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Abstract. The paper is concerned with the existence of positive weak solutions for a new class of
(p,q)-Laplacian elliptic systems in a bounded domain by means of the method of sub-super solu-
tions. Particularly, we do not need any sign conditions for γ(0) ,g(0) , f (0) and h(0). Moreover,
a multiplicity result is obtained when γ(0) = g(0) = f (0) = h(0) = 0. Finally, we give some
examples to verify our main results.
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1. INTRODUCTION

In this paper, we deal with the existence and multiplicity of positive weak solutions
for the following (p,q)-Laplacian systems

−4pu−|u|p−2 u = λ1a(x) f (v)+µ1α(x)h(u) in Ω,

−4qv−|v|q−2 v = λ2b(x)g(u)+µ2β(x)γ(v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where 4sz = div
(
|∇z|s−2

∇z
)
,s > 1,Ω ⊂ RN (N ≥ 3) is a bounded domain with

smooth boundary ∂Ω,a(x) ,b(x) , α(x) ,β(x) ∈C(Ω), λ1,λ2,µ1, ,µ2 ≥ 0, 1 < p,q <
∞.
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The study of (p,q)-Laplacian systems is a new and interesting topic. It arises from
electrorheological fluids, nonlinear elasticity theory, etc. (see [5], [15] [1]-[6]). A lot
of existence results have been obtained on this class of problems, we refer to ([4], [5],
[7], [10], [13], [14], [3], [2], [11], [9], [8]). These problems originate from physical
models and are widely used in many fields such as combustion, mathematical biology,
chemical reactions and so on. Our method is mainly focused on the method of sub-
super solutions (see [10], [11] for a more detailed discussion).

As far as we know, there are very few contributions devoted to the (p,q)-Laplacian
nonlinear elliptic system. Therefore, with the help of the method of sub-super solu-
tions method, we are inspired by the paper of [12] in which a new (p,q)-Laplacian
system was discussed and extended our previous results to problem (1.1) without
assuming any sign conditions for h(0), g(0), f (0), and γ(0). Furthermore, when
h(0) = f (0) = g(0) = γ(0) = 0, a multiplicity result is given.

The outline of the paper is organized as follows: Sec. 2 introduces some definitions
and make appropriate assumptions, which will be used in the body of the paper. In
addition, we show the proof of two important results. Sec. 3, we will illustrate our
main results with some interesting examples.

2. MAIN RESULTS

First, in order to get our main results, we will consider the following hypothesis:
(H1) There exist a(x) , α(x) , b(x) , β(x) ∈C(Ω) such that

a(x)≥ a1 > 0, b(x)≥ b1 > 0,

α(x)≥ α1 > 0, β(x)≥ β1 > 0.

(H2) Let f , g, h, γ ∈C1([0,∞)) be monotone functions satisfying

lim
s→+∞

f (s) = lim
s→+∞

g(s) = lim
s→+∞

h(s) = lim
s→+∞

γ(s) = +∞.

(H3) lims→+∞

f
(

M(g(s))
1

q−1

)
sp−1 = 0, ∀M > 0.

(H4) lims→+∞

h(s)
sp−1 = lims→+∞

γ(s)
sq−1 = 0.

Next, we define weak solutions and sub-super solutions in (p,q)-Laplacian elliptic
systems.

Definition 1. Let (u,v) ∈W 1,p (Ω)∩C(Ω)×W 1,q (Ω)∩C(Ω), we say that (u,v)
is a weak solution of problem (1.1), if
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∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx

= λ1
∫
Ω

a(x) f (v)ξdx+µ1
∫
Ω

α(x)h(u)ξdx in Ω,

∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx

= λ2
∫
Ω

b(x)g(u)ζdx+µ2
∫
Ω

β(x)γ(v)ζdx in Ω

for all (ξ,ζ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω) .

Definition 2. The nonnegative functions (u,v),(u,v) in W 1,p (Ω)∩C(Ω)×W 1,q (Ω)∩
C(Ω) are called a weak subsolution and supersolution of problem (1.1) if they satisfy
(u,v),(u,v) = (0,0) on ∂Ω

∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx

≤ λ1
∫
Ω

a(x) f (v)ξdx+µ1
∫
Ω

α(x)h(u)ξdx in Ω,

∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx

≤ λ2
∫
Ω

b(x)g(u)ζdx+µ2
∫
Ω

β(x)γ(v)ζdx in Ω

and ∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx

≥ λ1
∫
Ω

a(x) f (v)ξdx+µ1
∫
Ω

α(x)h(u)ξdx in Ω,

∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx

≥ λ2
∫
Ω

b(x)g(u)ζdx+µ2
∫
Ω

β(x)γ(v)ζdx in Ω

for any (ξ,ζ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω) .

In what follows, we shall establish the following the existence result.

Theorem 1. Let (H1)− (H4) hold. If λ1 + µ1 and λ2 + µ2 are big enough, then
problem (1.1) processes a positive weak solution.

Proof. We will show that there exist a positive weak subsolution(u,v)∈W 1,p (Ω)∩
C(Ω)×W 1,q (Ω)∩C(Ω) and a supersolution (u,v) ∈W 1,p (Ω)∩C(Ω)×W 1,q (Ω)∩
C(Ω) of (1.1) such that u≤ u, v ≤ v. Moreover, (u,v),(u,v) satisfy (u,v) = (0,0) =
(u,v) on ∂Ω.
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Let σr be the first eigenvalue of −4r, and φr > 0 the corresponding eigenfunction
with ‖φr‖ = 1 for r = p,q. There exist m,η,δ > 0 such that |∇φr|r−σr φr ≥ m on
Ωδ = {x ∈Ω,d (x,∂Ω)≤ δ} and φr ≥ η on Ω\Ωδ for r = p,q. Taking k0 > 0 such
that a1 f (t) , α1h(t) , b1g(t) , β1γ(t)>−k0.

First, we claim that

(u,v) : =

([
(λ1 +µ1)k0

m

]1�p−1( p−1
p

)
φ

p�p−1
p ,

[
(λ2 +µ2)k0

m

]1�q−1(q−1
q

)
φ

q�q−1
q

) (2.1)

is a subsolution of problem (1.1) when λ1+µ1 and λ2+µ2 are big enough. Taking
the test function ξ(x) ∈W 1,p

0 (Ω) with ξ(x)≥ 0. Thus, from (H1) we get∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx≤
∫
Ω

|∇u|p−2
∇u.∇ξdx

=
(
(λ1+µ1)k0

m

)∫
Ω

{
σpφ

p
p−|∇φp|p

}
ξdx

+
(
(λ1+µ1)k0

m

) ∫
Ω\Ωδ

{
σpφ

p
p−|∇φp|p

}
ξdx.

We have known that |∇φr|r−σr φr ≥m for s = p,q, on Ωδ. Also on Ω\Ωδ φr ≥ η

for r = p,q. If λ1 + µ1 and λ2 + µ2 are big enough in the definition of u, v, then by
(H2) we get

a1 f (v) ,α1h(u) ,b1g(u) ,β1γ(v)≥ k0

m
max

{
σp,σq

}
. (2.2)

Therefore, ∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx

≤
(
(λ1+µ1)k0

m

) ∫
Ωδ

{
σpφ

p
p−|∇φp|p

}
ξdx

+
(
(λ1+µ1)k0

m

) ∫
Ω\Ωδ

{
σpφ

p
p−|∇φp|p

}
ξdx

≤−(λ1 +µ1)k0
∫

Ωδ

ξdx+
(
(λ1+µ1)k0

m

) ∫
Ω\Ωδ

σpξdx

≤
∫

Ωδ

[λ1a(x) f (v)+µ1α(x)h(u) ]ξdx

+
∫

Ω\Ωδ

[λ1a(x) f (v)+µ1α(x)h(u) ]ξdx

=
∫
Ω

[λ1a(x) f (v)+µ1α(x)h(u) ]ξdx
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Similarly,

∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx≤
∫
Ω

[λ2b(x)g(u)+µ2β(x)γ(v)]ζdx.

Thus (u,v) is a subsolution of problem (1.1).
Next, let ωr be a unique positive solution of −4rωr = 1 in Ω,

ωr = 0 on ∂Ω.

for r = p,q. We denote

u =
C
νp

(
λ1 ‖a‖∞

+µ1 ‖α‖∞

1−ν
p−1
p

) 1
p−1

ωp, (2.3)

v =

(λ2 ‖b‖∞
+µ2 ‖β‖∞

1−ν
q−1
q

)
g

C

(
λ1 ‖a‖∞

+µ1 ‖α‖∞

1−ν
p−1
p

) 1
p−1


1
q−1
ωq, (2.4)

where νr = ‖ωr‖∞
, r = p,q and C > 0 is big enough. We claim that (u,v) is a

supersolution of (1.1) such that (u,v)≥ (u,v).
According to (H3)− (H4), we can make C big enough so that

(
C
νp

)p−1
≥ f

(λ2‖b‖∞
+µ2‖β‖∞

1−ν
q−1
q

)
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
) 1

q−1
ωq


+µ1h

(
λ1‖a‖∞

+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1

ωp.

(2.5)

Hence

∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx =
(

C
νp

)p−1

(λ1 ‖a‖∞
+µ1 ‖α‖∞

)
∫
Ω

ξdx.
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Using (2.5)∫
Ω

|∇u|p−2
∇u.∇ξdx−

∫
Ω

|u|p−2 u.ξdx

≥ λ1 ‖a‖∞
f

(λ2‖b‖∞
+µ2‖β‖∞

1−ν
q−1
q

)
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
) 1

q−1
ωq

×
∫
Ω

ξdx+µ1 ‖α‖∞

∫
Ω

h

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)

ξdx

≥
∫
Ω

[λ1a(x) f (v)+µ1α(x)h(u)] ξdx.

(2.6)

Next

∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx

=

{
(λ2 ‖b‖∞

+µ2 ‖β‖∞
)g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)}

ωq
∫
Ω

ξdx

≥

[
λ2 ‖b‖∞

g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)

+µ2 ‖β‖∞
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)]∫

Ω

ξdx.

(2.7)

According to (H4) and choose C big enough, we obtain

g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)

≥ γ

(λ2‖b‖∞
+µ2‖β‖∞

1−ν
q−1
q

)
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
) 1

q−1
∥∥ωq

∥∥
∞

 .
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Then from (2.6) we get∫
Ω

|∇v|q−2
∇v.∇ζdx−

∫
Ω

|v|q−2 v.ζdx

≥ λ2 ‖b‖∞
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)

+µ2 ‖β‖∞
γ

{(λ2‖b‖∞
+µ2‖β‖∞

1−ν
q−1
q

)
g

(
C
(

λ1‖a‖∞
+µ1‖α‖∞

1−ν
p−1
p

) 1
p−1
)} 1

q−1 ∥∥ωq
∥∥

∞


≥

∫
Ω

[b(x)g(u)+µ2β(x)γ(v)]ζdx.

(2.8)
According to (2.6) and (2.7), we can conclude that (u,v) is a supersolution of

(1.1). Further u ≥ u and v ≥ v for C big enough. Thus, we get a solution (u,v) ∈
W 1,p (Ω)∩C(Ω)×W 1,q (Ω)∩C(Ω) of (1.1) with u ≤ u ≤ u, and v ≤ v ≤ v. The
proof of theorem 1 is complete. �

Now we show that the more general system (1.1) possesses at least two distinct
positive solutions.

Theorem 2. Suppose that the conditions (H1)− (H4) hold. Let f ,g,h, and γ the
function be smooth enough around zero with

f (0) = h(0) = g(0) = γ(0) = 0

= f (k) (0) = h(k) (0) = g(l) (0) = γ
(l) (0)

for k = 1,2, .... [p−1] , l = 1,2, .... [q−1] , where [s] denotes the integer part of s.
Then, problem (1.1) processes at least two positive solutions when λi + µi are big
enough; i = 1,2.

Proof. For problem (1.1), we will look for a strict supersolution (ζ1,ζ2) , a subso-
lution (ψ1,ψ2) , a supersolution (z1,z2), and a strict subsolution (ω1,ω2) , such that

(ψ1,ψ2)≤ (ζ1,ζ2)≤ (z1,z2) ,

(ψ1,ψ2)≤ (ω1,ω2)≤ (z1,z2) ,

and (ω1,ω2)
 (ζ1,ζ2) . Then, problem (1.1) processes at least three distinct solutions
(ui,vi) , i = 1,2,3, such that

(u1,v1) ∈ [(ψ1,ψ2) ,(ζ1,ζ2)] ,

(u2,v2) ∈ [(ω1,ω2) ,(z1,z2)]

and

(u3,v3) ∈ [(ψ1,ψ2) ,(z1,z2)]�([(ψ1,ψ2) ,(ζ1,ζ2)]∪ (ω1,ω2) ,(z1,z2)) .

It is obvious that (ψ1,ψ2) = (0,0) is a (sub)solution. Moreover, we always can
find a big supersolution (z1,z2) = (u,v) . Consider
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
−4pω1−|ω1|p−2

ω1 = λ1a(x) f̃ (ω2)+µ1α(x) h̃(ω1) in Ω,

−4qω2−|ω2|q−2
ω2 = λ2b(x) g̃(ω1)+µ2β(x) γ̃(ω2) in Ω,

ω1 = ω2 = 0 on ∂Ω,

(2.9)

where g̃(s) = g(s)−1, γ̃(s) = γ(s)−1, h̃(s) = h(s)−1, f̃ (s) = f (s)−1. Then by
Theorem 1, when λi +µi are big enough, we know that the problem (2.10) processes
a solution (ω1,ω2) > 0 i = 1,2. It is clear that (ω1,ω2) is a strict subsolution of
problem (1.1).

In the end, we will find a strict supersolution (ζ1,ζ2) .
Let φp, φq be the corresponding eigenfunction with respect to operators 4p and

4q and there exist C1 > 0 and C2 > 0 such that

φp ≤C1φq and φq ≤C2φp. (2.10)

Let (ζ1,ζ2) = (ρφp,ρφq) , where ρ > 0,

Gp (x) := (σp−1)xp−1−λ1 f (C2x)−µ1h(x)

and
Gq (x) := (σq−1)xq−1−λ2g(C1x)−µ2γ(x) .

Note that Gp (0) = Gq (0) = 0, G(k)
p (0) = G(l)

q (0) = 0 for k = 1,2, .... [p−1] and
l = 1,2, .... [q−1] .

G(p−1)
p (0)> 0 and G(q−1)

q (0)> 0 if p,q ∈ Z+,

limr→+∞ G([p])
p (r) = +∞ = limr→+∞ G([q])

p (r) if p,q /∈ Z+.

Hence, there exists θ such that Gq (x)> 0 and Gp (x)> 0 for any x ∈ (0,θ]. So, for
0 < ρ≤ θ we get

(σp−1)ζ
p−1
1 = (σp−1)(ρφp)

p−1 > λ1 f (C2ρφp)−µ1h(ρφp) .

By (2.10) and the monotonicity of function f , we obtain

(σp−1)ζ
p−1
1 = (σp−1)(ρφp)

p−1

> λ1 f (C2ρφp)−µ1h(ρφp)
≥ λ1 f (ρφq)−µ1h(ρφp) = λ1 f (ζ2)−µ1h(ζ1)

(2.11)

for any x ∈Ω. In the same way, we also have

(σq−1)ζ
q−1
2 = (σq−1)(ρφq)

q−1

> λ2g(C1ρφq)−µ2γ(ρφq)
≥ λ2g(ρφp)−µ2γ(ρφq) = λ2g(ζ1)−µ2γ(ζ2) ,

(2.12)
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for any x ∈Ω. Making use of (2.11) and (2.12), we obtain∫
Ω

|∇ζ1|p−2
∇ζ1.∇ξdx−

∫
Ω

|ζ1|p−2
ζ1.ξdx

= ρp−1
{∫

Ω

|∇φp|p−2
∇φp.∇ξdx−

∫
Ω

|φp|p−2
φp.ξdx

}
=

∫
Ω

{
σp (ρφp)

p−1
− (ρφp)

p−1
}

ξdx.

Since because φp > 0, we have∫
Ω

{
σp (ρφp)

p−1
− (ρφp)

p−1
}

ξdx

=
∫
Ω

{
(σp−1)(ρφp)

p−1
}

ξdx

> λ1
∫
Ω

f (ζ2)ξdx−µ1
∫
Ω

h(ζ1) .ξdx,

Similarly we also have∫
Ω

|∇ζ2|q−2
∇ζ2.∇ξdx−

∫
Ω

|ζ2|q−2
ζ2.ξdx > λ2

∫
Ω

g(ζ1)ξdx−µ2

∫
Ω

γ(ζ2)ξdx.

It follows that (ζ1,ζ2) is a strict supersolution. Let ρ small enough so that (ω1,ω2)

(ζ1,ζ2). So, we can find solutions

(u1,v1) ∈ [(ψ1,ψ2) ,(ζ1,ζ2)] ,(u2,v2) ∈ [(ω1,ω2) ,(z1,z2)]

and

(u3,v3) ∈ [(ψ1,ψ2) ,(z1,z2)]�([(ψ1,ψ2) ,(ζ1,ζ2)]∪ (ω1,ω2) ,(z1,z2)) .

This fact that (u1,v1)≡ (ψ1,ψ2)≡ (0,0) can happen due to (ψ1,ψ2)≡ (0,0) is a
solution. So, anyway we can find two positive solutions (u2,v2) and (u3,v3). There-
fore, we conclude the proof of Theorem2. �

3. EXAMPLES

Example 1. Let

f (x) =
m

∑
i=1

aixpi− c1, g(x) =
n

∑
j=1

b jxq j− c2

h(x) =
s

∑
k=1

αkxrk − c3, γ(x) =
τ

∑
l=1

βlxdl − c4,

where
d j < (q−1) ,rk < (p−1) , piq j < (p−1)(q−1)

and
ai,b j,αk,βl, pi,q j,rk,d j,c1,c2,c3,c4 ≥ 0.
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So, it is clear that f ,g,h and γ fulfill the assumptions of Theorem 1.

Example 2. Let

f (x) =

{
xp1 , x≤ 1,
p1
p2

xp2 +
(

1− p1
p2

)
, x > 1, , h(x) =

{
xp3 , x≤ 1,
p3
p4

xp4 +
(

1− p3
p4

)
, x > 1, ,

g(x) =

{
xq1 , x≤ 1,
q1
q2

xq2 +
(

1− q1
q2

)
, x > 1, , γ(x) =

{
xq3 , x≤ 1,
q3
q4

xq4 +
(

1− q3
q4

)
, x > 1,

where we suppose that 
p1, p3 > p−1 if p ∈ Z+,
p1, p3 > [p] if p /∈ Z+,
q1,q3 > q−1 if q ∈ Z+,
q1,q3 > [q] if q /∈ Z+,

p4 < p−1, p2q2 < (p−1)(q−1) and q4 < q−1. Clearly, f ,g,h and γ fulfill all the
assumptions of Theorem 2
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