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Abstract. Let FM be the group algebra of the modular 2-group M over a finite field F of charac-
teristic two. In the present note we establish the structure of the unit group of the group algebra
FM and verify the question of Johnson.
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1. INTRODUCTION AND RESULTS

Let F be a field of characteristic p and let G be a group such that G contains an
element of order p. Let U(FG) be the group of units of the group algebra FG. It is
easy to see that U(FG) =U(F)×V (FG), in which

V (FG) :=
{

x = ∑
g∈G

αgg ∈U(FG) | χ(x) = ∑
g∈G

αg = 1
}
,

where χ(x) is the augmentation of x ∈ FG (see [8, Chapters 2-3, p. 194-196]).
The structure of the group of units and its subgroup V (FG) has been investigated

by several authors, but the complete description is known only for certain group
algebras (for example, see [1, 2, 10–13, 15, 16, 18–21]). For an overview in this topic
we recommend the survey paper [8].

Let ζ(G) be the center and let G′ be the commutator subgroup of G, respect-
ively. It is well known [9, Theorem 2], if FG is a modular group algebra, then
G ∩ ζ(V (FG)) = ζ(G) and G ∩ V (FG)′ = G′. The question whether G∩V (FG)p =
Gp is due to Johnson [15]. The Johnson’s question was affirmatively confirmed for
nonabelian groups in the following cases: (i) the group of exponent p and order p3

[15, Theorem 7]; (ii) G is a finite p-group (p is an odd prime) with Frattini subgroup
of order p [4]; and (iii) G is the modular 2-group of order 16 and F is the field of 2
elements [14, Theorem 2]. The structure of elements of order two in V (FG), where
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G is a 2-group of maximal class and F is the field of elements two, was described
in [5].

Let

Mn = 〈 a,b | a2n−1
= b2 = 1,(a,b) = a2n−2 〉= 〈 a 〉o 〈 b 〉, (n≥ 4) (1.1)

be the modular 2-group. The group Mn appears very frequently in the investigation
of the group of units [3, 6, 7, 14, 17].

In the present note the structure of V (FMn) is established and affirmative answer
for the Johnson‘s question is provided.

Theorem 1. Let Mn be the modular group given in (1.1). If F is a field with
|F |= 2m ≥ 2, then V (FMn) is a central extension of C3m2n−3

2 by

Cm
2n−2×C7m2n−4

2 ×
n−5

∏
i=0

C2im
2n−i−3 .

Corollary 1. Let Mn be the modular group of order 2n. If F is a field with
|F |= pm ≥ 2, then

Mn∩V (FMn)
2 = M2

n .

2. PROOF

Let H be a normal subgroup of a finite p-group G. The ideal of FG generated
by the set {h− 1 | h ∈ H} is denoted by I(H). Let G[pi] denote the subgroup of
G generated by the elements of order pi. We use the notation Gpi

for the subgroup
〈 gpi |g∈G 〉. Set xg := g−1xg, where g∈G and x ∈ FG. Let Ŝ = ∑s∈S s∈ FG, where
S⊆ G is a finite subset and let |S| denote the cardinality of S. Furthermore, the order
of g ∈ G will be denoted by |g|.

If G is an abelian p-group, then the number of subgroups of order pi in the decom-
position of G into a direct product of cyclic groups will be denoted by fi(G).

Lemma 1. Let F be a field with |F | = pm ≥ p. If G is a finite abelian p-group,
then

(i) V (FG)p =V (FGp);
(ii) V (FG)[p] = 1+ I(G[p]); and

(iii) fi
(
V (FG)

)
= m

(
|Gpi−1 |−2|Gpi |+ |Gpi+1 |

)
.

Proof. (i) If u = ∑g∈G αgg ∈ V (FG), then up = ∑g∈G α
p
ggp ∈ V (FGp), so

V (FG)p ⊆V (FGp).
Let u = ∑g∈Gp αgg ∈ V (FGp). Obviously, the mapping τ(α) = αp is an auto-

morphism of F . Therefore there exists a βg ∈ F and h ∈G for every g ∈Gp such that
β

p
g = αg and hp = g. We have that u = ∑g∈Gp αgg = ∑h∈G β

p
ghp ∈ V (FG)p, which

completes the proof.
(ii) If u ∈ 1+ I(G[p]), then up = 1 and 1+ I(G[p])⊆V (FG)[p].
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Let u∈V (FG)[p]. Clearly, u−1 can be written as x1h1+x2h2+ · · ·+xshs for some
s, where xi ∈ FG[p] and the set {hi} is a complete set of right coset representatives
of G[p] in G. We have that xp

1hp
1 + xp

2hp
2 + · · ·+ xp

s hp
s = (u−1)p = up−1 = 0. Sup-

pose that hp
i = hp

j for some i, j and i 6= j. Clearly, hih−1
j ∈ G[p] which is impossible.

Without loss of generality we can assume that h1 = 1 and hp
i 6= 1 if 1 < i≤ s. There-

fore xp
i = 0 if 1< i≤ s and u−1∈ I(G[p]) which proves that V (FG)[p]⊆ 1+I(G[p]).

(iii) It is true when |F |= p [18, Theorem 2.4]. Now we extend it to any finite field.
If V (FG) = 〈 a1 〉 × · · · × 〈 as 〉, then V (FG)[p] = 〈 ab1−1

1 〉 × 〈 ab2−1
2 〉 × · · · ×

〈 abs−1
s 〉 in which b j = |a j|. The number of elements in 1+ I(G[p]) equals |I(G[p])|.

Evidently, I(G[p]) can be considered as a vector space over F with the basis
{u(h−1) | u ∈ T (G/G[p]), h ∈G[p]} in which T (G/G[p]) is a complete set of right
coset representatives of G[p] in G. Thus

|I(G[p])|= pm |G|
|G[p]| (G[p]−1)

= pm(|G|−|Gp|).

According to part (ii), the p-rank of V (FG) is m(|G|− |Gp|).
The part (i) shows that the p-rank of V (FG)p is m(|Gp|− |Gp2 |), so

f1
(
V (FG)

)
= m(|G|− |Gp|)−m(|Gp|− |Gp2 |) = m

(
|G|−2|Gp|+ |Gp2 |

)
.

The proof can be easily completed using part (i) and induction on V (FGpi
). �

Lemma 2. If F is a field with |F |= 2m ≥ 2, then

ζ
(
V
)
=V

(
Fζ(Mn)

)
×N,

where N ∼=C3m2n−3

2 and fi

(
V
(
Fζ(Mn)

))
=

{
m if i = n−2;
m ·2n−3−i if i < n−2.

Proof. Let Cg be the conjugacy class of g ∈ Mn \ ζ(Mn). Clearly, |Cg| = 2,
M′n = {1,a2n−2} and Ĉg = gM̂′n. Let N be defined by

N = 〈 1+βia2i+1M̂′n| 0≤ i < 2n−3,βi ∈ F 〉×〈 1+ γiaibM̂′n| 0≤ i < 2n−2,γi ∈ F 〉.

Since (1+xM̂′n)(1+yM̂′n) = 1+xM̂′n+yM̂′n and (1+xM̂′n)
2 = 1 for every x,y∈ FMn,

the group N ∼=C3m2n−3

2 is an elementary abelian 2-group and

ζ
(
V
)
=V

(
Fζ(Mn)

)
×N.

Indeed, V
(
Fζ(Mn)

)
×N ⊆ ζ

(
V
)
. Since ζ(Mn) = M2

n , each element x ∈ ζ
(
V
)

can be
written as x = x1 + x2 in which

x1 = ∑
2n−2−1
i=0 αia2i, x2 = ∑

2n−3−1
i=0 βia2i+1M̂′+∑

2n−2−1
i=0 γiaibM̂′, (αi,βi,γi ∈ F).

It is clear, that the augmentation of x2 equals 0 therefore x1 is an invertible element
with augmentation 1. Obviously, 1+ a2i · x2 ∈ N therefore x−1

1 x = x−1
1 (x1 + x2) =
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1 + x−1
1 x2 ∈ N. Since V

(
Fζ(Mn)

)
∩ N = {1} we have proved that ζ

(
V
)
⊆

V
(
Fζ(Mn)

)
×N.

Since ζ(Mn) = M2
n
∼=C2n−2 , Lemma 1(iii) ensures that

fi

(
V
(
Fζ(Mn)

))
= m(2n−1−i−2 ·2n−2−i +2n−3−i) = m2n−i−3

for i < n−2 and fi

(
V
(
Fζ(Mn)

))
= m for i = n−2. �

Lemma 3. Let F be a field with |F |= 2m ≥ 2. Then |ζ
(
V
)
|= 25m2n−3−m and

ζ
(
V
)∼=Cm

2n−2×C7m2n−4

2 ×
n−5

∏
i=0

C2im
2n−i−3 .

Proof. According to the previous lemma, ζ
(
V
) ∼= V

(
Fζ(Mn)

)
× N. Since

|N| = 23m2n−3
and |V

(
Fζ(Mn)

)
| = |F ||ζ(Mn)|−1 = 2m(2n−2−1), we can easily compute

that
|ζ
(
V
)
|= 23m2n−3+m2n−2−m = 25m2n−3−m.

Finally, using Lemma 2, it is easy to check that

ζ
(
V
)∼=Cm

2n−2×Cm
2n−3×C2m

2n−4×C22m
2n−5×C23m

2n−6×·· ·×Cm2n−5

22 ×C7m2n−4

2 .

�

Proof of Theorem. Each x ∈ FMn can be written as x = x1 + x2b, where x1,x2 ∈
F〈 a 〉 (see (1.1)) and

x2 = x2
1 + x2xb

2 +(x1 + xb
1)x2b.

Obviously, we can write x1 = y1+y2a and x2 = z1+z2a, where y1,y2,z1,z2 ∈ F〈 a2 〉,
so

x1 + xb
1 = y2a(1+a2n−2

) ∈ I(M′n) and

x2xb
2 = z2

1 + z2
2a2n−2+2 + z1z2a(1+a2n−2

) ∈ ζ(FMn).

Consequently, (x1 + xb
1)x2b ∈ I(M′n) ⊆ ζ(FMn) and x2 ∈ ζ

(
V (FMn)

)
for every

x ∈V (FMn). Hence V (FMn)/ζ(V ) is an elementary abelian 2-group of order 23m2n−3

and

ζ(V )∼=Cm
2n−2×Cm

2n−3×C2m
2n−4×C22m

2n−5×C23m
2n−6×·· ·×Cm2n−5

22 ×C7m2n−4

2

by Lemma 3 which is the desired conclusion. �

Proof of Corollary. Since V (FMn)
2 ⊆ ζ(V ) and ζ(Mn) = M2

n ,

Mn∩V (FMn)
2 ⊆Mn∩ζ(V )⊆ ζ(Mn) = M2

n .

�
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