable.

Definition 1. [10] Suppose x is an equilibrium of the difference equation,

xt+1 = f (xt)

where f : [0,a) → [0,a) , 0 < a ≤ ∞. Then x is said to be globally attractive if for
all initial conditions x0 ∈ (0,a), limt→∞ = x and is said to be globally asymptotically
stable if x is globally attractive and if x is locally stable.

The theorem signifies the result on the roots of the polynomial based on trace and
determinant of the jacobian matrix.

Theorem 1. [18] The characteristic polynomial

F(x) = x2 +Bx+C,

has all its roots inside the unit open disk (|x| < 1) if and only if
(i) F(1)> 0 and F(−1)> 0;

(ii) D+
1 = 1+C > 0 and D−

1 = 1−C > 0
where −B is the trace of Jacobian matrix and C is the determinant of Jacobian matrix.

Now, we investigate the global stability of these equilibrium points. For analyzing
the global stability of disease-free equilibrium P0 =

(
βN

β+p ,0
)

, we give the following
theorems.

Theorem 2. Assume that 0 < β+ p < 1. The disease-free equilibrium (DFE) point
P0 =

(
βN

β+p ,0
)

of system (2.1) is globally asymptotically stable if,

R0 =
αβ

(β+ p)(β+ γ)
< 1. (2.2)

P0 is unstable if R0 > 1.

Proof. By considering (2.1), we can get the Jacobian matrix as

JP0 =

(
1− p−β

−αβ

(β+p)

0 αβ

(β+p) +(1−β− γ)

)
,

evaluated at P0, the eigenvalues are

λ1 = 1− p−β, λ2 =
αβ

(β+ p)
+(1−β− γ).
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The conditions 0 < β+ p < 1, 0 < β+ γ < 1 and R0 < 1 implies that |λ1| < 1 and
|λ2| = |1− (β+ γ)(1−R0)| < 1. It follows from Lemma 1 that the DFE point P0 is
locally asymptotically stable if R0 < 1. When R0 > 1, we have λ2 = 1− (β+ γ)(1−
R0)> 1, then the DFE point P0 is unstable. From the first equation of system (2.1), it
is easy to see that St satisfies the following inequality:

St ≤ βN +(1− p−β)St−1.

The equation ut = βN +(1− p− β)ut−1 has a unique equilibrium point u∗ = βN
p+β

,
which is globally asymptotically stable. From inequality (2.2) and the comparison
principle, we know that for any small ε1, there exists a positive integer T1 such that
St ≤ βN

p+β
+ ε1 for all t > T1. From the second equation of system (2.1) and St ≤

βN
p+β

+ ε1, t > T1, we have

It ≤
(

1− (β+ γ)(1−R0)+ ε1
α

N

)
It−1, for t > T1.

The conditions 0 < β+ γ < 1, R0 < 1 and the arbitrarily of ε1 imply 0 < 1− (β+
γ)(1−R0)+ ε1

α

N < 1. Then we can rewrite (2.2) as

It ≤
(

1− (β+ γ)(1−R0)+ ε1
α

N

)t
I0, for t > T1,

from which we can derive that
lim
t→∞

It = 0.

Therefore, for any small ε2 > 0, there exists a larger positive integer T2 ≥ T1 such that
It < ε2 for t > T2. Then from the first equation of system (2.1), we have

St ≥ βN +
(

1− p−β− ε2
α

N

)
St−1, for t > T2.

Then from the comparison principle, we know that for any small ε3 > 0, there exists
an integer T3 > T2 such that St ≥ βN

β+p+ε2α/N −ε3 for all t > T3. Let T4 = T1 +T3, then
the inequalities

βN
β+ p+ ε2α/N

− ε3 ≤ St ≤
βN

β+ p
+ ε1, for t > T4,

and the arbitrary of ε1,ε2 and ε3 imply that

lim
t→∞

St =
βN

β+ p
,

Thus the limits

lim
t→∞

St =
βN

β+ p
and lim

t→∞
It = 0.

imply that the DFE point P0 is a global attractor if R0 < 1. Consequently; since P0
is locally asymptotically stable if R0 < 1 and P0 is global attractor, we have the DFE
point P0 of system (2.1) is globally asymptotically stable if R0 < 1. □
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Remark 1. [3, 14] The basic reproductive ratio R0 is referred as αβ

(β+p)(β+γ) . This
ratio is a threshold parameter for the SIR epidemic model. If R0 < 1, then there exists
the DFE point which is locally asymptotically stable .

Theorem 3. The endemic equilibrium (EE) point P1 =
(
(β+γ)N

α
, N(αβ−(β+γ)(p+β))

α(β+γ)

)
of the system (2.1) is locally asymptotically stable if R0 > 1.

Proof. By considering (2.1), we can write the Jacobian matrix evaluated at P1 as

JP1 =

(
1− p−β− αI∗

N −β− γ
αI∗
N 1

)
. (2.3)

The characteristic polynomial of the Jacobian matrix JP1 is as follows:

G(λ) = λ
2 −
(

2− p−β− αI∗

N

)
λ+1− p−β− (1−β− γ)

αI∗

N
. (2.4)

It is easy to verify that G(1) = (β+ γ)αI∗
N , G(0) = 1− p−β− (1−β− γ)αI∗

N and

G(−1) = 2(1− p−β)+2
(

1− αI∗

N

)
+(β+ γ)

αI∗

N

> 2(1− p−β)+2(1−α)+(β+ γ)
α

N
I∗.

Since R0 =
αβ

(β+p)(β+γ) > 1 implies α > β+ p, then using the assumptions 0 < p+α <

1, 0 < β+ γ < 1, we have G(1) > 0, G(−1) > 0 and C = G(0) < 1 when R0 > 1.
It follows from Theorem 1 that the two roots, λ1 and λ2, of the equation G(λ) = 0
satisfies |λ1|< 1 and |λ2|< 1. Therefore, from Lemma 2, we conclude that EE point
P1 is locally asymptotically stable when R0 > 1. □

Let Lt = St + It , then we can rewrite system (2.1) as follows

Lt+1 = βN +(1−β− p)Lt +(p− γ)It ,

It+1 =
α

N
It(Lt − It)+(1−β− γ)It .

(2.5)

The global stability of the positive equilibrium point of system (2.5) is equivalent to
that of system (2.1).

Theorem 4. The endemic equilibrium(EE) point of the system (2.5) is globally
asymptotically stable if

(i) 1 < R0 <
β+p+γ

β+p < 2+β+min{p,γ}
β+p and p ≤ γ,

(ii) 1 < β+p+γ

β+p < R0 <
2+β+min{p,γ}

β+p and p > γ.

Proof. The global stability of the positive equilibrium point of (2.5) is quite diffi-
cult, so we consider two cases to prove it.

Case 1. p ≤ γ.
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From the inequality 0 < It < Lt and the first equation of system (2.5), we obtain

Lt+1 ≤ βN +(1−β− p)Lt ,

Lt+1 ≥ βN +(1−β− p− γ)Lt .
(2.6)

From these two inequalities in (2.6) and the comparison theorem [15], we know that
for any small ε > 0, there exists a positive integer T1 such that Ll

1 ≤ Lt ≤ Lr
1 for t > T1,

where Ll
1 =

βN
β+p+γ

− ε and Lr
1 =

βN
β+p + ε.

When t > T1, we substitute Ll
1 ≤ Lt ≤ Lr

1 into the second equation of (2.5), then
we obtain

It+1 ≥
α

N
It
(

Ll
1 − It

)
+(1−β− γ)It ,

It+1 ≤
α

N
It (Lr

1 − It)+(1−β− γ)It .
(2.7)

Let us consider the following auxiliary equations corresponding to the inequalities in
(2.7)

Il
t+1 =

α

N
Il
t

(
Ll

1 − Il
t

)
+(1−β− γ)Il

t ,

Ir
t+1 =

α

N
Ir
t (L

r
1 − Ir

t )+(1−β− γ)Ir
t .

(2.8)

Define Il
t =

(1−β−γ)N+αLl
1

α
U l

t and Ir
t =

(1−β−γ)N+αLr
1

α
U r

t . Then we can rewrite (2.8) as
follows

U l
t+1 = rlU l

t

(
1−U l

t

)
, with rl = 1−β− γ+

α

N
Ll

1,

U r
t+1 = rrU r

t (1−U r
t ) , with rr = 1−β− γ+

α

N
Lr

1.
(2.9)

It follows from [10] that the first equation of (2.8) has a positive equilibrium Il
1∗ =

Ll
1 −

(β+γ)N
α

, which is global asymptotically stable if 1 < R0 <
β+p+γ

β+p < 2+β+p+γ

β+p . A
similar argument implies that the second equation of (2.8) has a positive equilibrium
Ir
1∗ = Lr

1 −
(β+γ)N

α
, which is globally asymptotically stable if 1 < R0 <

2+β+p
β+p .

The global asymptotic stability and the comparison theory imply that there exists a
T2 ≥ T1 such that Il

1 < It < Ir
1 for all t > T2, where Il

1 = Il
1∗−ε and Ir

1 = Ir
1∗+ε. When

t > T2, by substituting the inequality Il
1 < It < Ir

1 into the first equation of (2.5), we
have

Lt+1 ≥ βN +(1−β− p)Lt +(p− γ)Ir
1,

Lt+1 ≤ βN +(1−β− p)Lt +(p− γ)Il
1.

(2.10)

From (2.10) and a similar argument, we can derive that there exists a positive integer
T3 ≥ T2 such that Ll

2 ≤ Lt ≤ Lr
2 for all t > T3, where Ll

2 =
βN+(p−γ)Ir

1
β+p − ε and Lr

2 =

βN+(p−γ)Il
1

β+p + ε. Obviously, Ll
1 < Ll

2 < Lr
2 < Lr

1.
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When t > T3, the inequality Ll
2 ≤ Lt ≤ Lr

2 substitute into the second equation of
(2.5) implies

It+1 ≥
α

N
It
(

Ll
2 − It

)
+(1−β− γ)It ,

It+1 ≤
α

N
It (Lr

2 − It)+(1−β− γ)It .
(2.11)

A similar argument implies that there exists a T4 ≥ T3 such that Il
2 ≤ It ≤ Ir

2 for t > T4,
where Il

2 = Ll
2 −

(β+γ)N
α

− ε and Ir
2 = Lr

2 −
(β+γ)N

α
+ ε. By substituting Lr

2, Ll
2 into Il

2,
Ir
2, we derive

Il
2 =

p− γ

β+ p
Ir
1 +

β+ γ

α
N(R0 −1)−2ε,

Ir
2 =

p− γ

β+ p
Il
1 +

β+ γ

α
N(R0 −1)+2ε.

(2.12)

When t > T4 and Il
2 ≤ It ≤ Ir

2, equations in (2.12) hold. Then from the induction,
we know that there exist sequences T2k−1,T2k,Ll

k,L
r
k, I

l
k, I

r
k such that Il

k ≤ It ≤ Il
k for

t > T2k, and Il
k, I

r
k satisfy that

Il
k+1 =

p− γ

β+ p
Ir
k +

β+ γ

α
N(R0 −1)−2ε,

Ir
k+1 =

p− γ

β+ p
Il
k +

β+ γ

α
N(R0 −1)+2ε.

(2.13)

One can easily check that linear system (2.13) has a unique positive equilibrium
P∗(Il

∗(ε), I
r
∗(ε)) with

Il
∗(ε) =

β+ p
α

N(R0 −1)− 2(β+ p)
β+2p− γ

ε Il
∗(ε) =

β+ p
α

N(R0 −1)+
2(β+ p)

β+2p− γ
ε,

which is globally asymptotically stable. That is,

lim
k→∞

Il
k = Il

∗(ε) and lim
k→∞

Ir
k = Ir

∗(ε).

The arbitrary small of ε means that

lim
ε→0

Il
∗(ε) = lim

ε→0
Ir
∗(ε) =

β+ p
α

N(R0 −1).

Then from the inequality Il
k < It < Ir

k and those limits, we derive that

lim
t→∞

It =
β+ p

α
N(R0 −1).

Similarly, we can prove that the sequences {Ll
k} and {Lr

k} is a linear system of differ-
ence equations and satisfy

lim
k→∞

Ll
k = lim

k→∞

Lr
k =

βN
β+ p

+
p− γ

α
N(R0 −1), as ε → 0.
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The inequality Ll
k < Lt < Lr

k and the limits implies that

lim
t→∞

Lt =
βN

β+ p
+

p− γ

α
N(R0 −1).

Finally, from Lt = St + It , then we have

lim
t→∞

St = lim
t→∞

Lt − lim
t→∞

It =
(β+ γ)N

α
.

Therefore, the endemic equilibrium P1 of system (2.5) is globally asymptotically
stable when 1 < R0 <

β+p+γ

β+p < 2+β+p
β+p and p ≤ γ.

Case 2.p > γ.
For this case, from the inequality 0 < It < Lt and the first equation of system (2.5),

we obtain
Lt+1 ≤ βN +(1−β− γ)Lt ,

Lt+1 ≥ βN +(1−β− p− γ)Lt .
(2.14)

Similarly, using the comparison theory, we have that for any small δ > 0, there exists
a positive integer T̃1 such that Ls

1 ≤ Lt ≤ Lb
1 for t > T̃1, where Ls

1 = βN
β+p+γ

− δ and

Lb
1 =

βN
β+γ

+δ.
When t > T̃1, by substituting inequality Ls

1 ≤ Lt ≤ Lb
1 into the second equation of

(2.5), we have

It+1 ≥
α

N
It (Ls

1 − It)+(1−β− γ)It ,

It+1 ≤
α

N
It
(

Lb
1 − It

)
+(1−β− γ)It .

(2.15)

Define

It+1 =
α

N
It (Ls

1 − It)+(1−β− γ)It ,

It+1 =
α

N
It
(

Lb
1 − It

)
+(1−β− γ)It .

(2.16)

Using transform Is
t =

(1−β−γ)N+αLs
1

α
V s

t and Ib
t =

(1−β−γ)N+αLb
1

α
V b

t , then we can rewrite
(2.16) as follows

V s
t+1 = rsV s

t (1−V s
t ) , with rs = 1−β− γ+

α

N
Ls

1,

V b
t+1 = rbV b

t

(
1−V b

t

)
, with rb = 1−β− γ+

α

N
Lb

1.
(2.17)

It follows from [10], we know that the first equation of (2.16) has a positive equi-
librium Is

1∗ = Ls
1 −

(β+γ)N
α

, which is global asymptotically stable if β+p+γ

β+p < R0 <
2+β+p+γ

β+p , and that the second equation of (2.16) has a positive equilibrium Ib
1∗ =

Lb
1 −

(β+γ)N
α

, which is globally asymptotically stable if 1 < R0 <
2+β+γ

β+p .
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It follows from the asymptotic stability and the comparison theory that there exists
a T̃2 ≥ T̃1 such that Is

1 < It < Ib
1 for all t > T̃2, where Is

1 = Is
1∗− δ and Ib

1 = Ib
1∗+ δ.

When t > T2, by substituting the inequality Is
1 < It < Ib

1 into the first equation of (2.5),
we have

Lt+1 ≥ βN +(1−β− p)Lt +(p− γ)Is
1,

Lt+1 ≤ βN +(1−β− p)Lt +(p− γ)Ib
1 .

(2.18)

Similarly, from (2.18), we derive that there exists a positive integer T̃3 such that Ls
2 ≤

Lt ≤ Lb
2 for all t > T̃3, where Ls

2 =
βN+(p−γ)Is

1
β+p −δ and Lb

2 =
βN+(p−γ)Ib

1
β+p +δ. Obviously,

Ls
1 < Ls

2 < Lb
2 < Lb

1.
When t > T̃3, the inequality Ls

2 ≤ Lt ≤ Lb
2 substitute into the second equation of

(2.5) implies

It+1 ≥
α

N
It (Ls

2 − It)+(1−β− γ)It ,

It+1 ≤
α

N
It
(

Lb
2 − It

)
+(1−β− γ)It .

(2.19)

Similar argument implies that there exists a T̃4 ≥ T̃3 such that Is
2 ≤ It ≤ Ib

2 for t > T̃4,
where

Is
2 = Ls

2 −
(β+ γ)N

α
−δ =

p− γ

β+ p
Is
1 +

β+ γ

α
N(R0 −1)−2δ,

Ib
2 = Lb

2 −
(β+ γ)N

α
+δ =

p− γ

β+ p
Ib
1 +

β+ γ

α
N(R0 −1)+2δ.

(2.20)

Equations in (2.20) hold if t > T̃4 and Is
2 ≤ It ≤ Ib

2 . Then by the induction, there exists
sequences {Is

k},{Ib
k } such that Is

k < It < Ib
k for all t > T̃2k, where Is

k, I
b
k satisfy that

Is
k+1 =

p− γ

β+ p
Is
k +

β+ γ

α
N(R0 −1)−2δ,

Ib
k+1 =

p− γ

β+ p
Ib
k +

β+ γ

α
N(R0 −1)+2δ.

(2.21)

Note that the first and the second equation of system (2.21) are both linear difference
equations and 0 < p−γ

β+p < 1, then it is easy to verify that

lim
k→∞

Is
k =

β+ p
α

N(R0 −1)− 2(β+ γ)

β+ p
δ, lim

k→∞

Ib
k =

β+ p
α

N(R0 −1)+
2(β+ γ)

β+ p
δ.

The inequality Is
k < It < Ib

k for t > T̃2k and the arbitrary of δ suggest that

lim
t→∞

Ik =
β+ p

α
N(R0 −1).
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Similar to the proof of case 1, we have

lim
t→∞

St =
(β+ γ)N

α
.

Therefore, the endemic equilibrium point P1 of system (2.5) is globally asymptotic-
ally stable when 1 < β+p+γ

β+p < R0 <
2+β+γ

β+p and p > γ.
Therefore, we conclude that the endemic equilibrium point P1 of system (2.5) is

globally asymptotically stable when 1 < β+p+γ

β+p < R0 <
2+β+min{p,γ}

β+p . □

3. NUMERICAL SIMULATIONS

In this section, our aim is to present numerical simulations to illustrate the key
results of theoretical analysis and graphical representations in the form of time plots,
phase portrait diagrams of system (2.5).

Example 1. For DFE point, we take the parameter values as N = 100, p = 0.5,
β = 0.95, α = 0.8, γ = 0.0005 and initial values as (S0, I0) = (100,30). The eigen
values are |λ1| = 0.9795 < 1, |λ2| = 0.7780 < 1 and basic reproductive ratio R0 =
0.5514 < 1 then DFE point of the system (2.5) is globally asymptotically stable (see
Figure 1).

FIGURE 1. Time plots and phase portraits of DFE point of the sys-
tem (2.5) with stability R0 < 1.

Example 2. For EE point, we take the parameter values as N = 100, p = 0.0005,
β = 0.025, α = 0.6, γ = 0.3 and initial values as (S0, I0) = (100,30). We apply
the conditions 1 < R0(= 1.81) < β+p+γ

β+p (= 12.7647) < 2+β+p
β+p (= 79.4314) and p(=

0.0005)≤ γ(= 0.3) then the endemic equilibrium point of the system (2.5) is globally
asymptotically stable (see Figure 2).
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FIGURE 2. Time plots and phase portraits of EE point of the system
(2.5) with stability R0 > 1

Example 3. For EE point, we take the parameter values as N = 100, p = 0.5,
β = 0.2, α = 0.8, γ = 0.0005 and initial values as (S0, I0) = (100,30). We apply the
conditions β+p+γ

β+p (= 1.0007) < R0(= 1.14) < 2+β+γ

β+p (= 3.1436) and p > γ then the
endemic equilibrium point of the system (2.5) is globally asymptotically stable (see
Figure 3).

FIGURE 3. Time plots and phase portraits of EE point of the system
(2.5) with stability R0 > 1.

4. BIFURCATION AND CHAOTIC BEHAVIOR

In this section, we present the bifurcation diagrams and maximum Lyapunov expo-
nent and chaotic attractors of the system (2.5). It is known that Maximum Lyapunov
exponent qualifies the exponential divergence of initially close state-space trajector-
ies and frequency employ to identify a chaotic behavior.
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FIGURE 4. The bifurcation diagrams of the system (2.5) for α ∈ (2,3.4).

FIGURE 5. The bifurcation diagram in (α − S − I) space and the
Maximum Lyapunov exponent corresponding to Figure 4(a-b).

The bifurcation diagrams are considered for three cases:
Case 1. Fixing parameters N = 100, β = 0.3, p = 0.0009, γ = 0.01 and varying

α ∈ (2,3.4).
The bifurcation diagrams of the system (2.5) plotted in particular range of α∈ (2,3.4)
with the contact rate α as the bifurcation parameter are given in Figures 4(a-b). The
bifurcation diagram of the system (2.5) in (α− S− I) space is given in Figure 5(c).
The Maximum Lyapunov exponent corresponding to Figures 4(a-b) are computed
and plotted in Figure 5(d) confirming the existence of the chaotic regions and period
orbits in the parametric space. Figures 6(a-b) is the local amplification corresponding
to Figures 4(a-b) for α ∈ [3,3.3]. The phase portraits for various α-values corres-
ponding to Figure.4(a-b) are plotted in Figures 7(a)-(f) to illustrate the observations.
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Furthermore, the stable equilibria at α = 2.2, the emergence of periodic-2,4,8 or-
bits are observed when α = 2.6,2.9,2.95 in Figures 7(b)-(d). For instance, when
α = 2.99,3.0 chaotic attractors appears in Figures 7(e)-(f). Some interesting phe-
nomena are also seen in different chaotic attractors in the range α = 3.1 to α = 3.3.
The occurrence of chaotic regions is observed in Figures 6(a)-(b), these phenomena
are illustrated by the phase portraits in Figures 8(g)-(l).

FIGURE 6. Local amplification corresponding to Figure 4(a−b).

FIGURE 7. Phase portrait diagrams of the system (2.5) for various
α corresponding to Figure 4.

Case 2. Fixing parameters N = 100, p = 0.0005, γ = 0.1, α = 4.16 and varying
β ∈ (1,2.5). The bifurcation diagrams of the system (2.5) plotted in particular range
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FIGURE 8. Phase portrait diagrams of the system (2.5) for various
α corresponding to Figure 4.

FIGURE 9. Bifurcation diagrams of the system (2.5) with varying
β ∈ (1,2.5).

of β ∈ (1,2.5) with birth rate as the bifurcation parameter are given in Figures 9(a-
b). The bifurcation diagram of the system (2.5) in (β− S − I) space are given in
Figure 10(c). The Maximum Lyapunov exponent corresponding to Figures 9(a-b) are
computed and plotted in Figure 10(d) confirming the existence of the chaotic regions
and periodic orbits in the parametric space. The chaotic regions are also observed
in Figures 9(a)-(b): these phenomena are illustrated by the phase portrait in Figure
11(a). The phase portraits for various β-values corresponding to Figures 9(a-b) are
plotted in Figures 11(b)-(f) to illustrate the observations. Furthermore, the emergence
of periodic-8,4,2 orbits are observed when β = 1.03,1.05,1.25 in Figure.11(b)-(d),
the stable equilibria at β = 1.56 in Figure 11(e). Attracting invariant circle appears
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FIGURE 10. Bifurcation diagram in (β−S−I) space and Maximum
Lyapunov exponents of the system (2.5) with varying β ∈ (1,2.5).

FIGURE 11. Phase portrait diagrams of the system (2.5) for various
β corresponding to figure 9.

when β = 1.6 in Figure 11(f) and when β = 1.7,1.71,1.85,1.95,2.3 in Figures 12(g)-
(j) and Figure 12(l). Furthermore, quasi-periodic orbits appears when β = 2.0 in
Figure 12(k).

Case 3. Fixing parameters N = 100, p = 0.0009, β = 0.3, α = 3.3 and varying
γ ∈ (0,1). The bifurcation diagrams of the system (2.5) plotted in particular range
of γ ∈ (0,1) recovery rate as the bifurcation parameter are given in Figure 13(a).
The Maximum Lyapunov exponent corresponding to Figure 13(a) are computed and
plotted in Figure 13(b) confirming the existence of the chaotic regions and periodic
orbits in the parametric space.
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FIGURE 12. Phase portrait diagrams of the system (2.5) for various
β corresponding to figure 9.

FIGURE 13. Bifurcation diagram and Maximum Lyapunov expo-
nent of the system (2.5) with varying γ ∈ (0,1).

5. CONCLUSION

In this paper, we considered the dynamical behaviors of a discrete-time SIR epi-
demic model (1.1). The basic reproduction number completely determine the stabil-
ity of discrete model (1.1). If the basic reproduction number is less than one, model
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(1.1) only has a DFE and it is globally asymptotically stable. If the basic reproduc-
tion number is bigger than one, model has a EE except DFE, and EE is globally
asymptotically stable. Numerical simulations are provided to justify our analytical
findings. Furthermore, let α,β,γ be the bifurcation parameters, numerical simula-
tions show that model (1.1) has periodic orbits, period-2,4,8 orbits, and chaotic sets,
which implies that the susceptible and infective can coexists in the stable period-n
orbits and cycle. We also present the maximum Lyapunov exponent, when the max-
imum Lyapunov exponent is positive which is an evidence for chaos. These results
reveal far richer dynamics of the discrete model compared to the continuous model.
The theoretical analysis of bifurcation and chaos will be studied in the further.
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[1] H. Merdan, Ö. Ak Gümüş, and G. Karahisarli, “Global stability analysis of a general scalar differ-
ence equation.” vol. 7, no. 3, pp. 225–232, 2018, doi: 10.5890/dnc.2018.09.001.

[2] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models.
New York: Springer Science and Business Media, 2013.

[3] A. George Maria Selvam, D. Abraham Vianny, and S. Britto Jacob, “Dynamical behavior in a
fractional order epidemic model.” vol. 7, no. 7, pp. 464–470, 2017, doi: 10.36106/ijar.

[4] A.George Maria Selvam and D.Abraham Vianny, “Behavior of a discrete fractional order sir
epidemic model.” vol. 7, no. 4(10), pp. 675–680, 2018, doi: 10.14419/ijet.v7i4.10.21310.

[5] A.George Maria Selvam and D.Abraham Vianny, “Discrete fractional order sir epidemic model
and its stability.” vol. 1139, no. 012008, pp. 1–10, 2018, doi: 10.1088/1742-6596/1139/1/012008.

[6] A.George Maria Selvam and D.Abraham Vianny, “Discrete fractional order sir epidemic model
of childhood fiseases with constant vaccination and its stability.” vol. 4, no. 11, pp. 405–410, 2018.

[7] A.George Maria Selvam, D.Abraham Vianny, and Mary Jacintha, “Stability in a fractional order
sir epidemic model of childhood diseases with discretization.” vol. 1139, no. 012009, pp. 1–8,
2018, doi: 10.1088/1742-6596/1139/1/012009.

[8] D. Morens, G. Folkers, and A. Fauci, “The challenges of emerging and re-emerging infectious
diseases.” vol. 430, pp. 242–249, 2004, doi: 10.1038/nature02759.

[9] H. Cao, H. Wu, and X. Wang, “Bifurcation analysis of a discrete sir epidemic model with constant
recovery.” Adv. Diff. Equ., vol. 49, pp. 1–20, 2020, doi: 10.1186/s13662-020-2510-9.

[10] L.J.S. Allen, Introduction to Mathematical Biology. New Jersey: Pearson/Prentice Hall, 2007.
[11] M. J. Keeling and L. Danon, “Mathematical modelling of infectious diseases.” vol. 92, no. 1, pp.

33–42, 2009, doi: 10.1093/bmb/ldp038.
[12] M. Martcheva, An Introduction to Mathematical Epidemiology. New York: Springer, 2015. doi:

10.1007/978-1-4899-7612-3.
[13] O.Ak Gumus, “Global and local stability analysis in a nonlinear discretetime population model.”

Adv. Diff. Equ., vol. 299, pp. 1–9, 2014, doi: 10.1186/1687-1847-2014-299.

http://dx.doi.org/10.5890/dnc.2018.09.001
http://dx.doi.org/10.36106/ijar
http://dx.doi.org/10.14419/ijet.v7i4.10.21310
http://dx.doi.org/10.1088/1742-6596/1139/1/012008
http://dx.doi.org/10.1088/1742-6596/1139/1/012009
http://dx.doi.org/10.1038/nature02759
http://dx.doi.org/10.1186/s13662-020-2510-9
http://dx.doi.org/10.1093/bmb/ldp038
http://dx.doi.org/10.1007/978-1-4899-7612-3
http://dx.doi.org/10.1186/1687-1847-2014-299
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