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Abstract. In this work, we obtain necessary and sufficient conditions for the oscillation of all
solutions of the second-order delay differential equation

(
π(y′)γ

)′
(t)+ p(t) f

(
y(τ(t))

)
= 0, under

the assumption
∫

∞ (π(η))−1/γ dη = ∞, we consider two cases: when f (v)/vβ is non-increasing,
and non-decreasing. In the final section, we provide examples illustrating the results and state an
open problem.
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1. INTRODUCTION

The motivation to study the oscillation of differential equations comes from sev-
eral systems in the real world, like species populations and neuronal populations
that exhibit oscillatory behavior. Thus, equations having delayed, advanced or both
delayed and advanced arguments have been used to model lossless transmission lines
in engineering, the switching of data packets in high speed networks and several other
natural or artificial processes, from celestial motion and bridge design to learning and
memory formation in the synaptic contacts between neurons in the brain.

In 1978, Brands [6] showed that the solutions to

y′′(t)+ p(t)y(t − τ(t)) = 0

are oscillatory if and only if the solutions to y′′(t)+ p(t)y(t) = 0 are oscillatory. In
2018, Pinelas and Santra [13] have obtained necessary and sufficient conditions for
the oscillations of the solutions of

(y(t)+b(t)y(t −σ))′+
m

∑
i=1

pi(t) f (y(t − τi)) = 0,

for different ranges of the neutral coefficient b. Wong [18] studied necessary and
sufficient conditions for the oscillation of the solutions to(

y(t)+by(t −σ)
)′′

+ p(t) f
(
y(t − τ)

)
= 0,
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where the constant p satisfies −1 < b < 0. Santra [17] has obtained several sufficient
conditions for the oscillation of the solutions for the equations(

πz′
)′
(t)+

m

∑
i=1

pi(t) f (y(t − τi)) = 0, z(t) = y(t)+b(t)y(t −σ).

Karpuz and Santra [9] have established sufficient conditions for the oscillation and
asymptotic behavior of the solutions to the equation(

πz′
)′
(t)+

m

∑
i=1

pi(t) fi(y(τi(t))) = 0, z(t) = y(t)+b(t)y(σ(t)).

Migda et al. have studied asymptotic behaviors of solutions of second order dif-
ference equations with deviating argument. For a more detailed account of the os-
cillatory behavior of the solutions to this type of equations, we refer the readers to
[1–5, 7–17, 19]. Note that most publications consider only sufficient conditions, and
merely a few consider necessary and sufficient conditions.

In this work, we establish necessary and sufficient conditions for the oscillation of
all solutions to the second-order nonlinear delay differential equation(

π(y′)γ
)′
(t)+ p(t) f

(
y(τ(t))

)
= 0 (1.1)

by considering two cases: when f (v)/vβ is non-increasing, and non-decreasing.
We assume that the following conditions hold:

(A1) γ is the quotient of two odd positive integers, π, p ∈ C(R,R) with π(t) > 0
and p is not identically zero eventually, τ ∈ C([t0,∞),R) such that τ(t) ≤ t
for t ≥ t0, τ(t)→ ∞ as t → ∞.

(A2) f ∈ C(R,R), f is non-decreasing and v f (v) > 0 for v ̸= 0. Moreover, we
assume that f (uv) = f (u) f (v), ∀u,v ∈ R.

(A3) π(t)> 0 and
∫

∞

0 (π(η))−1/γ dη=∞. Letting Π(t)=
∫ t

0(π(η))
−1/γ dη, we have

limt→∞ Π(t) = ∞.

Initially, we consider a single delay. In a later section, we study for the several
delays. As examples of functions satisfying (A2) and (A3), we have f (u) = uγ with
γ the quotient of two odd positive integers and π(t) = e−t or π(t) = 1 respectively.

By a solution to equation (1.1), we mean a function y ∈ C([Ty,∞),R), where
Ty ≥ t0, such that πy′ ∈ C1([Ty,∞),R), and satisfying (1.1) on the interval [Ty,∞).
A solution y of (1.1) is said to be proper if y is not identically zero eventually, i.e.,
sup{|y(t)| : t ≥ T}> 0 for all T ≥ Ty. We assume that (1.1) possesses such solutions.
A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Ty,∞); oth-
erwise, it is said to be non-oscillatory. (1.1) itself is said to be oscillatory if all of its
solutions are oscillatory.

From [16], we know that (A2) implies f being odd. Indeed, f (1) f (1) = f (1) and
f (1)> 0 imply that f (1) = 1. Further,

(
f (−1)

)2
= f (−1) f (−1) = f (1) = 1. Since
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f (−1)< 0, we conclude that f (−1) =−1. Hence,

f (−u) = f (−1) f (u) =− f (u).

On the other hand, f (uv) = f (u) f (v) for u > 0 and v > 0 and f (−u) =− f (u) imply
that f (xy) = f (x) f (y) for every x,y ∈ R.

Also from [16], we have that under assumption (A2), if y(t) is a solution of (1.1),
then −y(t) is also a solution of (1.1).

2. PRELIMINARY RESULTS

Lemma 1. Assume that (A1)–(A3) hold and y is an eventually positive solution of
(1.1). Then we have

y′(t)> 0 and (π(y′)γ)′(t)< 0,

for sufficiently large t.

Proof. Suppose that there exists a t1 ≥ t0 such that y(t) > 0 and y(τ(t)) > 0 for
t ≥ t1. From (1.1) and (A2), it follows that

(π(y′)γ)′(t) =−p(t) f
(
y(τ(t))

)
< 0 for t ≥ t1. (2.1)

Consequently,
(
π(y′)γ

)
(t) is non-increasing on [t1,∞). Since π(t)> 0, and thus either

y′(t)< 0 or y′(t)> 0 for t2 ≥ t1, where t ≥ t2.
We claim that y′(t)> 0 for t ≥ t2. To the contrary, assume that y′(t)< 0 for t ≥ t2,

then there exists κ1 > 0 such that
(
π(y′)γ

)
(t) ≤ −κ1 for t ≥ t2, which yields upon

integration over [t2, t)⊂ [t2,∞) after dividing through by π that

y(t)≤ y(t2)−κ
1/γ

1

∫ t

t2

(
π(η)

)−1/γdη for t ≥ t2. (2.2)

By virtue of condition (A3), limt→∞ y(t) =−∞. This contradicts y(t) being a positive
solution. So, our claim is true. This completes the proof. □

3. NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATIONS

In this section, we study necessary and sufficient conditions for oscillations of
solutions of (1.1) by considering the cases when f (v)/vβ is non-increasing and non-
decreasing.

3.1. Non-increasing f (v)/vβ

We assume that there exists a constant β such that 0 < β < γ and

f (v)
vβ

≥ f (u)
uβ

, for 0 < v ≤ u . (3.1)

A typical example of a nonlinear function satisfying (3.1) is f (y) = |y|αsgn(y) with
0 < α < β.
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Lemma 2. Assume that (A1)–(A3) hold and y is an eventually positive solution of
(1.1). Then we have

y(t)≤ κ
1/γ

Π(t) (3.2)

y(t)≥
∫ t

t3

[ 1
π(η)

∫
∞

t
p(ζ)

f
(
κ1/γΠ(τ(ζ))

)(
κ1/γΠ(τ(ζ))

)β
yβ(τ(ζ))dζ

]1/γ

dη , (3.3)

for sufficiently large t.

Proof. Suppose that there exists t1 ≥ t0 such that y(t)> 0 and y(τ(t))> 0 for t ≥ t1.
Then, Lemma 1 holds true for t ≥ t2. Since

(
π(y′)γ

)
(t) is positive and non-increasing,

there exists κ > 0 and t3 ≥ t2 such that
(
π(y′)γ

)
(t) ≤ κ for t ≥ t3. Integrating the

inequality y′(t)≤ (κ/π(t))1/γ, we have

y(t)≤ y(t3)+κ
1/γ

(
Π(t)−Π(t3)

)
.

Since limt→∞ Π(t) = ∞, the last inequality becomes

y(t)≤ κ
1/γ

Π(t) for t ≥ t3 .

Note that κ depends on y being evaluated at a time t3. Thus, (3.2) must include all
possible κ’s.

By (3.1) and (3.2), we have

f
(
y(τ(t))

)
=

f
(
y(τ(t))

)
yβ(τ(t))

yβ(τ(t))≥
f
(
κ1/γΠ(τ(t))

)(
κ1/γΠ(τ(t))

)β
yβ(τ(t)) .

Integrating (1.1) from t to ∞, we have

lim
A→∞

[(
π(y′)γ

)
(η)

]A
t +

∫
∞

t
p(η)

f
(
κ1/γΠ(τ(η))

)(
κ1/γΠ(τ(η))

)β
yβ(τ(η))dη ≤ 0.

Using that
(
π(y′)γ

)
(t) is positive and non-increasing, we have∫

∞

t
p(η)

f
(
κ1/γΠ(τ(η))

)(
κ1/γΠ(τ(η))

)β
yβ(τ(η))dη ≤

(
π(y′)γ

)
(t) for t ≥ t3 .

Therefore,

y′(t)≥
[ 1

π(t)

∫
∞

t
p(η)

f
(
κ1/γΠ(τ(η))

)(
κ1/γΠ(τ(η))

)β
yβ(τ(η))dη

]1/γ

. (3.4)

Integrating (3.4) from t3 to t, we obtain

y(t)≥
∫ t

t3

[ 1
π(η)

∫
∞

η

p(ζ)
f
(
κ1/γΠ(τ(ζ))

)(
κ1/γΠ(τ(ζ))

)β
yβ(τ(ζ))dζ

]1/γ

dη
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≥
∫ t

t3

[ 1
π(η)

∫
∞

t
p(ζ)

f
(
κ1/γΠ(τ(ζ))

)(
κ1/γΠ(τ(ζ))

)β
yβ(τ(ζ))dζ

]1/γ

dη .

The proof of the lemma is complete. □

Theorem 1. Assume that (A1)-(A3) hold. Then every solution of (1.1) is oscillat-
ory if and only if ∫

∞

0
p(η) f

(
κ

1/γ
Π(τ(η))

)
dη =+∞ ∀κ > 0. (3.5)

Proof. To prove sufficiency by contradiction, we assume that there exists a non-
oscillatory solution y(t) of (1.1). Since −y(t) is also a solution of (1.1), we can
confine our discussion only to the case where the solution y(t) is eventually positive.
Then there exists t1 ≥ t0 such that y(t)> 0 and y(τ(t))> 0 for t ≥ t1. Since Lemmas
1 and 2 hold, (3.3) gives

y(t)>
(
Π(t)−Π(t3)

)
ω

1/γ(t) for t ≥ t3,

where

ω(t) =
∫

∞

t
p(ζ)

f
(
κ1/γΠ(τ(ζ))

)(
κ1/γΠ(τ(ζ))

)β
yβ(τ(ζ))dζ > 0.

Because limt→∞ Π(t) = ∞, there exists t4 ≥ t3 such that Π(t)−Π(t3) ≥ 1
2 Π(t) for

t ≥ t4. Then

y(t)>
1
2

Π(t)ω1/γ(t) for t ≥ t4 ,

and yβ/(κ1/γΠ)β ≥ ωβ/γ/(2κ1/γ)β. Taking the derivative of ω we have

ω
′(t) =−p(t)

f
(
κ1/γΠ(τ(t))

)(
κ1/γΠ(τ(t))

)β
yβ(τ(t))

≤−p(t) f
(
κ

1/γ
Π(τ(t))

)
ω

β/γ(τ(t))
(
2κ

1/γ
)−β ≤ 0 .

Therefore, ω(t) is non-increasing so ωβ/γ(τ(t))/ωβ/γ(t)≥ 1, and(
ω

1−β/γ(t)
)
′= (1−β/γ)ω−β/γ(t)ω′(t)≤−(1−β/γ)

(2κ1/γ)β
p(t) f

(
κ

1/γ
Π(τ(t))

)
.

Integrating this inequality form t4 to t, we have[
ω

1−β/γ(η)
]t

t4
≤−(1−β/γ)

(2κ1/γ)β

∫ t

t4
p(η) f

(
κ

1/γ
Π(τ(η))

)
dη .

Since β/γ < 1 and ω(t) is positive and non-increasing, we have∫ t

t4
p(η) f

(
κ

1/γ
Π(τ(η))

)
dη ≤ (2κ1/γ)β

(1−β/γ)
ω

1−β/γ(t4) ,

which contradicts (3.5).
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Next, we show that (3.5) is necessary. Suppose that (3.5) does not hold; so for
some κ > 0 the integral in (3.5) is finite. Then there exists T ≥ t0 such that∫

∞

T
p(η) f

(
κ

1/γ
Π(τ(η))

)
dη ≤ κ

2
. (3.6)

Let us consider the closed subset of continuous functions

M =
{

y ∈C([t0,+∞),R) : y(t) = 0 for t0 ≤ t < T and(κ

2
)1/γ

[Π(t)−Π(T )]≤ y(t)≤ κ
1/γ[Π(t)−Π(T )] for T ≤ t

}
.

We define the operator Ω : M →C([t0,+∞),R) by

(Ωy)(t) =

{
0, t0 ≤ t < T∫ t

T

[ 1
π(η)

[
κ

2 +
∫

∞

η
p(ζ) f

(
y(τ(ζ))

)
dζ

]]1/γdη, T ≤ t.

For y ∈ M and t ≥ T , we have

(Ωx)(t)≥
∫ t

T

[ 1
π(η)

κ

2
]1/γ dη =

(κ

2
)1/γ

[Π(t)−Π(T )] .

For y ∈ M and t ≥ T , we have y(t)≤ κ1/γΠ(t) and f (y)≤ f (κ1/γΠ(t)). Using (3.6),
we have

(Ωx)(t)≤
∫ t

T

[ 1
π(η)

(
κ

2
+

κ

2
)
]1/γ dη = κ

1/γ[Π(t)−Π(T )].

Thus, Ωx ∈ M. Now, we define a sequence of continuous function vn : [t0,+∞)→ R
by the recursive formula

v1(t) =

{
0, t ∈ [t0,T )(

κ

2

)1/γ
[Π(t)−Π(T )], t ≥ T.

vn(t) = (Ωvn−1)(t) for n > 1.

It is easy to verify that for n > 1,(κ

2
)1/γ

[Π(t)−Π(T )]≤ vn−1(t)≤ vn(t)≤ κ
1/γ[Π(t)−Π(T )] .

Therefore, the pointwise limit of the sequence exists. Let limn→∞ vn(t) = v(t) for
t ≥ t0. By Lebesgue’s dominated convergence theorem v ∈ M and (Ωv)(t) = v(t),
where v(t) is a solution of equation (1.1) on [T,∞). Hence, (3.5) is a necessary
condition. This completes the proof. □

Example 1. Consider the delay differential equation

(e−t(y′(t))3/5)′+
1

t +1
(y(t −2))1/3 = 0, t ≥ 0 . (3.7)
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Here γ = 3/5, π(t) = e−t , τ(t) = t −2, Π(t) =
∫ t

0 e5s/3 ds = 3
5

(
e5t/3−1

)
, f (v) = v1/3.

For β = 1/2, we have f (v)/vβ = v−1/6 which is a decreasing function. To check (3.5)
we have∫

∞

0
p(η) f

(
κ

1/γ
Π(τ(η))

)
dη=

∫
∞

0

1
η+1

(
κ

5/3 3
5
(
e5(η−2)/3−1

))1/3
dη=∞ ∀κ> 0,

because the integral approaches +∞ as η → +∞. So that all the conditions of The-
orem 1 hold. Therefore, all solutions of (3.7) are oscillatory.

3.2. Non-decreasing f (v)/vβ

We assume that there exists β > γ > 0 such that

f (v)
vβ

≤ f (u)
uβ

, for 0 < v ≤ u . (3.8)

A typical example of a nonlinear function satisfying (3.8) is f (y) = |y|αsgn(y) with
γ < β < α.

Theorem 2. Assuming (A1)-(A3) and τ′(t)≥ 1, every solution of (1.1) is oscillat-
ory if and only if ∫

∞

0

[ 1
π(η)

∫
∞

η

p(ζ)dζ

]1/γ

dη =+∞. (3.9)

Proof. To prove sufficiency by contradiction, we assume that there exists a non-
oscillatory solution y(t) of (1.1). Since −y(t) is also a solution of (1.1), we can
confine our discussion only to the case where the solution y(t) is eventually positive.
Then there exists t1 ≥ t0 such that y(t)> 0 and y(τ(t))> 0 for t ≥ t1. Then, Lemma
1 holds true for t ≥ t3 ≥ t2. Since y′(t) > 0, so y is increasing and y(t) ≥ y(t3) for
t ≥ t3. Therefore,

y(τ(t))≥ y(τ(t3)) := κ > 0 for t ≥ t3 .
From (3.8), we have

f
(
y(τ(t))

)
=

f
(
y(τ(t))

)
yβ(τ(t))

yβ(τ(t))≥ f (κ)
κβ

yβ(τ(t)) .

Integrating (1.1) from t to ∞, we have

lim
A→∞

[(
π(y′)γ

)
(η)

]A
t +

f (κ)
κβ

∫
∞

t
p(η)yβ(τ(η))dη ≤ 0.

Using that
(
π(y′)γ

)
(t) is positive and non-increasing, we have

f (κ)
κβ

∫
∞

t
p(η)yβ(τ(η))dη ≤

(
π(y′)γ

)
(t)≤

(
π(y′)γ

)
(τ(t))≤ π(t)

(
(y′)γ

)
(τ(t))

for all t ≥ t3. Therefore,( f (κ)
κβ

)1/γ[ 1
π(t)

∫
∞

t
p(η)yβ(τ(η))dη

]1/γ

≤ y′(τ(t))
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implies that( f (κ)
κβ

)1/γ[ 1
π(t)

∫
∞

t
p(η)dη

]1/γ

≤ y′(τ(t))
yβ/γ(τ(t))

≤ y′(τ(t))τ′(t)
yβ/γ(τ(t))

(3.10)

Integrating (3.10) from t3 to ∞, we have( f (κ)
κβ

)1/γ
∫

∞

t3

[ 1
π(η)

∫
∞

η

p(ζ)dζ

]1/γ

dη ≤ y1−β/γ(τ(t3))
β/γ−1

< ∞ ,

which contradicts (3.9).
Next, we show that (3.9) is necessary. Suppose that (3.9) does not hold; so for

each κ > 0, there exists T ≥ t0 such that∫
∞

T

[ 1
π(η)

∫
∞

η

p(ζ)dζ

]1/γ

dη ≤ κ

2( f (κ))1/γ
(3.11)

Let us consider the closed subset of continuous functions

M =
{

x ∈C([t0,+∞),R) : x(t) =
κ

2
for t ∈ [t0,T ) and

κ

2
≤ x(t)≤ κ for t ≥ T

}
.

We define the operator Ω : M →C([t0,+∞),R) by

(Ωy)(t) =

{
κ/2, t0 ≤ t < T

κ/2+
∫ t

T

[ 1
π(η)

∫
∞

η
p(ζ) f

(
y(τ(ζ))

)
dζ

]1/γ dη T ≤ t .

Note that for y ∈ M, we have (Ωy)(t) ≥ κ/2. Also for y ∈ M and t ≥ T , we have
y(t)≤ κ and by (3.11), (Ωy)(t)≤ κ. Therefore, Ωy ∈ M. As in the proof of Theorem
1, the mapping Ω has a fixed point v ∈ M; that is, (Ωv)(t) = v(t) for t ≥ t0. It can
be easily verified that v(t) is a solution of (1.1), such that κ/2 ≤ v(t) ≤ κ for t ≥ T .
Thus we have a non-oscillatory solution to (1.1). This completes the proof. □

Example 2. Consider the delay differential equation

((y′1/5)′5/3 = 0, t ≥ 0 . (3.12)

Here γ= 1/5, π(t) = 1, τ(t) = t−1 and f (u) = u5/3. For β= 4/3, we have f (v)/vβ =
v1/3 which is an increasing function. Thus∫

∞

2

[∫ ∞

η

(ζ+1)dζ

]5
dη = ∞.

So, all the conditions of Theorem 2 are satisfied, and therefore all solution of (3.12)
are oscillatory.
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4. CONCLUSION

In this section, we conclude the paper by stating a Remark and presenting two
examples.

Remark 1. The results of this paper also hold for equations of the form(
π(y′γ

)′
(t)+

m

∑
i=1

pi(t) fi
(
y(τi(t))

)
= 0 ,

where π, pi, fi,τi (i = 1,2, . . . ,m) satisfy the assumptions (A1)-(A3), (3.1) or (3.8). In
order to extend Theorem 1 and Theorem 2, there exists an index i such that pi, fi,τi
fulfill (3.5) and (3.9), respectively.

Next, we provide two examples, illustrating how Remark 3.1 can be applied.

Example 3. Consider the delay differential equation

(e−t(y′3/5)′+
1

t +1
(y(t −2))1/3 +

1
t +2

(y(t −1))1/5 = 0, t ≥ 0 . (4.1)

Here γ = 3/5, π(t) = e−t , τ1(t) = t −2, τ2(t) = t −1, Π(t) =
∫ t

0 e5η/3 dη = 3
5

(
e5t/3 −

1
)
, f1(v) = v1/3 and f2(v) = v1/5. For β = 1/2, we have f1(v)/vβ = v−1/6 and

f2(v)/vβ = v−3/10 which both are decreasing functions. To check (3.5) we have∫
∞

0

m

∑
i=1

pi(η) fi
(
κ

1/γ
Π(τi(η))

)
dη ≥

∫
∞

0
p1(η) f1

(
κ

1/γ
Π(τ1(η))

)
dη

=
∫

∞

0

1
η+1

(
κ

5/3 3
5
(
e5(η−2)/3 −1

))1/3
dη = ∞ ∀κ > 0,

because the integral approaches +∞ as η →+∞. So, all the conditions of Theorem 1
hold, and therefore all solution of (4.1) are oscillatory.

Example 4. Consider the delay differential equation

((y′3/5)′5/3 +(t +1)(y(t −1))7/3 = 0, t ≥ 0 . (4.2)

Here γ = 3/5, π(t) = 1, τ1(t) = t − 2, τ2(t) = t − 1, Π(t) = t, f1(v) = v5/3 and
f2(v) = v7/3. For β = 4/3, we have f1(v)/vβ = v1/3 and f2(v)/vβ = v which both
are increasing functions. Clearly, all the conditions of Theorem 2 hold. Thus, every
solution of (4.2) oscillates.

Open problem

Based on this work and [6, 9, 13, 15, 17, 18] an open problem that arises is to
establish necessary and sufficient conditions for the oscillation of the solutions of the
second-order nonlinear neutral differential equation.
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