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Abstract. In this paper, we present a mathematical model governing the dynamics of tumour-
immune cells interaction under HIV infection. The interactions between tumour cells, helper
T-cells, infected helper T-cells and virus cells are explained by using delay differential equations
including two different discrete time delays. In the model, these time lags describe the time
needed by the helper T-cells to find (or recognize) tumour cells and virus, respectively. First,
we analyze the dynamics of the model without delays. We prove the positivity of the solution,
analyze the local and global stabilities of the steady states of the model. Second, we study
the effects of two discrete time delays on the stability of the endemically infected equilibrium
point. We determine the conditions on parameters at which the system undergoes a zero-Hopf
bifurcation. Choosing one of the delay terms as a bifurcation parameter and fixing the other, we
show that a zero-Hopf bifurcation arises as the bifurcation parameter passes through a critical
value. Finally, we perform numerical simulations to support and extend our theoretical results.
The results concluded help to better understand the links between the immune system and the
tumour development in the case of HIV infection.
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1. INTRODUCTION

Human immunodeficiency virus (HIV) is a retrovirus that attacks and destroys
the immune system, so that it causes the HIV infection [10] and the disease called
AIDS (Acquired Immune Deficiency Syndrome [8, 24, 30]). AIDS is a condition in
humans in which the progressive collapse of the immune system allows infections and
cancers which threat human life. According to data published by the World Health
Organization (WHO), it is presumed that more than 35 million people died due to
AIDS since it was first discovered in 1981, and 37.9 million people were living with
HIV at the end of 2018. There is no cure for AIDS but there are certain medicines
that are used to slow down this disease.

c© 2020 Miskolc University Press
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The main target of HIV is the immune system, especially the CD4+ T-cells, which
are the most sufficient white blood cells, or lymphocytes. CD4+ T lymphocytes
play a central role in orchestrating the beginning and maintenance of the adaptive
immune response [2,13]. These cells are more commonly referred to as helper T-cells
which is the term we will use in this paper. The helper T-cells can be categorized as
effector and non-effector helper T-cells. The effector helper T-cells are triggered by
the tumour cell proliferation, and they have a death rate which is considerably small
compare to the normal helper T-cells. These cells are mediated by the cytokines
secreted by the differentiated cells. Therefore, they are specific to certain disease [2].
HIV causes the destruction of helper T-cells; as a result, it decreases the body’s ability
to fight the infection. The count of helper T-cell is normally around 1000 mm−3 in a
human being. However, when it decreases to 200 mm−3 or below in an HIV infected
individual, then that person is classified as having AIDS [15, 26].

HIV infected individuals have a high risk of developing certain tumours. The
connection between HIV/AIDS and certain tumours has not been understood com-
pletely, but it likely depends on a weakened immune system [4, 6, 33, 36]. When
normal cells begin to change and grow uncontrollably, a mass called tumour forms.
A tumour can be benign, also called non-cancerous, or malignant which is cancerous
(see the reference [1] for more details). Malignancies that are found to have a high
incidence of HIV-infected individuals are Kaposi’s sarcoma (KS), Hodgkin’s disease
(HD), non-Hodgkin’s lymphoma (NHL), squamous cell carcinomas, plasmacytomas
and leiomyosarcoma in children [36]. In the tumour cells of HIV infected patients,
no viral sequence in the DNA was found; therefore, it seems that the virus doesn’t
include the tumour itself [20]. Furthermore, the immune surveillance hypothesis ex-
plains that the immune system patrols the body to recognize and destroy invading
pathogens [6, 7].

There is a variety of mathematical models that studied and analyzed the tumour
growth [19, 27]. Also, in recent years, modeling, analysis and control of the HIV
infection have attracted the attention of researchers in bio-mathematics (see, for ex-
ample, [11, 25, 26] and references cited therein). However, the interaction between
both the HIV-immune system and the tumour-immune system has not been fully un-
derstood, since several types of tumours are associated to the HIV occurrence. There-
fore, it is important to investigate the dynamics of the immune system in this situation.
A few of such studies can be found in [5, 12, 21, 22, 29].

The aim of this work is to better understand the interaction between tumour and
immune system in an HIV infected individual. More precisely, we want to analyze
how the existence of HIV infection affects the dynamics of the immune system and
tumour cells. To do this, we use a system of delay differential equations where the
time lag describes the time needed by helper T-cells to find (or it can be said ’re-
cognize’) tumour cells and virus. Inspired by the studies in [12, 29], we present a
mathematical model involving four populations: tumour cells, uninfected effector
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helper T-cells, infected helper T-cells and free virus. The models presented in this
manuscript and also [12, 29] are improved from the model introduced in the papers
by Lou et al. [21, 22]. In [22], Lou et al. presented a model of cell-to-cell spread
of HIV together with tumour in tissue cultures (in vitro). They aimed at explaining
some properties concerning tumour occurring during the HIV infection. The same
model is studied with the delay in [21].

In [5], Bodnar et al. proposed a model to describe the HIV related tumour-immune
system interactions in vitro. Moreover, in [12], Forys and Poleszczuk considered
a similar model. However, they considered the issue of immune reaction against
tumour and the second way for HIV to disseminate in vivo (circulating free viral
particles to T-cells directly). In [29], Rihan and Rahman studied a model which
describes the interaction between tumour cells, the general population of the helper
T-cells, infected helper T-cells and virus where the time lag is considered to represent
the time needed by the healthy effector cells to recognize the tumour cells and virus.
Also, they consider that HIV disseminates in vivo by circulating free viral particles
to T-cells directly.

The difference between the study in [29] and the present paper is that the model we
examined here involves two different discrete delays, and its stability and bifurcation
analysis is given for the full model, i.e., without reducing the dimension of the model
proposed. In addition, the difference between the study in [12] and this work is that
the helper T-cells that we consider are exactly the effector helper T-cells, not general
ones. HIV attacks the helper T-cells but then each helper T-cell is target to the virus.
Namely, we care more about the cells that are specific to tumour and what happened
to them is more important for us.

In this paper, the existence, uniqueness and non-negativity of solutions, and also
both local and global stabilities of steady states of the model without delay are first
studied. And then, the existence of a zero-Hopf bifurcation for the model with delay
is given. Apart from Section 1, the paper is organized in the following aspect: In
Section 2, we introduce a mathematical model of HIV infection with tumour cells; the
mathematical analysis of the ODE model is performed. The theoretical results about
steady states and their stabilities are presented in Section 3. Later, the analysis is
presented for the DDE model in Section 4. The existence of a zero-Hopf bifurcation
is investigated in this section. Numerical simulations that support and extend the
theoretical results are given in Section 5. Section 6 is devoted to conclusions and
predictions of the models.

2. THE MODEL

We consider the following delay differential equation system describing the tumour-
immune system interactions in the case of HIV:
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dT
dt

= r1T (t)− k1T (t)E(t− τ1),

dE
dt

= r2T (t)−µ1E(t)−θk1T (t)E(t− τ1)− k2E(t− τ2)V (t),

dI
dt

= k2E(t− τ2)V (t)− cI(t),

dV
dt

= NδI(t)−µ2V (t),

(2.1)

where T (t), E(t), I(t), V (t) denote the concentration of tumour cells, healthy effector
helper T-cells, helper T-cells infected by free HIVs and free HIV particles at time t,
respectively, and all parameters are positive. The time lags τ1 and τ2 describe the
time needed by the helper T-cells to recognize tumour cells and virus, respectively.

We assume that the tumour cells grow exponentially with a constant proliferation
rate; we do not consider resource limitation. Such type of tumour growth is experi-
mentally observed at the beginning of the tumour development [35]. Also, we assume
the linear response of the immune system to tumour cell presence. In the model, we
take this response as proportional to the multiplication of both tumour and immune
system cell concentrations.

Healthy effector helper T-cells are reproduced as a result of the presence of tumour.
The parameter r2 indicates the antigenicity of tumour. Antigenicity can be thought of
as a measure of how different the tumour cells are from normal cells [16]. Parameters
µ1, c and µ2 are natural death rates of the healthy T-cells, the infected T-cells and the
HIV particles, respectively, because cells have a finite life span. Also, the parameter θ

represents the small percentage of T-cells that do not survive after killing the tumour
cells (the inequality θ≤ 1 is obvious because of the definition of this parameter).

HIV can spread out in vivo either by transmission of cell-free virus or directly
from cell-to-cell via the formation of virological synapses as stated in [9, 17, 18]. In
this model, similar to [11], we assume that the transition of the healthy T-cells into
the infected ones is due to direct interaction with the virus. Accordingly, the infection
rate is given by k2 which increases the count of the infected helper T-cells.

Finally, according to [26], the virus is produced by the productively infected T-
cells. Here, we have assumed that on average each productively infected helper T-
cell produces N virus during its lifetime. Since the average lifetime of a productively

infected cell is
1
δ

, the average rate of virus production is Nδ. Therefore, Nδ represents
the source for free viruses. In this derivation, we have ignored the loss of virus due
to the infection of a cell.
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3. ANALYSIS OF THE ODE MODEL

In this section, we study the model without delay. By taking τ1 = τ2 = 0 in system
(2.1) we obtain the following ODE model:

dT
dt

= r1T (t)− k1T (t)E(t),

dE
dt

= r2T (t)−µ1E(t)−θk1T (t)E(t)− k2E(t)V (t),

dI
dt

= k2E(t)V (t)− cI(t),

dV
dt

= NδI(t)−µ2V (t),

(3.1)

where all parameters and variables are the same as described in the former section.
One can write system (3.1) as a vector equation form as follows:

dX(t)
dt

= F(t,X(t)), (3.2)

where X(t) = (T (t),E(t), I(t),V (t))T and F(t) = ( f1(t), f2(t), f3(t), f4(t))T in which

f1(t) = r1T (t)− k1T (t)E(t),

f2(t) = r2T (t)−µ1E(t)−θk1T (t)E(t)− k2E(t)V (t),

f3(t) = k2E(t)V (t)− cI(t),

f4(t) = NδI(t)−µ2V (t).

3.1. Positivity of solutions

The following Lemma underlines that for positive initial data, the solution of sys-
tem (3.1) uniquely exists and remains in R4

+. From biological point of view, it means
that the model is reasonable in the sense that no population becomes negative. There-
fore, there is no need analyzing of the trivial steady state of system (3.1).

Lemma 1. The solution of system (3.1) with non-negative initial conditions T0,
E0, I0 and V0 uniquely exists and remains in R4

+.

Proof. Note that F(t,X(t)) in Eq. (3.2) is continuous and also Lipschitz with
respect to X(t) on any four-dimensional box D. Then system (3.1) has the unique
solution on [0,b) where b can be determined as t → b− at which either the solution
becomes unbounded or the solution approaches to the boundary of D. In addition,
We assume that T (t), E(t), I(t) and V (t) initially have positive values. Recall that all
constants in the system are positive. For positive initial conditions T0, E0, I0 and V0,
from the first and the second equations of system (3.1) we have the following (where
A(t) is the integrating factor):

T (t) = T0e
∫ t

0 r1−k1E(s)ds ≥ 0, ∀t ≥ 0.



916 GAMZEGUL KARAHISARLI, HUSEYIN MERDAN, AND ABDESSAMAD TRIDANE

E(t) =
A(0)E0 + r2

∫ t
0 A(s)T (s)ds

A(t)
≥ 0, ∀t ≥ 0.

From the third and the fourth equations of the system, we have

I(t) = I0e−ct + k2e−ct
∫ t

0
ecsE(s)V (s)ds,

V (t) =V0e−µ2t +Nδe−µ2t
∫ t

0
eµ2sI(s)ds.

Let us denote by t∗ the first time for which one of the populations I(t) and V (t)
become zero, or more precisely min{I(t∗),V (t∗)}= 0. Without loss of generality, let
V (t∗) = 0. So, I(t∗) > 0 for t ∈ [0, t∗] since t∗ is the first time for which one of the
populations I(t) and V (t) become zero. Also V (t)> 0 for t ∈ [0, t∗) since we assume
that T (t), E(t), I(t) and V (t) initially have non-negative values. Therefore, V (t) must
be non-increasing on [0, t∗], or more precisely

dV
dt

∣∣∣∣∣
t=t∗

6 0.

On the other hand, one can see that from the last equation of system (3.1)

dV
dt

∣∣∣∣∣
t=t∗

= NδI(t∗)−µ2V (t∗) = NδI(t∗)> 0

since the equation V (t∗) = 0 holds. Consequently, this leads to a contradiction. Thus,
there cannot be found a t∗ such that V (t∗) = 0. So, for ∀t > 0, V (t)> 0 and I(t)> 0.
This completes the proof. �

3.2. Steady states

In order to fully understand the dynamics of the model, first we must establish the
values of steady states. The steady states of system (3.1) can be obtained by setting
the equations f1(t), f2(t), f3(t), f4(t) simultaneously equal to zero. The following
lemma explains the steady states of the model.

Lemma 2. Let

ℜ1 = r2−θr1 and ℜ0 =

√
Nδk2r1

ck1µ2
.

If ℜ1 > 0, then system (3.1) has two non-negative steady states other than the trivial
one:

(1) If ℜ0 6= 1, then one obtains the non-infected steady state S0 =
(

µ1r1
k1(r2−θr1)

, r1
k1
,0,0

)
.

(2) If ℜ0 = 1, then one obtains the steady state S∗ =
(

µ1 r1+k2r1ϑ

k1(r2−θr1)
, r1

k1
, r1k2

k1c ϑ,ϑ
)

,

where ϑ ∈ R+∪{0}.
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3.3. Local stability analysis

The fact that the stability properties depend on the eigenvalues of the system is
well-known for linear ODEs. However, our model is nonlinear, and thus we must use
linearization. We will investigate the local stability properties of the steady states by
approximating the nonlinear system of differential equations with a linear system at
the points S0 and S∗. The local stability analysis of these steady states is given below.

Theorem 1. For system (3.1), if ℜ1 > 0 and ℜ0 < 1, then the steady state S0 is
locally asymptotically stable. Furthermore, the steady state S∗ is always L-stable.

Proof. First, we linearize system (3.1) around its steady states and then find its
Jacobian matrices as follows:

JS0 =


0 − µ1r1

r2−θr1
0 0

r2−θr1 −µ1− θµ1r1
r2−θr1

0 − r1k2
k1

0 0 −c r1k2
k1

0 0 Nδ −µ2

 , (3.3)

and

JS∗ =


0 −r1

µ1+k2ϑ

r2−θr1
0 0

r2−θr1 −µ1− k2ϑ−θr1(
µ1+k2ϑ

r2−θr1
) 0 − r1k2

k1

0 k2ϑ −c r1k2
k1

0 0 Nδ −µ2

 . (3.4)

If all eigenvalues of the Jacobian matrix have negative real parts, then the steady state
is locally asymptotically stable. Characteristic equation of JS0 is given by

P(λ) = λ4 +a1λ3 +a2λ2 +a3λ+a4,

where

a1 =
1

r2−θr1
((c+µ2)(r2−θr1)+µ1r2) ,

a2 =
1

k1 (r2−θr1)
((cµ2k1−Nδk2r1)(r2−θr1)+µ1k1r2(c+µ2)+µ1k1r1(r2−θr1)) ,

a3 =
µ1

k1 (r2−θr1)
(k1r1(c+µ2)(r2−θr1)+ r2(cµ2k1−Nδk2r1)),

a4 =
µ1r1

k1
(cµ2k1−Nδk2r1).

Also, one can calculate that
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a1a2a3−a2
3−a2

1a4 =
µ1r2(c+µ2)

k2
1 (r2−θr1)

3 ·
(r2−θr1)

2 (cµ2k1−Nδk2r1−µ1k1r1)
2

+(c+µ2)(r2−θr1)(cµ2k1−Nδk2r1)µ1k1r2
+(c+µ2)(r2−θr1)µ2

1k2
1r1r2 +(cµ2k1−Nδk2r1)µ2

1k1r2
2

+(c+µ2)
2(r2−θr1)

2µ1k2
1r1

 .

Here, we know all parameters are positive. If ℜ0 < 1, then we obtain a1a2a3−a2
3−

a2
1a4 > 0. So, because of the Routh-Hurwitz criteria all eigenvalues of the Jacobian

matrix for S0 have negative real parts. Thus, the steady state S0 is locally asymptot-
ically stable.

However, for the steady state S∗ the characteristic equation has the form of

P(λ) = λ4 +a1λ3 +a2λ2 +a3λ+a4,

where

a1 = c+µ1 +µ2 + k2ϑ+θr1
µ1 + k2ϑ

r2−θr1
,

a2 = θr1(c+µ2)
µ1 +ϑk2

r2−θr1
+(ϑk2 +µ1)(c+µ2 + r1),

a3 = cµ1r1 +µ1µ2r1 + cϑµ2k2 + cϑk2r1 +ϑµ2k2r1,

a4 = 0.

Here, one of the eigenvalues is equal to zero. Applying the Routh-Hurwitz criteria to
the reduced characteristic equation below:

P(λ) = λ3 +a1λ2 +a2λ+a3 +a4

we get three remaining eigenvalues of the Jacobian matrix that have negative real
parts. Therefore, the steady state S∗ is Lyapunov stable (L-stable) (see the reference
[3] for the definition of Lyapunov Stability). �

3.4. Global stability analysis

In this section, our aim is to investigate the long time behavior of the given system
by analyzing global stability. Let’s start this section with a remark. Next, we prove
the global stability of the disease-free steady state.

Remark 1. The steady state S∗ cannot be globally stable since it is L-stable. Some
numerical simulations that support this observation will be given later.

Theorem 2. For system (3.1), if ℜ1 > 0 and ℜ0 < 1, then the disease free steady
state S0 is globally asymptotically stable on Γ where

Γ =

{
(T, E, I, V ) ∈ R4

+ : T +E + I +V ≤ r1

k1

}
.
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Proof. First, system (3.1) can be thought as a compartmental model, i.e., the sys-
tem can be written as follows:

dx
dt

= F (x,y)−V (x,y)

dy
dt

= g(x,y)
(3.5)

with g = ( g1, g2 )T where g1 = r1T − k1T E and g2 = r2T − µ1E − θk1T E − k2EV .
Here, x = ( I, V )T and y = (T, E )T represent the populations in disease compartments
and non-disease compartments, respectively. In addition, F = (F1, F2 )

T and V =

(V1, V2 )
T where F1 = k2EV , F2 = NδI represent the rates of new infections in the

disease compartments, and V1 = cI, V2 = µ2V represent the transition terms in the
disease compartments.

One can easily check that following assumptions are satisfied in order to ensure
the model (3.5) is well posed:

(1) Fi(0,y) = 0 and Vi(0,y) = 0 for all y≥ 0 and i = 1,2.
(2) Fi(x,y)≥ 0 for all non-negative x and y and i = 1,2.
(3) Vi(x,y)≤ 0 whenever xi = 0, i = 1,2.
(4) V1(x,y)+V2(x,y)≥ 0 for all non-negative x and y.
(5) The disease free system dy

dt = g(0,y) has a unique equilibrium that is locally

asymptotically stable. This equilibrium point is y0 =(T0, E0 )=
(

µ1r1
k1(r2−Θr1)

,
r1

k1

)
.

Therefore, the linearized equations for the disease compartments can be written as
follows:

dx
dt

= (F−V )x,

where F and V are 2×2 matrices with entries

F =
∂Fi

∂x j
(0,y0) =

 0
k2r1

k1
Nδ 0

 and V =
∂Vi

∂x j
(0,y0) =

[
c 0
0 µ2

]
.

Hence, the next generation matrix is

K = FV−1 =

 0
k2r1

k1
Nδ 0


1

c
0

0
1
µ2

=

 0 k2r1
µ2k1

Nδ

c
0

=

 0 k2E0
µ2

Nδ

c
0

 ,
and the reproduction number R0 can be defined as the spectral radius of K (see the
references [14], [31], [34]), that can be calculated as

R0 =

√
Nδk2r1

cµ2k1
=

√
Nδk2E0

cµ2
.
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One can easily show that the biologically feasible region

Γ =

{
(T, E, I, V ) ∈ R4 : T +E + I +V ≤ r1

k1

}
is positively invariant. On the other hand, set

f (x,y) =
[

k2V (E0−E)
0

]
.

Then for the disease compartments can be written as
dx
dt

= (F−V )x− f (x,y).

So, the Lyapunov function on Γ can be constructed as in [14] and [31]. Q =W TV−1x
is a Lyapunov function where W T be the left eigenvector of V−1F . A straightforward
calculation gives

Q =W TV−1x =
[

1
k2r1
√

cµ2k1

k1c
√

Nδk2r1

]1
c

0

0
1
µ2

[ I
V

]
=

1
c

I +
k2r1
√

cµ2k1

k1cµ2
√

Nδk2r1
V.

One can now easily verify that Q is a Lyapunov function on Γ provided R0 < 1 as
follows:

dQ
dt

=
1
c
(k2EV − cI)+

k2r1
√

cµ2

k1cµ2
√

Nδk2E0
(NδI−µ2V )

=V
(

k2E
c
−

k2r1
√

cµ2

k1c
√

Nδk2E0

)
+ I
(

Nδk2r1
√

cµ2

k1cµ2
√

Nδk2E0
−1
)

=V
(

k2E
c
−

k2r1
√

cµ2

k1c
√

Nδk2E0

)
+ I
(√

Nδk2r1√
k1cµ2

−1
)
< 0.

(3.6)

Hence Q is a Lyapunov function on Γ, and the largest compact invariant set in{
(T, E, I, V ) ∈ Γ :

dQ
dt

= 0
}

is {S0}. Thus, by LaSalle’s invariance principle, every

solution of system (3.1) with initial conditions in Γ approaches S0 as t→∞ whenever
R0 < 1. Therefore, the disease-free equilibrium point S0 is globally asymptotically
stable on Γ for R0 < 1. �

4. ANALYSIS OF THE DDE MODEL

In this section, we study the local stability of the equilibria and the existence of
zero-Hopf bifurcation in system (2.1) by dividing it into the following cases due to
the delay:

(1) τ1 = τ2 = τ,
(2) τ1 > 0 and τ2 = 0,
(3) τ1 > 0, and τ2 > 0 but τ1 6= τ2.
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Note that the case without delay (τ1 = τ2 = 0) is already analyzed in the former
section. Also, note that the steady states of system (2.1) is the same as those of system
(3.1). Therefore, Lemma 2 still holds for system (2.1). We now want to analyze
the system for the endemic equilibrium point S∗ which exists under the condition
ℜ0 = 1.

4.1. Bifurcation analysis of system (2.1) when τ1 = τ2 = τ

Under the condition ℜ0 = 1, the corresponding linearized system at S∗ as follows:

dT
dt

= a13E(t− τ),

dE
dt

= a21T (t)+a22E(t)+a23E(t− τ)+a25V (t),

dI
dt

= a33E(t− τ)+a34I(t)+a35V (t),

dV
dt

= a44I(t)+a45V (t),

(4.1)

where

a13 =−
r1(µ1 + k1ϑ)

r2−θr1
, a21 = r2−θr1,

a22 =−µ1, a23 =−
r2k2ϑ−θr1µ1

r2−θr1
,

a25 =−
k2r1

k1
, a33 = k2ϑ,

a34 =−c, a35 =
k2r1

k1
,

a43 = Nδ, a45 =−µ2.

Therefore, for this case corresponding characteristic equation of system (4.1) be-
comes:

P(λ,τ)≡ λ
4 +a1λ

3 +a2λ
2 + e−λτ(b1λ

3 +b2λ
2 +b3λ) = 0, (4.2)

where

a1 = c+µ1 +µ2,

a2 = µ1(c+µ2),

b1 =
k2ϑr2 +µ1θr1

r2−θr1
,

b2 =

(
k2ϑr2 +µ1θr1

r2−θr1

)
(c+µ2)+ r1(µ1 + k2ϑ),

b3 = r1(µ1k2ϑ)(c+µ2)+ cµ2k2ϑ.
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P(λ,τ) in Eq. (4.2) is a transcendental polynomial and has infinitely many roots.
First, it is easy to see that one of its roots is zero. This is a simple root since a2 and
b3 are positive because of the positivity of the parameters of the model. Notice that
when τ = 0 in Eq. (4.2), one obtains the characteristic equation of the ODE system
in which the distribution of its eigenvalues is already studied in the former section.

In this section, our aim is to investigate the existence of the zero-Hopf bifurcation.
In other words, we will determine the conditions on the parameters for the occurrence
of a zero-Hopf bifurcation. To do this, we first need to show the existence of a pair
of purely imaginary roots for Eq. (4.2).

Let us denote λ = η(τ)+ iw(τ). We look for a pair of purely imaginary roots such
that λ(τ∗) = iω(τ∗) = iω0, ω0 > 0 (without loss of generality). Notice that if such an
ω(τ∗) = ω0 does not exist, then the steady state S∗ stays stable forever because of the
continuity. It is clear that λ = iω, ω > 0, is a root of Eq. (4.2) if

(iω)3 +a1(iω)2 +a2(iω)+ e−(iω)τ(b1(iω)3 +b2(iω)+b3) = 0.

Separating the real and imaginary parts, we obtain the following equations:

−a1ω2−b1cos(ωτ)ω2 +b3cos(ωτ)+b2sin(ωτ)ω = 0,
−ω3 +a2ω+b2cos(ωτ)ω+b1sin(ωτ)ω2−b3sin(ωτ) = 0. (4.3)

Squaring first both sides of these equations and then adding them up, one reaches to
the following equation:

ω
6 +(a1

2−2a2−b1
2)ω4 +(a2

2 +2b1b3−b2
2)ω2−b3

2 = 0. (4.4)

Now, let us take ω2 = z, then we can rewrite Eq. (4.4) as follows:

z3 +(a1
2−2a2−b1

2)z2 +(a2
2 +2b1b3−b2

2)z−b3
2 = 0. (4.5)

It is obvious that −b3
2 < 0. Also, by the Vieta’s Theorem [23], it is known that the

expression b3
2 is equal to the product of the roots. Therefore, the product of the roots

of Eq. (4.5) is positive. Then, it is clear that at least one of them is positive since Eq.
(4.5) has at most three roots. As a result of this, it is assured that there is at least one
positive root ω0 of Eq. (4.4), too. Thus, the characteristic equation (4.2) has a pair of
purely imaginary roots ±iω0 at τ∗. Now, if we solve sin(ωτ) and cos(ωτ) from Eq.
(4.3) simultaneously, we obtain the following equations:

sin(ωτ) =
b2a1ω3− (b3−b1ω2)(ω3−a2ω)

b2
2
ω2 +(b1ω2−b3)2

,

cos(ωτ) =
a1ω2(b3−b1

2)+b2ω2(ω2−a2)

b2
2
ω2 +(b1ω2−b3)2

.

(4.6)

Finally, utilizing these equations we solve τn for n = 0,1,2, ... as follows:

τn =
1

ω0
arccos

(
a1ω0

2(b3−b1ω0
2)+b2ω0

2(ω0
2−a2)

b2
2
ω02 +(b1ω02−b3)2

)
+

2πn
ω0

. (4.7)
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Let us denote τ∗ = min{τn : n = 0,1,2, ..}> 0 such that iω0 = iω(τ∗) is a root of Eq.
(4.2). Now, differentiating both sides of Eq. (4.2) with respect to τ, and then utilizing
Eq. (4.2), we derive the following equation:(

dλ

dτ

)−1

=−(3λ2 +2a1λ+a2)− τe−λτ(b1λ2 +b2λ+b3)+ e−λτ(2b1λ+b2)

−λe−λτ(b1λ2 +b2λ+b3)

=
(3λ2 +2a1λ+a2)eλτ

λ(b1λ2 +b2λ+b3)
− 2b1λ+b2

λ(b1λ2 +b2λ+b3)
− τ

λ

=− 3λ2 +2a1λ+a2

λ4 +a1λ3 +a2λ2 −
2b1λ+b2

b1λ3 +b2λ2 +b3λ
− τ

λ
.

(4.8)
Thus, its reel part has the form of

Re
(

dλ

dτ

)−1
∣∣∣∣∣
τ=τ∗

=
ω2

0
(
3ω4

0 +(2a2
1−4a2)ω

2
0 +a2

2
)

(ω4
0−a2ω2

0)
2 +(a1ω3

0)
2

−
−2b2

1ω4
0 +(2b1b3−b2

2)ω
2
0

(b2ω2
0)

2 +(b3ω0−b1ω3
0)

2
> 0

since 2a2
1−4a2 > 0 and 2b1b3−b2

2 < 0. Hence, the transversality condition holds.
Combining all derivations above, we have concluded the following Theorem.

Theorem 3. Assume that ℜ1 > 0 and ℜ0 = 1 hold. Let us denote τ∗ =
min{τn : n = 0,1,2, ..} > 0 such that ω(τ∗) = ω0. Then Eq. (4.2) has a simple root
zero, and also its all other roots have negative real parts for τ ∈ [0,τ∗). Therefore, S∗

is stable for τ ∈ [0,τ∗). Moreover, system (2.1) undergoes a zero-Hopf bifurcation at
S∗ when τ passes through τ∗.

4.2. Bifurcation analysis of system (2.1) when τ1 > 0 and τ2 = 0

Under the condition ℜ0 = 1, the corresponding characteristic equation of system
(2.1) is:

P(λ,τ1)≡ λ
4 +a1λ

3 +a2λ
2 +a3λ+ e−λτ1(b1λ

3 +b2λ
2 +b3λ) = 0, (4.9)

where

a1 = c+µ1 +µ2 + k2ϑ,

a2 = (µ1 + k2ϑ)(c+µ2),

a3 = k2ϑcµ2,

b1 =
θr1(µ1 + k2ϑ)

r2−θr1
,

b2 =
θr1

r2−θr1
(c+µ2)(µ1 + k2ϑ)+ r1(µ1 + k2ϑ),

b3 = r1(µ1 + k2ϑ)(c+µ2).
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P(λ,τ1) in Eq. (4.9) is a transcendental polynomial and has infinitely many roots.
First, it is easy to see that one of its roots is zero. This is a simple root since a3 and
b3 are positive because of the positivity of the parameters of the model.

In this section, we will determine the conditions on the parameters for the occur-
rence of a zero-Hopf bifurcation. To do this, we first need to show the existence of a
pair of purely imaginary roots for Eq. (4.9).

Let us denote λ = η(τ1)+ iw(τ1). We look for a pair of purely imaginary roots
such that λ(τ∗1) = iω(τ∗1) = iω1, ω1 > 0 (without loss of generality). It is clear that
λ = iω, ω > 0, is a root of Eq. (4.9) if

(iω)3 +a1(iω)2 +a2(iω)+a3 + e−(iω)τ1(b1(iω)2 +b2(iω)+b3) = 0

Separating the real and imaginary parts, we obtain the following equations:

−a1ω2 +a3 = b1ω2cos(ωτ1)−b3cos(ωτ1)−b2ωsin(ωτ1),
ω3−a2ω = b2ωcos(ωτ1)+b1ω2sin(ωτ1)−b3sin(ωτ1).

(4.10)

Squaring first both sides of these equations and then adding them up, one reaches to
the following equation:

ω
6 +(a1

2−2a2−b1
2)ω4 +(a2

2−2a1a3 +2b1b3−b2
2)ω2 +a3

2−b3
2 = 0 (4.11)

Now, let us take ω2 = z, then we can rewrite Eq. (4.11) as follows:

z3 +(a1
2−2a2−b1

2)z2 +(a2
2−2a1a3 +2b1b3−b2

2)z+a3
2−b3

2 = 0. (4.12)

It is known that the expression b3
2− a3

2 is equal to the product of the roots by the
Vieta’s Theorem [23]. Therefore, the product of the roots of Eq. (4.12) must be
positive. Then, at least one of them must be positive since Eq. (4.12) has at most
three roots. Let us define the following:

ℜ2 = b3
2−a3

2 = r1(µ1 + k2ϑ)(c+µ2)− k2ϑcµ2

then, assume that ℜ2 > 0. This guarantees that there is at least one positive root
of Eq. (4.12). Following that, there exist at least one positive root o (4.11), too.
Thus, the characteristic equation (4.9) has a pair of purely imaginary roots ±iω1 at
τ∗1. Now, if we solve sin(ωτ) and cos(ωτ) from Eq. (4.10) simultaneously, we obtain
the following equations:

cos(ωτ) =
b2ω2(ω2−a2)+(b1ω2−b3)(a3−a1ω2)

b2
2
ω2 +(b1ω2−b3)2

,

sin(ωτ) =
(a2ω−ω3)(b3−b1ω2)−b2ω(a3−a1ω2)

b2
2
ω2 +(b1ω2−b3)2

.

(4.13)

Finally, utilizing these equations we solve τn
1 for n = 0,1,2, ... as follows:

τ
n
1 =

1
ω

arccos
(

b2ω2(ω2−a2)+(b1ω2−b3)(a3−a1ω2)

b2
2
ω2 +(b1ω2−b3)2

)
+

2πn
ω

(4.14)
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Let us denote τ∗1 = min{τn
1 : n = 0,1,2, ..}> 0 such that iω1 = iω(τ∗1) is a root of Eq.

(4.9). Now, differentiating both sides of Eq. (4.9) with respect to τ1, one can show
that the transversality condition holds.

Theorem 4. Assume that ℜ1 > 0, ℜ2 > 0 and ℜ0 = 1 hold. Let us denote τ∗1 =
min{τn

1 : n = 0,1,2, ..} > 0 such that ω(τ∗1) = ω1. Then Eq. (4.9) has a simple root
zero, and also its all other roots have negative real parts for τ1 ∈ [0,τ∗1). Therefore,
S∗ is stable for τ1 ∈ [0,τ∗1). Moreover, system (2.1) undergoes a zero-Hopf bifurcation
at S∗ when τ1 passes through τ∗1.

4.3. Bifurcation analysis of system (2.1) when τ1 > 0, τ2 > 0 but τ1 6= τ2

Under the condition ℜ0 = 1, the corresponding characteristic equation of linear-
ized system at S∗ as follows:

P(λ,τ1,τ2)≡ λ

(
P0(λ)+P1(λ)e−λτ1 +P2(λ)e−λτ2

)
= 0, (4.15)

where

P0(λ) = λ
3 +a1λ

2 +a2λ,

P1(λ) = b1λ
2 +b2λ+b3,

P2(λ) = c1λ
2 + c2λ+ c3.

The coefficients can be found in the following

a1 = c+µ1 +µ2,

a2 = µ1(c+µ2),

b1 =
θr1(µ1 + k2ϑ)

r2−θr1
,

b2 =
θr1

r2−θr1
(c+µ2)(µ1 + k2ϑ)+ r1(µ1 + k2ϑ),

b3 = r1(µ1 + k2ϑ)(c+µ2),

c1 = k2ϑ,

c2 = k2ϑ(c+µ2),

c3 = k2ϑcµ2.

P(λ,τ1,τ2) in Eq. (4.15) is a transcendental polynomial and has infinitely many
roots. Again, it is easy to see that one of its roots is zero. This is a simple root since
b3 and c3 are positive because of the positivity of the parameters of the model.

In this section, we investigate the existence of the zero-Hopf bifurcation with τ1 in
its interval of stability, regarding τ2 as a parameter. So, we consider the system under
the previous case.

Let us denote λ = η(τ2)+ iw(τ2). We look for a pair of purely imaginary roots
such that λ(τ∗2) = iω(τ∗2) = iω2, ω2 > 0. Choosing τ2 as a parameter, we obtain that
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λ = iω, ω > 0, is a root of Eq. (4.15) if

P(iω,τ1,τ2)≡ iω
(
P0(iω)+P1(iω)e−iωτ1 +P2(iω)e−iωτ2

)
= 0

Pi(iω) are given in the following:

P0(iω) =−a1ω
2 + i(−ω

3 +a2ω),

P1(iω) = (b3−b1ω
2)+ i(b2ω),

P2(iω) = (c3− c1ω
2)+ i(c2ω).

Since | e−iωτ1 |= 1 we have the following equations:

| P0(iω)+P2(iω)e−iωτ2 |=| P1(iω)e−iωτ1 |
=| P1(iω) || e−iωτ1 |
=| P1(iω) |

which equals to

| P0(iω)+P2(iω)e−iωτ2 |2 =| P1(iω) |2

(P0(iω)+P2(iω)e−iωτ2)(P̄0(iω)+ P̄2(iω)eiωτ2) =| P1(iω) |2 .
After some simplifications, the last equation becomes

| P0(iω) |2 + | P2(iω) |2 +2Re(P0(iω)P̄2(iω))cos(ωτ2)

−2Im(P0(iω)P̄2(iω))sin(ωτ2) =| P1(iω) |2 .
(4.16)

Note that for ω> 0, P0(iω) =−a1ω2+ i(−ω3+a2ω) 6= 0 and P2(iω) = (c3−c1ω2)+
i(c2ω) 6= 0. So the folllowing inequality holds.

[Re(P0(iω)P̄2(iω))]2 +[Im(P0(iω)P̄2(iω))]2 =| P0(iω)P̄2(iω) |2> 0.

Finally, the Eqn. (4.16) can be written as

| P1(iω) |2 − | P0(iω) |2 − | P2(iω) |2

2 | P0(iω)P̄2(iω) |
=

Re(P0(iω)P̄2(iω))
| P0(iω)P̄2(iω) |

cos(ωτ2)

− Im(P0(iω)P̄2(iω))
| P0(iω)P̄2(iω) |

sin(ωτ2).

On the other hand, one can show that there is a continous φ(ω) function such that:

cos(φ(ω)) =
Re(P0(iω)P̄2(iω))
| P0(iω)P̄2(iω) |

and sin(φ(ω)) =
Im(P0(iω)P̄2(iω))
| P0(iω)P̄2(iω) |

holds. Therefore, we have the following:∣∣∣∣ | P1(iω) |2 − | P0(iω) |2 − | P2(iω) |2

2 | P0(iω)P̄2(iω) |

∣∣∣∣=| cos(φ(ω)+ωτ2) |≤ 1

and so, ∣∣| P1(iω) |2 − | P0(iω) |2 − | P2(iω) |2
∣∣≤ 2 | P0(iω)P̄2(iω) | .
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Finally, if we define

Ω =
{

ω > 0 :|| P1(iω) |2 − | P0(iω) |2 − | P2(iω) |2|≤ 2 | P0(iω)P̄2(iω) |
}

then we have the following lemma:

Lemma 3. Let ℜ2 = r1(µ1+k2v)(c+µ2)−k2vcµ2. If ℜ2 > 0 then the set Ω is not
empty.

The above lemma means that for n = 0,1,2, ... and ω ∈Ω the characteristic equa-
tion has purely imaginary roots when

τ
n
2 =

ψ(ω2)−φ(ω2)+2πn
ω2

(4.17)

where

cos(ψ(ω2)) =
| P1(iω) |2 − | P0(iω) |2 − | P2(iω) |2

2 | P0(iω)P̄2(iω) |
.

On the other hand, we can write the characteristic equation as the form of

P(λ)+Q(λ)e−λτ2 = 0

where

P(λ) = P0(λ)+P1(λ)e−λτ1 ,

Q(λ) = P2(λ).

So, let’s define
F(ω) =| P(iω) |2 − | Q(iω) |2 .

After some calculations, one can get the following inequality

w2F ′(w2) = Aw6
2 +Bw5

2 +Cw4
2 +Dw3

2 +Ew2
2 +Fw2 +G

= w4
2(Aw2

2 +C)+w3
2(Bw2

2 +D)+w2(Ew2 +F)+G

where the coefficients are

A = (2−2b1 sinω2T1)

B = (T1 (2a1b1 +2b2)sinω2T1−2b1 sinω2T1)

C = (T12b3 cosω2T1−T12a1b2 cosω2T1 +T12a2b1 cosω2T1)

D = (−T12a2b2 sinω2T1 +T12a1b3 sinω2T1)

E =
(
−T12a2b3 cosω2T1−2a2

2−4a2b2 cosω2T1−2b2
2−2c2

2 +4b1b3

−4a1b3 cosω2T1−4c1c3)

F = (6a2b3 sinω2T1)

G = 4(c2
3−b2

3)

Under the following conditions
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H1): m1 =
−C
A

. m1 ≥ 0 and A 6= 0 and ω2 <
√

m1,

H2): m2 =
−D
B

. m2 ≥ 0 and B 6= 0 and ω2 <
√

m2,

H3): m3 =
−F
E

. E 6= 0 and ω2 < m3,

it is clear that F ′(w2) < 0 holds. This inequality also means that the transversality
condition holds. Hence, we have the following result.

Theorem 5. Assume that the conditions (H1),(H2) and (H3) defined above are sat-
isfied and also ℜ0 = 1, ℜ1 > 0 and ℜ2 > 0 hold. Let us denote τ∗2 =
min{τn

2 : n = 0,1,2, ..}> 0 such that ω(τ∗2) = ω2. Then,

(1) Eq. (4.15) has a simple root zero, and also its all other roots have negat-
ive real parts for τ1 ∈ [0,τ∗1) and τ2 ∈ [0,τ∗2) such that iω = iω(τ∗2), τ∗2 > 0.
Therefore, S∗ is stable for τ1 ∈ [0,τ∗1) and τ2 ∈ [0,τ∗2).

(2) For τ1 ∈ [0,τ∗1), system (2.1) undergoes a zero-Hopf bifurcation at S∗ when
τ2 passes through τ∗2.

5. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations that support the analytic res-
ults proved in former sections. For each simulation, we use either the ODE package
(ode45) or the DDE package (dde23) in MATLAB. To illustrate the theoretical res-
ults, we study numerically the dynamics of system (2.1) with the parameter values
which are chosen from Table 1 below. Choosing parameter values characteristic of
the in vivo situation is difficult; many of the parameters in our model have not been
measured, or, if measurements have been attempted, they may not be as accurate as
we need for quantitative predictions [25]. Thefore we choose these parameters for
the reason that either they are used in other models describing a similar phenomenon
or they are based on experimental data in the corresponding references.

5.1. Numerical simulations when τ1 = τ2 = 0

First, we use the following parameter values for simulations: r1 = 0.3, k1 = 0.001,
r2 = 0.05, µ1 = 0.03, θ = 0.1, k2 = 2.4×10−5, c = 0.3, N = 275, δ = 0.3 and µ2 =
2.1. With respect to these parameters, the corresponding basic reproduction num-
ber and the disease-free steady state are ℜ0 = 0.942857 and S0 = (T0,E0, I0,V0) =
(450,300,0,0), respectively. Figure 1 illustrates the numerical solutions of the ODE
model (3.1) for different initial values. It shows that as stated in Theorem 1 and The-
orem 2, the disease-free steady state is globally asymptotically stable. These figures
underline the ability of the immune system to eliminate the infection and to prevent
more tumour cell growth. So, the immune system eradicates virus perfectly but has
low persistence of the tumour.
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TABLE 1. The range of parameter values with corresponding references

Parameters Range Values Unit References
r1 0.05−0.5 day−1 [28]
k1 10−3−10−5 mm3day−1 [25]
r2 0−0.05 day−1 [25]
µ1 0.03 mm3day−1 [11]
θ 0.1 day−1 [29]
k2 2.4×10−5 mm3day−1 [32]
c 0.3 day−1 [29]
N 100−2000 [11]
δ 0.3−0.7 day−1 [26]
µ2 2.1−3.8 day−1 [29]
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FIGURE 1. The numerical solutions of the ODE model (2.1) with
different initial values. Each color represents a different solution
with different initial values.

Second, Figure 3 presents the behaviour of solutions of system (3.1) for the para-
meter values: r1 = 0.1, k1 = 0.0002, r2 = 0.04, µ1 = 0.03, θ = 0.1, k2 = 2.4×10−5,
c= 0.3 N = 275, δ= 0.3 and µ2 = 2.1. The corresponding basic reproduction number
is equal to ℜ0 = 1.571429, and the disease free steady state is S0 = (T0,E0, I0,V0) =
(500,500,0,0) for this case. The uncontrolled growth of the tumour cells can be
seen in Figure 3. The weakness caused by HIV may advance to uncontrolled tumour
growth and spread in this case.

Third, we now solve the system with the parameter values that are r1 = 0.1, k1 =
0.0003, r2 = 0.03, µ1 = 0.03, θ = 0.1, k2 = 2.4× 10−5, c = 0.3, N = 275, δ =
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0.3 and µ2 = 2.2. The corresponding basic reproduction number for this case is
equal to ℜ0 = 1, so the endemic steady state is S∗ = (540,333.333,2.66,100). The
coexistence of the tumour cells, the infected cells, and the virus can be seen from
Figure 2 which illustrates the local stability of the disease-free steady state proven in
Theorem 1. This means that the underlying HIV related tumour develops in the HIV
infected individual because of the existence of virus; the tumour can escape from the
surveillance of the immune system. As it can be seen from the simulations in Figure
2, the steady state could not be globally stable which was underlined by the remark
in the former section.
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FIGURE 2. The numerical solutions of system (2.1) with initial val-
ues (T0,E0, I0,V0) = (250,750,275,250). The trajectories of the sys-
tem are close enough to the steady state of the system, which is de-
noted by the solid line, however, not approach to it.

5.2. Numerical simulations when τ1 = τ2 = τ

We numerically solve the DDE model (2.1) with the parameter values: r1 = 0.3,
k1 = 0.0032, r2 = 0.05, µ1 = 0.03, θ= 0.1, k2 = 2.4×10−5, c= 0.3, N = 400, δ= 0.7,
and µ2 = 2.1. Figures 4, 5 and 6 present the numerical solutions of the DDE system
(2.1) when τ = 1.95, τ = 1.962 and τ = 1.97, respectively. These figures show that
τ plays a crucial role in the oscillations of the solutions around steady state. Clearly,
delay causes the appearance of oscillations, and affects the stability of steady state.

Also, Figures 5 and 7 show the periodic solutions arising as the bifurcation para-
meter τ passes through the critical value τ∗ ≈ 1.962. Here, one observes the occur-
rence of limit cycles due to the zero-Hopf bifurcation at τ = 1.95. Figure 6 displays
that the system becomes unstable for the value of τ which is grater than τ∗.
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FIGURE 3. The numerical solutions of system (2.1) with initial val-
ues (T0,E0, I0,V0) = (250,750,275,250). Note that the trajectories
of the system move away.
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FIGURE 4. The numerical solutions of the DDE model (2.1) for τ =
1.95 < τ∗ ≈ 1.962. Simulations present stability.

5.3. Numerical simulations when τ1 > 0,τ2 > 0,τ1 6= τ2

We numerically solve the DDE model (2.1) with the parameter values: r1 = 0.3,
k1 = 0.0032, r2 = 0.05, µ1 = 0.03, θ = 0.1, k2 = 2.4× 10−5, c = 0.3, N = 400,
δ = 0.7, and µ2 = 2.1. Figures 8 presents the numerical solutions of the DDE system
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FIGURE 5. The numerical solutions of the DDE model (2.1) for τ =
τ∗ ≈ 1.962. They present the cyclic behaviour.
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FIGURE 6. The numerical solutions of the DDE model (2.1) for τ =
1.97 > τ∗ ≈ 1.962. Simulations show unstability.

(2.1) when τ1 = 1.8 < τ∗1 and τ2 = 2.3415. These figures show that τ2 plays a crucial
role in the oscillations of the solutions around steady state. Clearly, delay causes the
appearance of oscillations, and affects the stability of steady state.

Also, Figures 8 and 9 show the periodic solutions arising as the bifurcation para-
meter τ passes through the critical value τ∗2 ≈ 2.3415. Here, one observes the occur-
rence of limit cycles due to the zero-Hopf bifurcation at τ2 = 2.3415.
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FIGURE 7. The numerical solutions of the DDE model (2.1) for τ =
τ∗ ≈ 1.962.
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FIGURE 8. The numerical solutions of the DDE model (2.1) for τ1 =
1.8 < τ∗1 and τ2 ≈ τ∗2 = 2.3415. They present the cyclic behaviour.

6. DISCUSSION

HIV infected individuals suffer several types tumours during their infection, which
creates a burden on the treatment. For this reason, it is very crucial to understand
the relationship between HIV infection and certain tumours. In this paper, we have
shown how HIV affects the immune system’s ability to fight tumours. Since HIV is
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FIGURE 9. The numerical solutions of the DDE model (2.1) for τ1 =
1.8 < τ∗1 and τ2 ≈ τ∗2 = 2.3415.

present in vivo, the surveillance of the immune system is very weak. Accordingly,
the growth of tumour is uncontrolled.

The model we introduced involves four components: tumour cells, uninfected
helper T-cells, infected helper T-cells and free virus. Under the condition ℜ1 > 0,
system (2.1) has two non-negative steady states. This condition means that the ratio
of the rate of growth of the T-helper cells (triggered by tumour cells) with respect
to the rate of growth of tumour cells is larger than the percentage of the helper cell
loss due to killing tumour cells. First, the existence and positiveness of the solutions
of the model without delay are studied. By utilizing the Routh-Hurwitz criteria, we
have determined the conditions on the parameters for the stability of steady states of
the model. When the condition ℜ0 < 1, we have proved that the non-infected steady
state is both locally and globally asymptotically stable. This means that the ability of
the immune system to eliminate the virus is strong enough but also there is low per-
sistence of tumour. Also, we obtained that uncontrolled tumour growth and spread
can be possible because of the exhaustion of the immune system response caused by
infection. On the other hand, the infected steady state is L-stable. This biologically
means that tumour can escape from surveillance of the immune system.

Second, the zero-Hopf bifurcation of the delay differential equation (DDE) model
is studied. We study the effects of two discrete time delays on the stability of the
endemically infected equilibrium point. We determine the conditions on parameters
at which the system undergoes a zero-Hopf bifurcation. The time lags in the DDE
model describe the time needed by the helper T-cells to find (or recognize) tumour
cells and virus. Choosing one of the delay terms as a bifurcation parameter and fixing
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the other, we have shown that a zero-Hopf bifurcation occurs as the bifurcation para-
meter passes through a critical value. In other words, the stability of the steady state
S∗ changes from stable to unstable, and periodic solutions with increasing periods
arise. For the larger values of the bifurcation parameter, solutions become unstable.
The performed numerical simulations support and extend our analytical results.

The results concluded underline that as the immune system gets weaker, it be-
comes difficult to keep up of the T-helper cells which leads to the compute exhaustion
of tumour cells.
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