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Abstract. The existence of fixed point in uniformly convex hyperbolic metric space endowed
with graph of G-nearly asymptotically nonexpansive mapping has been obtained. Further, we
prove strong and ∆−convergence of M−iteration to fixed point of G-nearly asymptotically non-
expansive mapping. We also derived some corollaries of our results in uniformly convex Banach
space which are also independent new findings.
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1. INTRODUCTION

Fixed point theory is an active and vital branch of mathematics. In 1922, Banach
gave the first fundamental fixed point theorem which is known as Banach contraction
principle. Banach contraction principle is also notable for its simplicity. It requires
only two conditions one on underlying space as complete metric space and other is
on involved mapping as contraction mapping. Generalizations of Banach contraction
principle in different directions is one of the important part of research in nonlinear
analysis. The one way is to generalize Banach contraction principle is to change
the underlying metric structure and second is to extend the involve mapping. The
important generalizations came into picture due to Ran and Reurings [19] and Nieto
and López [17]. They generalize the Banach contraction principle to partially ordered
metric space. Ran and Reurings [19] applied their results to solve matrix equation
while Nieto and López [17] applied to solve differential equation.

Nonexpansive mappings are those mappings whose Lipschitz constant are equal to
one. In 1965, Browder [4,5], Göhde [7] and Kirk [11] independently proved existence
of fixed point for nonexpansive mappings in Banach space. Further, it is well known
fact that Picard iteration does not converege to fixed point of nonexpansive mappings
even if it exists. In 1953, Mann [15] introduced a iteration to approximate the fixed
point of nonexpansive mappings. After Mann iteration, many iteration came into
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picture. Recently in 2018, Ullah and Arshad [29] introduced a new iteration namely
M−iteration which is more efficient than the many existing iterations.

In 2008, Jachymski [8] proved Banach contraction principle in complete metric
space endowed with graph which is natural generalization of Ran and Reurings [19]
and Nieto and López [17] results.

In 2016, Alfuraidan and Shukri [2] proved Browder and Göhde fixed point theorem
for G-nonexpansive mappings. Recently many authors obtained convergence results
for many iterations in spaces endowed with graphs see [25, 27, 28, 30].

In 2005, Sahu [22] introduced a mapping namely nearly asymptotically nonex-
pansive mapping, it is a non-Lipschitzian type mapping and generalize nonexpansive
mappings. In 2008 Sahu et al. [21] and in 2015 Saluja et al. [23] proved some
convergence results for nearly asymptotically nonexpansive mappings. In this paper,
we prove the Browder and Göhde fixed point theorem for G-nearly asymptotically
nonexpansive mappings. We also prove, ∆− convergence and strong convergence of
M-iteration for G-nearly asymptotically nonexpansive mappings in hyperbolic metric
space.

2. PRELIMINARIES

Let us start the section by collecting some needed results.
A graph G is an ordered pair (V (G),E(G)) where V (G) is a set called vertices

and E(G) is a binary relation on V (G) (i.e.E(G)⊆V (G)×V (G)) called edges of G.
If the direction is imposed on each edges then we call the graph a directed graph or
digraph. Here we assume that digraph have loop at every vertex (i.e. (x,x) ∈ E(G)
for each x ∈ V (G)). We also assume that G has no parallel edges. Moreover, we
assume that there is a distance function d defined on the set of vertices V (G) and we
call it a weighted graph. G−1 is obtained from G by reversing the direction of edges.
Thus we have

E(G−1) = {(y,x) : (x,y) ∈ E(G)}.
The letter G̃ denotes the undirected graph obtained from G by ignoring the direction
of edges. It will be more convenient for us to treat G̃ as a directed graph for which
the set of its edges is symmetric. Under this convention, we have

E(G̃) = E(G)∪E(G−1).

Further, if x and y are vertices in a graph G, then a path in G form x to y of length N ∈
N is a sequence {xi}N

i=1 of N vertices such that x1 = x, xN = y and (xi,xi+1) ∈ E(G).
A graph G is connected if there is a path between any two vertices.

In this paper we will take (X ,d,G) as a weighted directed graph G defined on the
set X .

Definition 1. A directed graph is said to be transitive whenever (u,v),(v,w) ∈
E(G) then this implies (u,w) ∈ E(G).
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A point x ∈ X is said to be a fixed point of T whenever T (x) = x and the set of the
fixed points of T is denoted by F(T ).

Fixed point theory in Banach space has been developed richly, because it have lin-
earity and convex structure. It is a great interest of researchers to develop results of a
linear space (Banach Space) to a nonlinear space (metric space). But due to unavail-
ability of convex structure in metric space it was looking impossible to develop the
results of Banach space into metric space. To keep in mind this situation Reich and
Shafrir [20] introduced a nonlinear space (hyperbolic metric space) by using geodesic
segment and use Menger convexity [16] in this space. In 2005, Kohlenbach [12] in-
troduced a generalization of the classical concept of hyperbolic metric space by using
Takahashi [26] convex structure as follows:

Definition 2. Let (X ,d) be a metric space, then (X ,d,W ) will be the hyperbolic
metric space if the function W : X×X× [0,1]→ X satisfying

(i) d(z,W (x,y,α))≤ (1−α)d(z,x)+αd(z,y),
(ii) d(W (x,y,α),W (x,y,β)) = |α−β|d(x,y),

(iii) W (x,y,α) =W (x,y,1−α),
(iv) d(W (x,y,α),W (z,w,α))≤ (1−α)d(x,z)+αd(y,w)

for all x,y,z,w ∈ X and α,β ∈ [0,1].

If only condition (i) is satisfied then it will be convex metric space in sense of
Takahashi [26]. For some results of fixed point theory on convex structure see [10].

Linear example of hyperbolic metric space is Banach space and nonlinear ex-
amples are Hadamard manifolds, the Hilbert open unit ball equipped with the hyper-
bolic metric and the CAT(0) spaces.

Here we present nearly asymptotically nonexpansive mappings endowed with
graphs. Originally it was introduced by Sahu [22] and is a generalization of asymp-
totically nonexpansive mappings.

Definition 3. A mapping T : (X ,d,G)→ (X ,d,G) is said to be G-nearly Lipschit-
zian with respect to an if for each n ∈ N, there exist a constant kn ≥ 0 such that

d(T nx,T ny)≤ kn(d(x,y)+an),

where an ∈ [0,∞) with an → 0 and for every x,y ∈ X such that (x,y) ∈ E(G). The
infimum of constants kn for which the last inequality hold is denoted by η(T n) and
called the nearly Lipschitz constant. The G-nearly Lipschitz mapping T with se-
quence {(an,η(T n))} is said to be G-nearly asymptotically nonexpansive if

(1) η(T n)≥ 1 for all n ∈ N and
(2) lim

n→∞
η(T n) = 1.

If we take an = 0 for all n ∈ N then it will be G-asymptotically nonexpansive
mapping and if we take kn = 1, an = 0 for all n ∈ N then it will be G-nonexpansive
mapping.
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Lemma 1 ([3, 6]). Let C be a closed nonempty subset of uniformly convex hy-
perbolic metric space (X ,d). Let τ : C→ [0,∞) be a type function, i.e., there exist
bounded sequence {xn} ∈ X such that

τ(x) = limsup
n→∞

d(xn,x),

for any x∈C. Then τ is continuous. Since X is hyperbolic, τ is convex, i.e., the subset
{x ∈ C;τ(x) ≤ r} is convex for any r ≥ 0 and there exist a unique minimum point
z ∈C such that

τ(z) = inf{τ(x);x ∈C}.
Moreover, if {zn} is a minimizing sequence in C, i.e., lim

n→∞
τ(zn) = τ0, then {zn} con-

verges strongly to z.

Due to unavailability of addition and scalar multiplication in general metric space
it was impossible to study weak convergence. So to tackle this situation in 1976, Lim
[14] introduced the concept of ∆−convergence in metric space. ∆−convergence is an
analogue of weak convergence.

Definition 4. Let X be a complete hyperbolic metric space and {xn} be a bounded
sequence in X . Then the type function r(.,{xn}) : X → [0,∞) is defined by

r(x,{xn}) = limsup
n→∞

d(x,xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x,{xn}) : for x ∈ X}

and the asymptotic center A({xn}) of {xn} is defined as

A({xn}) = {x ∈ X : r(x,{xn}) = r({xn})}.

Definition 5. A bounded sequence {xn} in X is said to ∆−converge to x ∈ X if x
is the unique asymptotic center of every subsequence {un} of {xn}. We write xn ⇁ x
({xn} ∆−converges to x).

Lemma 2 ([13]). Let (X ,d) be a complete uniformly convex hyperbolic metric
space and C be a nonempty, convex and closed subset X. Then, every bounded se-
quence {xn} ∈ X has a unique asymptotic center with respect to C.

Proposition 1 ([1]). Let (X ,d) be complete hyperbolic metric space then (X ,d,G)
is said to have property (∗), if for each sequence {xn} in X ∆− converges to x∈X and
(xn,xn+1) ∈ E(G), then there is a subsequence {xnk} with (xnk ,x) ∈ E(G) ∀n ∈ N.
Note that if the triplet (X ,d,G) has property (∗) and G is transitive, then we have the
following property:
(∗∗) For any {xn} in X, if xn ∆−converges to x and (xn,xn+1) ∈ E(G) then (xn,x) ∈
E(G) for n≥ 1.



EXISTENCE AND CONVERGENCE 33

Lemma 3 ( [9]). Let X be a uniformly convex hyperbolic space. Let R ∈ [0,∞) be
such that

limsup
n→∞

d(xn,a)≤ R, limsup
n→∞

d(yn,a)≤ R and lim
n→∞

d(a,αnxn⊕ (1−αn)yn) = R

where αn ∈ [a,b], with 0 < a≤ b < 1. Then we have, lim
n→∞

d(xn,yn) = 0.

Lemma 4 ([18]). Let {xn}, {yn} and {zn} be three sequences of nonnegative num-
bers such that

yn ≥ 1 and xn+1 ≤ ynxn + zn for all n ∈ N.
If ∑

∞
n=1(yn−1)< ∞ and ∑

∞
n=1 zn < ∞, then lim

n→∞
xn exists.

M−iteration process in hyperbolic metric space, as follows:
x0 ∈C,
zn =W (xn,T nxn,αn),
yn = T nzn,
xn+1 = T nyn,∀n ∈ N.

(2.1)

Through the paper we will assume that G-intervals are closed and convex. We know
that a G-interval is any of the subsets

[a,→) = {x ∈V (G);(a,x) ∈ E(G)} and (←,b] = {x ∈V (G);(x,b) ∈ E(G)},
for every a,b ∈V (G).

3. EXISTENCE THEOREM

In this section we prove an existence theorem for a mapping involving graph.

Theorem 1. Let (X ,d,G) be a complete uniformly convex hyperbolic metric space
endowed with directed graph G. Assume that G is convex and transitive and C be a
nonempty, closed and convex subset of X which contain more than one point. If
T : C→C is a continuous G−nearly asymptotically nonexpansive mapping and there
exist x0 ∈C such that (x0,T x0) ∈ E(G). Then, T has a fixed point.

Proof. Since (x0,T (x0) ∈ E(G), then by edge preserving of T , (T nx0,T n+1x0) ∈
E(G) for all n ∈N. Since X is a complete uniformly convex hyperbolic metric space,
then by property (R),

C∞ =
⋂
n≥0

[T nx0,→)∩C =
⋂
n≥0

{x ∈C;(T nx0,x) ∈ E(G)} ̸=∅.

Choose x ∈ C∞, then (T n(x0),x) ∈ E(G). Again by using edge preserving of T ,
(T n+1(x0),T x) ∈ E(G). Thus, by transitivity of E(G), (T n(x0),T x) ∈ E(G), i.e.,
T (C∞) ⊂ C∞. Consider the type function τ : C∞ → [0,∞) generated by {T n(x0)},
that is, τ(x) = limsup

n→∞

d(T nx0,x). By using Lemma 1, there exist a unique minimum
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point z ∈C∞ that is τ(z) = inf{τ(x) : x ∈C∞}. Since z ∈C∞, then we have T p(z) ∈C∞

for all p ∈ N which implies

τ(T p(z)) = limsup
n→∞

d(T nx0,T p(z))≤ η(T p) limsup
n→∞

d(T nx0,z)+η(T p)ap

= η(T p)τ(z)+η(T p)ap.

Since, τ(z) is minimum then, τ(z)≤ τ(T p(z))≤ η(T p)τ(z)+η(T p)ap for all p ∈ N.
By using the condition of Definition 2, lim

p→∞
τ(T p(z)) = τ(z). Also, τ( lim

p→∞
T p(z)) =

τ(z). By using continuity of T , τ(T lim
p→∞

T p−1(z)) = τ(z), that is τ(T (z)) = τ(z). By

the uniqueness of the minimum point z = T (z), we get that z is a fixed point of T . □

The following corollary can be directly obtained from the above result.

Corollary 1. Let (X ,d,G) be a uniformly convex Banach space endowed with
directed graph G. Assume that G is convex and transitive and C be a nonempty,
closed and convex subset of X which contain more than one point. If T : C→ C is
a continuous G−nearly asymptotically nonexpansive mapping and there exist x0 ∈C
such that (x0,T x0) ∈ E(G). Then, T has a fixed point.

4. ∆-CONVERGENCE AND STRONG CONVERGENCE THEOREM

In this section we are going to prove convergence results. So let’s start the section
with the following proposition.

Proposition 2. Let p∈ F(T ) be such that (x0, p) and (p,x0) are in E(G) and {xn}
is a sequence defined by (2.1). Then (xn, p),(p,xn),(yn, p), (p,yn),(zn, p),(zn, p) and
(xn,xn+1) are in E(G).

Proof. Given that (x0, p) ∈ E(G). Then, by using convexity of E(G), (z0, p) ∈
E(G). Also, (y0, p) ∈ E(G). Since T is edge preserving, we have (Ty0, p) ∈ E(G)
that is (x1, p) ∈ E(G). Again, by edge preserving of E(G), (T x1, p) ∈ E(G). Again
by using convexity of E(G) on (x1, p) and (T x1, p), we get (z1, p) ∈ E(G). By using
edge preserving of T , we get (T z1, p) ∈ E(G), that is (y1, p) ∈ E(G). Now suppose
(xk, p) ∈ E(G) for fix k ∈ N. Then, by edge preserving of T , (T kxk, p) ∈ E(G). By
convexity of E(G), (zk, p) ∈ E(G). Again, (T kzk, p) ∈ E(G), that is (yk, p) ∈ E(G).
By edge preserving of T , (T kyk, p) ∈ E(G) that is, (xk+1, p) ∈ E(G). Thus, by edge
preserving of E(G), (T k+1xk+1, p) ∈ E(G). Again by using convexity of E(G) on
(xk+1, p) and (T k+1xk+1, p) we get, (zk+1, p) ∈ E(G). Again, (T k+1zk+1, p) ∈ E(G)
we get (yk+1, p) ∈ E(G). Hence by induction, (xn, p),(yn, p),(zn, p) are in E(G) for
all n ∈ N. Using the similar argument we can show that (p,xn),(p,yn),(p,zn) are in
E(G) for all n ∈ N. By transitivity of G we get (xn,xn+1) ∈ E(G). □

Theorem 2. Let (X ,d) be a complete uniformly convex hyperbolic metric space
and suppose that (X ,d,G) has property (∗). Assume that G is convex and transit-
ive and C be a nonempty, closed and convex subset of X which contain more than
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one point. If T : C → C is a continuous G−nearly asymptotically nonexpansive
mapping with sequence {(an,η(T n))} and F(T ) ̸= ∅ such that ∑

∞
n=1 an < ∞ and

∑
∞
n=1(η(T

n)−1)<∞. If sequence {xn} is defined by (2.1) with (x0, p), (p,x0)∈E(G)
where 0 < a ≤ αn,βn ≤ b < 1, p ∈ F(T ) and x0 ∈ C, then {xn} ∆− converges to a
fixed point x∗ of T .

Proof. Let p ∈ F(T ). It follows form Proposition 1 that (xn, p),(yn, p),(zn, p) are
in E(G). Now,

d(xn+1, p) = d(T nyn, p)

≤ η(T n)d(yn, p)+η(T n)an

≤ η(T n)d(T nzn, p)+η(T n)an

≤ η(T n)2d(zn, p)+η(T n)2an +η(T n)an

≤ η(T n)2d(W (T nxn,xn,αn), p)+η(T n)2an +η(T n)an

≤ (η(T n)2−αnη(T n)2 +αnη(T n)3)d(xn, p)+αnη(T n)3an

+η(T n)2an +η(T n)an

for n ∈ N. Also,
∞

∑
n=1

(η(T n)2−αnη(T n)2 +αnη(T n)3−1) =
∞

∑
n=1

(η(T n)+1+αnη(T n)2)(η(T n)−1)

≤ sup
1≤n<∞

(η(T n)+1+αnη(T n)2)
∞

∑
n=1

((η(T n)−1)< ∞

and
∞

∑
n=1

(an)(αnη(T n)3 +η(T n)2 +η(T n))≤ sup
1≤n<∞

(αnη(T n)3 +η(T n)2 +η(T n))
∞

∑
n=1

an

< ∞.

It follows from Lemma 3 that lim
n→∞

d(xn, p) exist.

Let lim
n→∞

d(xn, p) = R. Then

limsup
n→∞

d(T nxn, p)≤ limsup
n→∞

[η(T n)d(xn, p)+η(T n)an] = limsup
n→∞

d(xn, p) = R.

Now,

d(zn, p)≤ d(W (T nxn,xn,αn), p)

≤ (1−αn)d(xn, p)+αn[η(T n)d(xn, p)+η(T n)an]

= (1−αn +αnη(T n))d(xn, p)+αnη(T n)an.

Thus, lim
n→∞

d(zn, p)≤ R. Again,

lim
n→∞

d(xn+1, p) = lim
n→∞

d(T 2nzn, p)



36 SAJAN AGGARWAL, IZHAR UDDIN, AND JUAN J. NIETO

≤ lim
n→∞

η(T n)d(T nzn, p)+η(T n)an

≤ lim
n→∞

η(T n)2d(zn, p)+η(T n)2an +η(T n)an

≤ lim
n→∞

d(zn, p)

R≤ lim
n→∞

d(zn, p).

Hence
lim
n→∞

d(zn, p) = R.

By using Lemma 3,
lim
n→∞

d(T nxn,xn) = 0.

From Lemma 1, {xn} have unique asymptotic center. Let A(xn) = x∗ and {un} is a
subsequence of {xn} such that A(un) = u. Now, claim x∗ = u.
On contrary suppose that x∗ ̸= u. Then,

limsup
n→∞

d(un,u)< limsup
n→∞

d(un,x∗)≤ limsup
n→∞

d(xn,x∗)

< limsup
n→∞

d(xn,u) = limsup
n→∞

d(un,u),

which is a contradiction and hence ∆− lim
n→∞

xn = x∗.

Now, we claim that x∗ ∈ F(T ). Since by Property (∗∗), (x∗,xn) ∈ E(G). Then,

limsup
n→∞

d(T nx∗,xn)≤ limsup
n→∞

d(T nx∗,T nxn)+ limsup
n→∞

d(T nxn,xn)

≤ limsup
n→∞

[η(T n)d(x∗,xn)+η(T n)an]+ limsup
n→∞

d(T nxn,xn)

≤ limsup
n→∞

d(x∗,xn).

Since ∆− lim
n→∞

xn = x∗, limsupn→∞ d(x∗,xn)< limsupn→∞ d(T nx∗,xn). Thus, we have
T nx∗ = x∗, which completes the proof. □

The above nonlinear space result can be written as corollary in a linear space as
follows:

Corollary 2. Let (X ,d) be a uniformly convex Banach space with Opial’s prop-
erty and suppose that (X ,d,G) has property (∗). Assume that G is convex and
transitive and C be a nonempty, closed and convex subset of X which contain more
than one point. If T : C→ C is a continuous G−nearly asymptotically nonexpans-
ive mapping with sequence {(an,η(T n))} and F(T ) ̸= ∅ such that ∑

∞
n=1 an < ∞

and ∑
∞
n=1(η(T

n)−1)< ∞. If sequence {xn} is defined by (2.1) with (x0, p), (p,x0) ∈
E(G) where 0 < a ≤ αn,βn ≤ b < 1, p ∈ F(T ) and x0 ∈ C then, {xn} weakly con-
verges to a fixed point x∗ of T .
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Theorem 3. Let (X ,d,G) be a complete uniformly convex hyperbolic metric space
endowed with directed graph G. Assume that G is convex and transitive and C be a
nonempty, closed and convex subset of X which contain more than one point. If
T : C→C is a continuous G−nearly asymptotically nonexpansive mapping with se-
quence {(an,η(T n))} and F(T ) ̸=∅ such that ∑

∞
n=1 an < ∞ and ∑

∞
n=1(η(T

n)−1)<
∞. If sequence {xn} is defined by (2.1) with (x0, p), (p,x0) ∈ E(G) where 0 < a ≤
αn,βn ≤ b < 1, p ∈ F(T ) and x0 ∈C, then, {xn} converges strongly to a fixed point
x∗ of T if and only if liminf

n→∞
d(xn,F(T )) = 0.

Proof. It is easy to see that if {xn} converges to a point x∗ ∈ F(T ) then

liminf
n→∞

d(xn,F(T )) = 0.

For converse part, suppose that liminf
n→∞

d(xn,F(T )) = 0. From the proof of Theorem

1, lim
n→∞

d(xn,x∗) exist. But as it is given in the hypothesis that liminf
n→∞

d(xn,F(T )) = 0,

therefore lim
n→∞

d(xn,F(T )) = 0.

Thus, for a given ε > 0 there exist a K(ε) ∈ N such that

d(xn,F(T ))<
ε

2
whenever n > K(ε).

Particularly, inf{d(xK ,x∗) : x∗ ∈ F(T )} < ε

2 . So there exist x∗ ∈ F(T ) such that
d(xK ,x∗)< ε

2 . Now, for n,m > K(ε)

d(xn,xm)≤ d(xn,x∗)+d(x∗,xm)< ε.

Hence, xn is a Cauchy sequence in C. Since C is a closed subset of X , then lim
n→∞

xn =

x∗ ∈C. □

Corollary 3. Let (X ,d,G) be a uniformly convex Banach space endowed with dir-
ected graph G. Assume that G is convex and transitive and C be a nonempty, closed
and convex subset of X which contain more than one point. If T : C→C is a continu-
ous G−nearly asymptotically nonexpansive mapping with sequence {(an,η(T n))}
and F(T ) ̸=∅ such that ∑

∞
n=1 an < ∞ and ∑

∞
n=1(η(T

n)−1)< ∞. If sequence {xn} is
defined by (2.1) with (x0, p), (p,x0) ∈ E(G) where 0 < a≤ αn,βn ≤ b < 1, p ∈ F(T )
and x0 ∈ C, then, {xn} converges strongly to a fixed point x∗ of T if and only if
liminf

n→∞
||xn−F(T )||= 0.

5. EXAMPLE

In this section, we construct an example of a G-nearly asymptotically nonexpans-
ive mapping which is not a nearly asymptotically nonexpansive mapping. Also, do-
main of our example is a hyperbolic metric space which is not in Banach space. The
motivation is essentially taken from [24].
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Example 1. Let X = {(x1,x2) ∈ R2 : x1,x2 > 0}. Define d : X×X → [0,∞) by

d(x,y) = |x1− y1|+ |x1x2− y1y2|
for all x = (x1,x2) and y = (y1,y2) in X . Now for α ∈ [0,1], define a function
W : X×X× [0,1]→ X by

W (x,y,α) =
(

αx1 +(1−α)y1,
αx1x2 +(1−α)y1y2

αx1 +(1−α)y1

)
.

Then we can easily verify that (X ,d,W ) is a hyperbolic metric space.
Now, define the graph G on X by

(x,y) ∈ E(G)⇔ x1 + x2 = y1 + y2.

Define the mapping T : [1
2 ,1]× [1

2 ,1]→ [1
2 ,1]× [1

2 ,1] by

T (x1,x2) = (1− x1,1− x2).

This gives
T 2n(x1,x2) = (x1,x2)

and
T 2n+1(x1,x2) = (1− x1,1− x2)

for all n ∈ N. This mapping is G-nearly asymptotically nonexpansive mapping but
not nearly asymptotically nonexpansive mapping because

d(T 2n+1x,T 2n+1y)≤ d(x,y)+ |x1 + x2− y1− y2|.

6. CONCLUSION

We are concluding our paper with the following pertinent observations:
(i) Our Theorem 1 generalize Theorem 3.3 of Alfuraidan and Shukri [2], The-

orem Alfuraidan and Khamsi [3] and Theorem 3.1 of Dehaish and Khamsi
[6].

(ii) Our convergence results extend the domain of convergence results of Ullah
and Arshad [29].

(iii) We also furnish an example of a G-nearly asymptotically nonexpansive in
hyperbolic metric space with graph.
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