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1. INTRODUCTION

Consider the following second-order impulsive integral boundary value problem
(IBVP) with integral boundary conditions,

1
p(t)

(p(t)x′(t))′+ f (t,x(t),x′(t)) = 0, ∀t ∈ J
′
+

∆x|t=tk = Ik(x(tk)), k = 1,2, ...,n
∆x′|t=tk =−Ik(x(tk)), k = 1,2, ...,n

a1x(0)−b1 lim
t→0+

p(t)x′(t) =
∫

∞

0
g1(x(s))ψ(s)ds,

a2 lim
t→∞

x(t)+b2 lim
t→∞

p(t)x′(t) =
∫

∞

0
g2(x(s)ψ(s)ds,

(1.1)

where J = [0,∞), J+ = (0,∞), J′+ = J+\{t1, ..., tn}, 0 < t1 < t2 < ... < tn, and note
J0 = [0, t1), Ji = (ti, ti+1],(i = 1,2, ...,n), ∆x|t=tk and ∆x′|t=tk denote the jump of x(t)
and x

′
(t) at t = tk, i.e.,

∆x|t=tk = x(t+k )− x(t−k ), ∆x′|t=tk = p(tk)[x′(t+k )− x′(t−k )],

where x(t+k ), x
′
(t+k ) and x(t−k ), x

′
(t−k ) denote the right-hand limit and left-hand limit

of x(t) and x
′
(t) at t = tk, k = 1,2, ...,n, respectively.

Throughout this paper, we assume that the following conditions hold;
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(H1) a1,a2, b1,b2 ∈ J with D = a2b1 +a1b2 +a1a2B(0,∞)> 0 in which

B(t,s) =
∫ s

t

dσ

p(σ)
.

(H2) f ∈ C(J+ × J+ ×R,J+) and also, f (t,x,y) ≤ k(t)h(x,y), (t ∈ J+), where
h ∈ C(J+×R,J+) and for t ∈ J+, x, y in a bounded set, h(x,y) is bounded
and k ∈C(J+,J+).

(H3) g1,g2 : J+ → J+ are continuous, nondecreasing functions, and for t ∈ J+, x in
a bounded set, g1(x),g2(x) are bounded.

(H4) Ik, Ik ∈C(J+,J+) are bounded functions where

[b2 +a2B(tk,∞)]Ik(x(tk))−
a2

p(tk)
Ik(x(tk))> 0, (k = 1,2, ...,n).

(H5) ψ : J → J is a continuous function with
∫

∞

0
ψ(s)ds < ∞.

(H6) p ∈C(J,J+)∩C1(J+,J+) with p > 0 on J+, and
∫

∞

0

ds
p(s)

< ∞.

Impulsive differential equations encountered in physics, chemical technology, pop-
ulation dynamics, biotecnology, economics etc. (see [2] and the references there in)
have become more important in recent years due to the appearance of some important
in recent years due to the appearance of some mathematical models of the actual pro-
cesses. A significant development was observed in theory of impulsive differential
equations with fixed time of pulses; see the monographs by Bainov and Simeorov
[5], Lakshmikantham, et al. [1], Samoilenko and Prestyuk [18], Benchohra, et al. [4]
and the papers [3, 6, 7, 9–11, 13–17, 19].

The existence and multiplicity of positive solutions for linear and nonlinear second-
order impulsive dynamic equations have been extensively studied, see [11,12,21–23].
Due to the fact that an infinite interval is noncompact, the discussion about boundary
value problems on the half-line more complicated, in particular, for impulsive IBVP
on an infinite interval, few works were done, see [8,25]. There is not work on positive
solutions for double impulsive IBVP on an infinite interval expect that in [24, 27].

In [27], Zhang, Yang and Feng studied the following double impulsive IBVP:
−x

′′
(t) = f (t,x(t),x

′
(t)), t ∈ J, t ̸= tk,

∆x|t=tk = Ik(x(tk)), k = 1,2, ...
∆x

′ |t=tk = Ik(x(tk)), k = 1,2, ...

x(0) =
∫

∞

0
g(t)x(t)dt, x

′
(∞) = 0.

Using the fixed point theorem in cones, they obtained criteria for existence of the
multiple positive solutions.

In [24], Yu, Wang and Guo discussed the existence and multiple positive solutions
for the following nonlinear second-order double impulsive integral boundary value
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problems: 
(φp(x

′
(t)))

′
+a(t) f (t,x(t),x

′
(t)) = 0, t ∈ J, t ̸= tk,

∆x|t=tk = Ik(x(tk)), k = 1,2, ...
∆φp(x

′
)|t=tk = Ik(x(tk)), k = 1,2, ...

x(0) =
∫

∞

0
g(t)x(t)dt, x

′
(∞) = 0.

Motivated by the above works, in this study, we consider the existence of two pos-
itive solutions for the second-order double impulsive integral boundary value prob-
lem (1.1). Our boundary conditions are more general. Hence, these results can be
considered as a contribution to this field.

The present paper is organized as follows. In Section 2, we present some prelim-
inaries and lemmas which are key tools for our main results. We give and prove our
main results in Section 3. Finally, in Section 4, we give an example to demonstrate
our results.

2. PRELIMINARIES AND LEMMAS

In this section, we will employ several lemmas to prove the main results in this
paper. Set

PC(J) =
{

x : J →R : x∈C(J
′
), x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk), 1≤ k ≤ n

}
.

PC1(J) =
{

x ∈ PC(J) : x
′ ∈C(J

′
), x

′
(t+k ) and x

′
(t−k ) exist and x

′
(t−k ) = x

′
(tk)

}
.

BPC1(J) =
{

x ∈ PC1(J) : lim
t→∞

x(t) exists, and sup
t∈J

|x′
(t)|< ∞

}
.

It is easy to see that BPC1(J) is a Banach space with the norm∥∥x
∥∥= sup

t∈J

{
|x(t)|+ |x′

(t)|
}
.

A function x ∈ PC1(J)∩C2(J
′
+) is called a positive solution of the impulsive IBVP

(1.1) if x(t)> 0 for all t ∈ J and x(t) satisfies (1.1).
We define a cone K ⊂ BPC1(J) as follows:

K =
{

x ∈ BPC1(J) : x(t)> 0, t ∈ J+
}
.

K is a positive cone in BPC1(J).
By θ and ϕ we denote the solutions of the corresponding homogeneous equation

1
p(t)

(p(t)x′(t))′ = 0, t ∈ (0,∞), (2.1)

under the initial conditions,
θ(0) = b1, lim

t→0+
p(t)θ′(t) = a1,

lim
t→∞

ϕ(t) = b2, lim
t→∞

p(t)ϕ′(t) =−a2.
(2.2)



256 ILKAY YASLAN KARACA AND SEZGI AKSOY

Using the initial conditions (2.2), we can deduce from equation (2.1) for θ(t) and
ϕ(t), the following equations:

θ(t) = b1 +a1

∫ t

0

ds
p(s)

, (2.3)

ϕ(t) = b2 +a2

∫
∞

t

ds
p(s)

. (2.4)

Let G(t,s) be the Green Function for (1.1) is given by

G(t,s) =
1
D

{
θ(t)ϕ(s), 0 ≤ t ≤ s < ∞,

θ(s)ϕ(t), 0 ≤ s ≤ t < ∞.
(2.5)

where θ(t) and ϕ(t) are given in (2.3) and (2.4) respectively.

Lemma 1. Suppose that (H1)− (H6) are satisfied. Then x ∈ PC1(J)∩C2(J
′
+) is

a solution of the impulsive IBVP (1.1) if and only if x(t) is a solution of the following
integral equation

x(t) =
∫

∞

0
G(t,s)p(s) f (s,x(s),x

′
(s))ds+

ϕ(t)
D

∫
∞

0
g1(x(s))ψ(s)ds

+
θ(t)
D

∫
∞

0
g2(x(s))ψ(s)ds+

n

∑
k=1

G(t, tk)Ik(x(tk))+
n

∑
k=1

p(tk)Gs(t,s)|s=tk Ik(x(tk)),

where G(t,s) is given by (2.5).

Remark 1. Under the conditions (H1) and (H6), the Green function G(t,s) in
equation (2.5) possesses the following properties:

(1) G(t,s) is continuous on J+× J+,
(2) for each s ∈ J+, G(t,s) is continuously differentiable on J+ except t = s,

(3)
∂G(t,s)

∂t

∣∣
t=s+ −

∂G(t,s)
∂t

∣∣
t=s− =

1
p(s)

,

(4) G(t,s)≤ G(s,s)< ∞, and Gs(t,s)≤ Gs(t,s)
∣∣
t=s < ∞,

(5) |Gt(t,s)| ≤
c

p(t)
G(s,s), and |Gst(t,s)| ≤

c
p(t)

Gs(t,s)
∣∣
t=s, where

c =
max{a1,a2}
min{b1,b2}

, (2.6)

(6) G(s) = lim
t→∞

G(t,s) =
b2

D
θ(s)≤ G(s,s)< ∞,

(7) G
′
(s) = lim

t→∞
Gs(t,s) =

b2

D
θ
′
(s)≤ Gs(t,s)

∣∣
t=s < ∞,

(8) for any t ∈ [a,b]⊂ (0,∞) and s ∈ [0,∞), we have

G(t,s)≥ wG(s,s),
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where

w = min
{ b1 +a1B(0,a)

b1 +a1B(0,∞)
,
b2 +a2B(b,∞)

b2 +a2B(0,∞)

}
. (2.7)

Obviously, 0 < w < 1.

Define

(T x)(t) =
∫

∞

0
G(t,s)p(s) f (s,x(s),x′(s))ds+

ϕ(t)
D

∫
∞

0
g1(x(s))ψ(s)ds

+
θ(t)
D

∫
∞

0
g2(x(s))ψ(s)ds+

n

∑
k=1

G(t, tk)Ik(x(tk)) (2.8)

+
n

∑
k=1

p(tk)Gs(t,s)|s=tk Ik(x(tk)),

where G is defined by as in (2.5).
Obviously, the impulsive IBVP (1.1) has a solution x if and only if x ∈ K is a fixed

point of the operator T defined by (2.8).
It is convenient to list the following condition which is to be used in our theorems:

(H7) 0 <
∫

∞

0
G(s,s)p(s)k(s)ds < ∞.

As we know that the Ascoli-Arzela Theorem does not hold in infinite interval J, we
need the following compactness criterion:

Lemma 2 ([20]). Let M ⊂ BPC1(J). Then M is relatively compact in BPC1(J) if
the following conditions hold.

(i) M is uniformly bounded in BPC1(J).
(ii) The function belonging to M are equicontinuous on any compact interval of

[0,∞).
(iii) The functions from M are equiconvergent, that is, for any given ε > 0, there

exist a T = T (ε)> 0 such that | f (t)− f (∞)|< ε for any t > T, f ∈ M.

The main tool of this work is a fixed point theorem in cones.

Lemma 3 ([26]). Let X be an Banach space and K is a positive cone in X. Assume
that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let T : K ∩ (Ω2\Ω1)→ K
be a completely continuous operator such that

(i)
∥∥T x

∥∥≤
∥∥x

∥∥ for all x ∈ K ∩∂Ω1.
(ii) There exists a Φ ∈ K such that x ̸= T x+λΦ, for all x ∈ K ∩∂Ω2 and λ > 0.

Then T has a fixed point in K ∩ (Ω2\Ω1).

Lemma 4. If (H1)-(H7) are satisfied, then for any bounded open set Ω⊂BPC1(J),
T : K ∩Ω → K is a completely continuous operator.
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Proof. For any bounded open set Ω ⊂ BPC1(J), there exists a constant M > 0 such
that

∥∥x
∥∥≤ M for any x ∈ Ω.

First, we show T : K ∩Ω → K is well defined. Let x ∈ K ∩Ω. From (H2), (H3)
and (H4), we have

SM = sup{S1,S2,S3,S4,S5}, (2.9)

where

S1 = sup{h(x,y) : |x|+ |y| ≤ M}< ∞, S2 = sup{Ik(x) : 0 ≤ x ≤ M},
S3 = sup{Ik(x) : 0 ≤ x ≤ M}, S4 = sup{g1(x) : 0 ≤ x ≤ M},
S5 = sup{g2(x) : 0 ≤ x ≤ M}.

Let t1, t2 ∈ J, t1 < t2, then∫
∞

0

∣∣G(t1,s)−G(t2,s)
∣∣p(s)k(s)ds ≤ 2

∫
∞

0
G(s,s)p(s)k(s)ds < ∞. (2.10)

Hence, by the Lebesgue dominated convergence theorem, we have for any t1, t2 ∈ J,
x ∈ K ∩Ω, we have∣∣(T x)(t1)− (T x)(t2)

∣∣
≤

∫
∞

0

∣∣G(t1,s)−G(t2,s)
∣∣p(s) f (s,x(s),x

′
(s))ds

+
|ϕ(t1)−ϕ(t2)|

D

∫
∞

0
g1(x(s))ψ(s)ds+

|θ(t1)−θ(t2)|
D

∫
∞

0
g2(x(s))ψ(s)ds

+
n

∑
k=1

∣∣G(t1, tk)−G(t2, tk)
∣∣Ik(x(tk))

+
n

∑
k=1

∣∣p(tk)Gs(t,s)|t=t1
s=tk

− p(tk)Gs(t,s)|t=t2
s=tk

∣∣Ik(x(tk))

≤ SM

{∫
∞

0

∣∣G(t1,s)−G(t2,s)
∣∣p(s)k(s)ds

+

[
|ϕ(t1)−ϕ(t2)|

D
+

|θ(t1)−θ(t2)|
D

]∫
∞

0
ψ(s)ds+

n

∑
k=1

∣∣G(t1, tk)−G(t2, tk)
∣∣

+
1
D ∑

tk≤t1

p(tk)θ
′
(tk)

∣∣ϕ(t1)−ϕ(t2)
∣∣}+

1
D ∑

t2≤tk

p(tk)
∣∣ϕ′

(tk)
∣∣∣∣θ(t1)−θ(t2)

∣∣
+

1
D ∑

t1≤tk≤t2

p(tk)
∣∣θ′

(t1)ϕ
′
(tk)−θ

′
(tk)ϕ

′
(t2)

∣∣}
→ 0 as t1 → t2, (2.11)∣∣(T x)

′
(t1)− (T x)

′
(t2)

∣∣
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≤ SM

{
a2

D

∣∣∣∣ 1
p(t1)

− 1
p(t2)

∣∣∣∣∫ t1

0
θ(s)p(s)k(s)ds+

a1

Dp(t1)

∫ t2

t1
ϕ(s)p(s)k(s)ds

+
a1

D

∣∣∣∣ 1
p(t1)

− 1
p(t2)

∣∣∣∣∫ ∞

t2
ϕ(s)p(s)k(s)ds+

a2

Dp(t2)

∫ t2

t1
θ(s)p(s)k(s)ds

+
a2

D

∣∣∣∣ 1
p(t2)

− 1
p(t1)

∣∣∣∣∫ ∞

0
ψ(s)ds+

a1

D

∣∣∣∣ 1
p(t1)

− 1
p(t2)

∣∣∣∣∫ ∞

0
ψ(s)ds

+
a1

D

∣∣∣∣ 1
p(t1)

− 1
p(t2)

∣∣∣∣ ∑
t2≤tk

[
ϕ(tk)+ p(tk)|ϕ

′
(tk)|

]
+

a2

D

∣∣∣∣ 1
p(t1)

− 1
p(t2)

∣∣∣∣ ∑
tk≤t1

[
θ(tk)+ p(tk)θ

′
(tk)

]
+

a1

Dp(t1)
∑

t1≤tk≤t2

[
ϕ(tk)+ p(tk)|ϕ

′
(tk)|

]
+

a2

Dp(t2)
∑

t1≤tk≤t2

[
θ(tk)+ p(tk)θ

′
(tk)

]}
→ 0 as t1 → t2. (2.12)

Thus, T x ∈ PC1(J). We can show that T x ∈ BPC1(J).
Then by (H5), (H7), the properties (5), (6), (7) of Remark 1 and the Lebesgue

dominated convergence theorem, we have

lim
t→∞

(T x)(t) =
∫

∞

0
G(s)p(s) f (s,x(s),x

′
(s))ds+

ϕ(∞)

D

∫
∞

0
g1(x(s))ψ(s)ds

+
θ(∞)

D

∫
∞

0
g2(x(s))ψ(s)ds+

n

∑
k=1

G(tk)Ik(x(tk)) (2.13)

+
n

∑
k=1

p(tk)G
′
(tk)Ik(x(tk))< ∞

and∣∣(T x)
′
(t)

∣∣≤ SM

{
c

p(t)

∫
∞

0
G(s,s)p(s)k(s)ds+

max{a1,a2}
Dp(t)

∫
∞

0
ψ(s)ds

+
c

p(t)

n

∑
k=1

G(tk, tk)+
c

p(t)

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

}
< ∞.

(2.14)

Therefore, sup
t∈J

|(T x)
′
(t)|< ∞. Hence T : K ∩Ω → K is well defined.

Next, we prove that T is continuous. Let xn → x in K ∩Ω, then ∥xn∥ ≤ M, (n =
1,2, ...). We will show that T xn → T x. For any ε > 0, by (H7) there exists a constant
A0 > 0 such that

SM

∫
∞

A0

G(s,s)p(s)k(s)ds ≤ ε

12
. (2.15)



260 ILKAY YASLAN KARACA AND SEZGI AKSOY

On the other hand, by the continuity of f (t,u,v) on (0,A0]× J+×R, the continuities
of g1, g2 on J+ and the continuities of Ik, Ik on J+, for the above ε > 0, there exists
a δ > 0 such that, for any u, v, u1, v1, satisfying |u|+ |v| < M, and |u1|+ |v1| < M,∣∣u−u1

∣∣+ ∣∣v− v1
∣∣< δ,

∣∣ f (s,u,v)− f (s,u1,v1)
∣∣< ε

6

(∫ A0

0
G(s,s)p(s)ds

)−1

,

∣∣g1(u)−g1(u1)
∣∣< ε

6

(
ϕ(0)

D

∫
∞

0
ψ(s)ds

)−1

,

∣∣g2(u)−g2(u1)
∣∣< ε

6

(
θ(∞)

D

∫
∞

0
ψ(s)ds

)−1

, (2.16)

∣∣Ik(u(tk))− Ik(u1(tk))
∣∣< ε

6

( n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

)−1

,

∣∣Ik(u(tk))− Ik(u1(tk))
∣∣< ε

6

( n

∑
k=1

G(tk, tk)
)−1

.

From the fact that ∥xn−x∥→ 0 as n → ∞, for above δ, there exists a sufficiently large
number N such that, when n > N, we have, for t ∈ (0,A0],

|xn(t)− x(t)|+ |x′
n(t)− x

′
(t)| ≤ ∥xn − x∥< δ. (2.17)

By (2.15)-(2.16), we have, for n > N,∣∣(T xn)(t)− (T x)(t)
∣∣≤ ∣∣∣∣∫ ∞

0
G(s,s)p(s)

[
f (s,xn(s),x

′
n(s))− f (s,x(s),x

′
(s))

]
ds

+
ϕ(0)

D

∫
∞

0

[
g1(xn(s))−g1(x(s))

]
ψ(s)ds

+
θ(∞)

D

∫
∞

0

[
g2(xn(s))−g2(x(s))

]
ψ(s)ds

+
n

∑
k=1

G(tk, tk)
[
Ik(xn(tk))− Ik(x(tk))

]
+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

[
Ik(xn(tk))− Ik(x(tk))

]∣∣∣∣
≤

∫ A0

0
G(s,s)p(s)

∣∣ f (s,xn(s),yn(s))− f (s,x(s),y(s))
∣∣ds

+2SM

∫
∞

A0

G(s,s)p(s)k(s)ds

+
ϕ(0)

D

∫
∞

0

∣∣g1(xn(s))−g1(x(s))
∣∣ψ(s)ds
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+
θ(∞)

D

∫
∞

0

∣∣g2(xn(s))−g2(x(s))
∣∣ψ(s)ds

+
n

∑
k=1

G(tk, tk)
∣∣Ik(xn(tk))− Ik(x(tk))

∣∣
+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

∣∣Ik(xn(tk))− Ik(x(tk))
∣∣

<
ε

6
+

ε

6
+

ε

6
+

ε

6
+

ε

6
+

ε

6
= ε.

Similarly, we can see that when ∥xn − x∥ → 0 as n → ∞, |(T xn)
′
(t)− (T x)

′
(t)| → 0

as n → ∞. This implies that T is a continuous operator.
Finally we show that T : K∩Ω → K is a compact operator. In fact for any bounded

set D ⊂ Ω, there exists a constant R > 0 such that ∥x∥ ≤ R for any x ∈ K∩D. Hence,
we have

|(T x)(t)| ≤
∣∣∣∣∫ ∞

0
G(s,s)p(s) f (s,x(s),x

′
(s))ds+

ϕ(0)
D

∫
∞

0
g1(x(s))ψ(s)ds

+
θ(∞)

D

∫
∞

0
g2(x(s))ψ(s)ds

+
n

∑
k=1

G(tk, tk)Ik(x(tk))+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Ik(x(tk))
∣∣∣∣

≤ SR

(∫
∞

0
G(s,s)p(s)k(s)ds+

ϕ(0)
D

∫
∞

0
ψ(s)ds

+
θ(∞)

D

∫
∞

0
ψ(s)ds+

n

∑
k=1

G(tk, tk)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

)
< ∞.

From (2.14), we get |(T x)
′
(t)| < ∞, for t ∈ J. Therefore, T (K ∩D) is uniformly

bounded in BPC1(J).
Given r > 0, for any t1, t2 ∈ J, x ∈ K ∩D, as the proof of (2.11), (2.12), we can

get |(T x)(t1)− (T x)(t2)| → 0 and |(T x)
′
(t1)− (T x)

′
(t2)| → 0 as t1 → t2, i.e.,

∥(T x)(t1)− (T x)(t2)∥→ 0 as t1 → t2. Thus F = {T x : x ∈ K∩D} is equicontinuous
on [0,r]. Since r > 0 arbitrary, F is locally equicontinuous on J+. By (H5), (H7) the
properties (5), (6), (7) and the Lebesgue dominated converges theorem, we get

|(T x)(t)− (T x)(∞)| ≤ SR

(∫
∞

0

∣∣G(t,s)−G(s)
∣∣p(s)k(s)ds

+
|ϕ(t)−ϕ(∞)|

D

∫
∞

0
ψ(s)ds+

|θ(t)−θ(∞)|
D

∫
∞

0
ψ(s)ds

+
n

∑
k=1

∣∣G(t, tk)−G(tk)
∣∣+ 1

D ∑
tk≤t

p(tk)θ
′
(tk)

∣∣ϕ(t)−ϕ(∞)
∣∣
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+
1
D ∑

t≤tk

p(tk)
∣∣θ(t)ϕ′

(tk)−θ(tk)ϕ
′
(∞)

∣∣)
→ 0 as t → ∞

and

|(T x)
′
(t)− (T x)

′
(∞)| ≤ SR

{
a2

D

∣∣∣∣ 1
p(t)

− 1
p(∞)

∣∣∣∣∫ t

0
θ(s)p(s)k(s)ds

+
a1

D

∣∣∣∣ 1
p(t)

− 1
p(∞)

∣∣∣∣∫ ∞

t
ϕ(s)p(s)k(s)ds

+
a2

D

∣∣∣∣ 1
p(t)

− 1
p(∞)

∣∣∣∣∫ ∞

0
ψ(s)ds

+
a1

D

∣∣∣∣ 1
p(t)

− 1
p(∞)

∣∣∣∣∫ ∞

0
ψ(s)ds

+
a1

Dp(t) ∑
t≤tk

[
ϕ(tk)+ p(tk)|ϕ

′
(tk)|

]
+

a2

D

∣∣∣∣ 1
p(t)

− 1
p(∞)

∣∣∣∣ ∑
tk≤t

[
θ(tk)+ p(tk)θ

′
(tk)

]
+

a2

Dp(∞) ∑
t≤tk

p(tk)
[
θ(tk)+ p(tk)θ

′
(tk)

]}
→ 0 as t → ∞. (2.18)

Hence T (K ∩D) is equiconvergent in BPC1(J). By Lemma 2, we have that F is
relatively compact in BPC1(J). Therefore, T : K ∩Ω → K is completely continuous.

□

3. MAIN RESULTS

For convenience and simplicity in the following discussion, we use following nota-
tions:

f0 = lim
|x|+|y|→0

in f min
t∈[a,b]

f (t,x,y)
|x|+ |y|

, f∞ = lim
|x|+|y|→∞

in f min
t∈[a,b]

f (t,x,y)
|x|+ |y|

,

gi0 = lim
x→0

in f
gi(x)

x
(1 ≤ i ≤ 2), gi∞ = lim

x→∞
in f

gi(x)
x

(1 ≤ i ≤ 2),

hq = lim
|x|+|y|→q

sup
h(x,y)
|x|+ |y|

, gq
i = lim

x→q
sup

gi(x)
x

(1 ≤ i ≤ 2),

I0(k) = lim
x→0

in f
Ik(x)

x
, I∞(k) = lim

x→∞
in f

Ik(x)
x

,

I0(k) = lim
x→0

in f
Ik(x)

x
, I∞(k) = lim

x→∞
in f

Ik(x)
x

,
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Iq(k) = lim
x→q

sup
Ik(x)

x
, Iq

(k) = lim
x→q

sup
Ik(x)

x
.

Theorem 1. Assume that the conditions (H1)-(H7) are satisfied. Then the impuls-
ive IBVP (1.1) has at least two positive solutions satisfying 0 < ∥x1∥ < q < ∥x2∥ if
for [a,b]⊂ (0,∞), the following conditions hold:

(A1) w
(

f0

∫ b

a
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g10 +g20)
∫ b

a
ψ(s)ds

+
n

∑
k=1

G(tk, tk)I0(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I0(k)
)
> 1,

w
(

f∞

∫ b

a
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g1∞
+g2∞

)
∫ b

a
ψ(s)ds

+
n

∑
k=1

G(tk, tk)I∞(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I∞(k)
)
> 1,

(A2) There exists a q > 0 such that[
1+ csup

t∈J

1
p(t)

]{
hq

∫
∞

0
G(s,s)p(s)k(s)ds+

max{ϕ(0),θ(∞)}
D

(gq
1 +gq

2)

×
∫

∞

0
ψ(s)ds+

n

∑
k=1

G(tk, tk)I
q
(k)+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Iq(k)
}
< 1,

for all 0 < |x|+ |x′ | ≤ q, a.e. t ∈ [0,∞).

Proof. By the definition of f0, I0, I0,g10 and g20 for any ε > 0, there exist r ∈ (0,q)
such that,

f (t,x,y)≥ (1− ε) f0(|x|+ |y|), (|x|+ |y| ≤ r, t ∈ [a,b])

g1(x)≥ (1− ε)g10x, g2(x)≥ (1− ε)g20x,

Ik(x)≥ (1− ε)I0(k)x, Ik(x)≥ (1− ε)I0(k)x,

(1− ε)w
(

f0

∫ b

a
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g10 +g20)
∫ b

a
ψ(s)ds

+
n

∑
k=1

G(tk, tk)I0(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I0(k)
)
≥ 1.

Define the open sets

Ωr =
{

x ∈ BPC1(J) : ∥x∥< r
}
.

Let Φ = 1 then, Φ ∈ K. Now we prove that

x ̸= T x+λΦ, ∀x ∈ K ∩∂Ωr, λ > 0. (3.1)
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We assume that x0 = T x0 +λ0Φ where x0 ∈ K∩∂Ωr and λ0 > 0. Let µ = min
t∈[a,b]

x0(t),

then for any t ∈ [a,b], we have

x0(t) = T x0(t)+λ0Φ

=
∫

∞

0
G(t,s)p(s) f (s,x0(s),x

′
0(s))ds

+
ϕ(t)
D

∫
∞

0
g1(x0(s))ψ(s)ds+

θ(t)
D

∫
∞

0
g2(x0(s))ψ(s)ds

+
n

∑
k=1

G(t, tk)Ik(x0(tk))+
n

∑
k=1

p(tk)Gs(t,s)|s=tk Ik(x0(tk))+λ0

> wµ(1− ε)

{
f0

∫ b

a
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g10 +g20)

×
∫ b

a
ψ(s)ds+

n

∑
k=1

G(tk, tk)I0(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I0(k)
}
+λ0

≥ µ+λ0.

This implies µ > µ+λ0 a contradiction. Therefore (3.1) holds.
By the definition of f∞, I∞, I∞,g1∞

and g2∞
for any ε > 0, there exist R > q such

that,

f (t,x,y)≥ (1− ε) f∞(|x|+ |y|), (|x|+ |y| ≥ R, t ∈ [a,b]),

g1(x)≥ (1− ε)g1∞
x, (∀|x| ≥ R), g2(x)≥ (1− ε)g2∞

x,

Ik(x)≥ (1− ε)I∞(k)x, Ik(x)≥ (1− ε)I∞(k)x,

(1− ε)w
(

f∞

∫
∞

0
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g1∞
+g2∞

)
∫

∞

0
ψ(s)ds

+
n

∑
k=1

G(tk, tk)I∞(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I∞(k)
)
≥ 1.

Define the open sets

ΩR =
{

x ∈ BPC1(J) : ∥x∥< R
}
. (3.2)

As the proof of (3.1), we can get that

x ̸= T x+λΦ, ∀x ∈ K ∩∂ΩR, λ > 0. (3.3)

On the other hand, for any ε > 0, choose q in (A2) such that

(1+ ε)

[
1+ csup

t∈J

1
p(t)

]{
hq

∫
∞

0
G(s,s)p(s)k(s)ds+

max{ϕ(0),θ(∞)}
D

(gq
1 +gq

2)
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×
∫

∞

0
ψ(s)ds+

n

∑
k=1

G(tk, tk)I
q
(k)+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Iq(k)
}
≤ 1. (3.4)

By the definition of hq, Iq, Iq
, gq

1 and gq
2, for the above ε > 0, there exists δ > 0,

when |x|, |x|+ |y| ∈ (q−δ,q+δ); thus, we get

h(x,y)≤ (1+ ε)hq(|x|+ |y|), gi(x)≤ (1+ ε)gq
i x, 1 ≤ i ≤ 2

Ik(x)≤ (1+ ε)Iq(k)x, Ik(x)≤ (1+ ε)Iq
(k)x.

Define the open sets

Ωq =
{

x ∈ BPC1(J) : ∥x∥< q
}
. (3.5)

Then for any x ∈ K ∩∂Ωq and t ∈ J we obtain that

|(T x)(t)|+ |(T x)′(t)| ≤
∫

∞

0
G(s,s)p(s) f (s,x(s),x

′
(s))ds

+
max{ϕ(0),θ(∞)}

D

∫
∞

0
[g1(x(s))+g2(x(s))]ψ(s)ds

+
n

∑
k=1

G(tk, tk)Ik(x(tk))+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Ik(x(tk))

+ csup
t∈J

1
p(t)

∫
∞

0
G(s,s)p(s) f (s,x(s),y(s))ds

+
max{a1,a2}

D
sup
t∈J

1
p(t)

∫
∞

0
[g1(x(s))+g2(x(s))]ψ(s)ds

+ csup
t∈J

1
p(t)

[
n

∑
k=1

G(tk, tk)Ik(x(tk))

+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Ik(x(tk))]

≤
[

1+ csup
t∈J

1
p(t)

]∫
∞

0
G(s,s)p(s)k(s)h(x(s),x

′
(s))ds

+

[
max{ϕ(0),θ(∞)}

D
+

max{a1,a2}
D

sup
t∈J

1
p(t)

]
×

∫
∞

0
[g1(x(s))+g2(x(s))]ψ(s)ds

+

[
1+ csup

t∈J

1
p(t)

][ n

∑
k=1

G(tk, tk)Ik(x(tk))

+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Ik(x(tk))
]
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≤ (1+ ε)

[
1+ csup

t∈J

1
p(t)

][
hq

∫
∞

0
G(s,s)p(s)k(s)ds

+
max{ϕ(0),θ(∞)}

D
× (gq

1 +gq
2)

∫
∞

0
ψ(s)ds

+
n

∑
k=1

G(tk, tk)I
q
(k)+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Iq(k)
]
∥x∥ ≤ ∥x∥.

Therefore ∥T x∥ ≤ ∥x∥.
So, we can get the existence of two positive solutions x1 and x2 satisfying 0 <

∥x1∥< q < ∥x2∥ by using Lemma 3. □

Using a similar proof of Theorem 1, we can get the following theorem.

Theorem 2. Assume that the conditions (H1)-(H7) are satisfied. Then the impuls-
ive IBVP (1.1) has at least two positive solutions satisfying 0 < ∥x1∥ < q < ∥x2∥ if
for [a,b]⊂ (0,∞), the following conditions hold;

(A3)
[

1+ csup
t∈J

1
p(t)

]{
h0

∫
∞

0
G(s,s)p(s)k(s)ds+

max{ϕ(0),θ(∞)}
D

(g0
1 +g0

2)

×
∫

∞

0
ψ(s)ds+

n

∑
k=1

G(tk, tk)I
0
(k)+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I0(k)
}
< 1,[

1+ csup
t∈J

1
p(t)

]{
h∞

∫
∞

0
G(s,s)p(s)k(s)ds+

max{ϕ(0),θ(∞)}
D

(g∞
1 +g∞

2 )

×
∫

∞

0
ψ(s)ds+

n

∑
k=1

G(tk, tk)I
∞
(k)+

n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

I∞(k)
}
< 1,

(A4) There exists a q > 0 such that

w
{

fq

∫ b

a
G(s,s)p(s)ds+

min{ϕ(∞),θ(0)}
D

(g1q +g2q)
∫ b

a
ψ(s)ds

+
n

∑
k=1

G(tk, tk)Iq(k)+
n

∑
k=1

p(tk)Gs(t,s)|t=tk
s=tk

Iq(k)
}
> 1,

for all 0 < |x|+ |x′ | ≤ q, a.e. t ∈ [0,∞).

4. EXAMPLE

To illustrate how our main results can be used in practise we present the following
example.
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Consider the following boundary value problem:

e−t(etx′(t))′+ f (t,x(t),x
′
(t)) = 0, t ∈ J+, t ̸= 1

2 ,

∆x|t= 1
2
=

1
100

x(
1
2
),

∆x′|t= 1
2
=

1

2− e−
1
2

x−1(
1
2
),

x(0) =
1

40π

∫
∞

0

x2(s)
1+ s2 ds,

lim
t→∞

etx′(t) =
1

8000π

∫
∞

0

x2(s)
1+ s2 ds,

(4.1)

where

f (t,x(t),x
′
(t)) =

e−t

et −2
, a1 = 1,a2 = 0, b1 = 1, b2 = 1, p(t) = et , ψ(t) =

1
1+ t2 ,

Ik(x(t)) =
x(t)
100

, Ik(x(t)) =
x−1(t)

2− e−
1
2
, g1(x(s)) =

x2(s)
40π

, g2(x(s)) =
x4(s)

8000π
.

Set k(t) =
e−t

et −2
, h(x(t), y(t)) = 1 and q = 10. It follows from a direct calculation

that

gq
1 =

1
4π

, gq
2 =

1
8π

, g1∞
= ∞, g2∞

= ∞, g10 = 0, g20 = 0, Iq(k) =
1

100
,

Iq
(k) =

1

100(1− e−
1
2 )
, I0(k) =

1
100

, I0(k) = ∞, I∞(k) =
1

100
, I∞(k) = 0.

Furthermore, f0 = ∞, f∞ = 1,
∫

∞

0
G(s,s)p(s)k(s)ds = 1 and

∫
∞

0
ψ(s)ds =

π

2
. Thus

(A1) and (A2) are satisfied. Therefore, by Theorem 1, the impulsive IBVP (4.1) has
at least two positive solutions x1,x2 satisfying 0 < ∥x1∥< 10 < ∥x2∥.
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