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Abstract. In this study, singular diffusion operator with jump conditions is considered. Integ-
ral representations have been derived for solutions that satisfy boundary conditions and jump
conditions. Some properties of eigenvalues and eigenfunctions are investigated. Asymtotic rep-
resentation of eigenvalues and eigenfunctions have been obtained. Reconstruction of the singular
diffusion operator have been shown by the Weyl function.
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1. INTRODUCTION

Let’s define the following boundary value problem which will be denoted by L in
the sequel all the paper

1(y) :==y"+12Ap(x) +q(x)]y =A*8(x)y, x€ [0,n] / {p1,p2}  (1.1)

with the boundary conditions

Y (0)=0, y(m) =0 (1.2)
and the jump conditions
y(p1+0) =ouy(p1—-0), (1.3)
¥ (p140) =1y (p1 —0) +idyiy(p1 —0), (1.4)
y(p2+0) =0y (p2—0), (1.5)
Y (p2+0) = Bay' (p2 = 0) +ilyay (p2 —0), (1.6)

where A is a spectral parameter, g(x) € Ly [0,7], p(x) € W, [0,7], p1,p2 € (0,T),
pi < o lou—1P+ P £0, Joo—1P+7 £ 0, (&:é(i:lg)) and
1 xe(0,p1);
d(x)=¢ o® x€(p1,p2); tobea >0, 0#1,B>0,p# 1 real numbers.
BZ X € (pz,ﬂ?);
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Direct and inverse problems are important in mathematics, physics and engineer-
ing. The inverse problem is called the reconstruction of the operator whose spec-
tral characteristics are given in sequences. For example; to learn the distribution of
density in the nonhomogeneous arc according to the wave lengths in mechanics and
finding the field potentials according to scattering data in the quantum physics are
examples of inverse problems. The first study on inverse problems for differential
equations was made by Ambartsumyan in [25]. A significant study in the spectral
theory of the singular differential operators was carried out by Levitan in [4]. An im-
portant method in the solution of inverse problems is the transformation operators. In
[14], Guseinov studied the regular differential equation and the direct spectral prob-
lem of the operator under certain initial conditions. In recent years, Weyl function has
frequently been used to solve inverse problems. The Weyl function was introduced
by H. Weyl in 1910 in the literature. Many studies have been made on direct or in-
verse problems [ 1-28]. The solution of discontinuous boundary value problem can be
given as an example of concrete problem of mathematical physics. Boundary value
problems with discontinuous coefficients are important for applied mathematics and
applied sciences.

In [17], Koyunbakan and Panakhov proved that the potential function can be de-
termined on [%,n] while it is known on [O, %] by single spectrum in [12]. In [26],
Yang showed that can be determined uniquely diffusion operator from nodal data.

2. PRELIMINARIES

Let ¢ (x,A), ¥ (x,A) be solutions of (1.1) respectively under the boundary condi-
tions

0(0.4) =1, o' (0,4) =0
y(m,A) =0, \l/ (m,A) =1
and discontinuity conditions (1.3) — (1.6), where Q (t) =2Ap (1) +¢q(t).

It is obvious that the function ¢ (x,X) is similar to [8] satisfies the following integral
equations if 0 < x < py:

O (x,1) :ew—i-i/xsink(x—t)Q(t)y(t,k)dt, 2.1)
0
if p1 <x < py:
Bt 4 g e (@) o Mgt ) _ YL ing(w)
o (x,A) =Bje +Bje + 2a° o
D1 gj + _
oy [ B )y hyar
0

+By /Op] WJ (t)y(r,\)dt (2.2)



if pp <x<m:
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P1cosh(ct (x) —
—i%/o MQK( )= 1 1)y (e, 1) de

+i2l(1x/0pl C"Sx(gk(x)_t)J(z)y(z,x)dz

+/p Smng_t)J(t)y(t,k)dt,

() (X, }\‘) :§+ei7xb+(x) + g—eikb’ (x) + ﬁ-ﬁ-eikﬁ (x) +0 eiks’ (x)

+(prps + 22 [ O )y a
+ (Brpy — 200 ) [ O )y
w(Bep = 2o ) [ =y
+ (s + 208 ) [0,y a
_(“2[;&2%) [0 )0
wi(Mhe L) [k 20 )y hya
+(Y£C+Y2‘;) [t B0y 0aya
wpy [ BB Z  ) ) a
—py [ IHEERR AR ) ) a
il [T ek BB k)
+i§é } COSMBX_B’;f_ap2+w)J(t)y(t77»)dt

+/pj Sinx;f_t)J(t)y(t,k)dt,
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q) (X, )\/) :§+ bt +& el?»b X) + ”a+ei7‘s+(x) X ﬁ_ems, )

+ (e + 208 [0 )y

+ (BB~ 2t ) [ SO )y

(BB~ 2o ) [ =y

+ (Brpy o+ 2o ) [ S O )y
<v12% FEBL) e =0
( P2 ) / 7S 70 5 )y 0y
"

P2 sm?» — sz—i—apg _w)J(t)y(t A)dt

/ * sin (Br - BPZ—O‘p2+O°t)J(t)y(f A)dr

2YB/2°°S% (Bx — BP2+°‘P2‘°“)J(r)y(t,7~>df

(e sz—“Pﬁw)J(t)y(t,?»)df
"2/, A

b [P )y,
P2 7\’

and it is obvious that the function y (x, ) satisfies the following integral equations if
P2 <x<T
sinAB (x — )

wier) = EEET MR 00 a2

if p; <x < po:

_(oB—v 1 —iM(B(p2—T)+(pr—))
Vi) = <2asza25 2aB2k> ¢
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N (o) o L\ (B2 -m)—u(pr—)
20([327\,062ﬁ 20([327\,

<O€B2—’Y2 1> P2 sinA (x — pp + ot —

P2 0 1)y (1,1 dr

208, 2/ Jp Ao
0‘[32—\(2 P2 sinA (x — py — ot +0ups)
* ( 20, 2) o ol Q(t)y(t,\)dt (2.6)

<a‘62_72 1 >/nSin}\'(x_p2+ﬁ(t_pZ))Q(t)y(t,K)dt

0B, AB
_(05[52—72 1 )/"Sinl(x—Pz—B(f—Pz))
aproof  afs B

Y2 P2 cosk(x—pz—i—(xt—ocpz)Q(t)y(t A)di

Q(1)y(r,1)dr

HETTN N A
" P2 cosh (x — py — ot +ap)

X sinAo(x — 1)
v O

if0<x<py:
—e M@+ 4 (g o e M @+
2By

— oM ( <§ 3 )Tﬁ oM (W) +x)

/a“ smk(X—Plk_ Bt+Bp2)Q(1)Y(tv7“)dt

/p’t sinA (x —2p; KPZ‘FBI_BPZ)Q(t)y(t,Mdl

/7‘ sinA (x — Pz7b Bt+Bp2)Q(t)y(t,7»)dt (2.7)
P

/p" sinA (x—2py KPZ‘BI—FBPQ)Q(I))}([,X)dl

1 T cosA(x— pa+ Bt — Bp2)
20up /pz A Q) y(t,\)dt

_ i1 nCOS)&(X—Zpl—sz_Bt_i_sz)
2001 By /,,2 A Q(t)y(t,\)dt

i1 [™cosh(x—pr—Pr+PBp2)
20431 /[72 N Q(t)y(t,\)dt
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1 /”COSK(X—2P1+P2+BI—[3P2) v (.0 d
200 )., x Q(t)y(t,\)

A/P2 sinA (x — pa + 0 — ap2) 0(1)y(t,0) dt
P Aoy

+A/P2 sinA (x—2p; ‘;01672 — O+ apy) Q(t)y(t,\)dt
pi

P2 cosA(x — py + ot

B / 2 HUZ02) o )y e

P2 cosA(x—2p) + pr — ot + apr)
Ao

sinA (x — pz —ot+opy)

Q(1)y(t,1)dr

sinA (x — 2p1 +pr+or—

/,,
wef, T
o
o

P2 6 1)y (1,0

cosA (x — pz — 06t+06172)

Q(1)y(t,A)dr

2 cosA (x — 2p1+p2—|—0ct—0cp2)
o Q(r)y(r,A)dt

+ [ o)y 1

where
¢* (x) = xoxF ap; +pi, By = ( Bl>7
b (x) = Bx—Bp2+ 4 (p2), s (x) = —Bx+Bp2+4 (p2),
fzé(quEaEz), g_z(ﬁ[g&) (oczﬂFaBer?),
1

§
- % (BT T ;(T]x) <(X2 + agz - }(32) K= (22[;227{[03226 * 206327) ’

= (v G a) (s 2))]
g [~ <0c[32—72_1>+172}

_20(1[31 20Cﬁ2 2 2(X1 206[327\. ’

s ofy — 7 s
€= _(2(1] 2[31) ( 206[32 +2) +47\,OCOC1[31[32]’
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D =

m_ (of—w 1Y
20 [31 206[32 2 40 06[327\,

T (1—0o?)

Theorem 1. If p (x) € W, (0,7) and g (x) € Ly (0,T); yy (x,A) be solutions of (1.1),

that satisfies conditions (1.2) — (1.6), has the form

yo (6,0) = yoo (6, M) + [ Ky (x,1) eMdt
where
Ro ()C) eﬁ“"
R X eikg+(x) +R X eikg_ ()C)
YOU(XJ\'): 1() 2()

R; (x) eikb* (%) +R, (x) oM (x)
+Rs (x) ™ @) 4 Rg (x) &™)

Ri(x) = (Bf +

Rato) = (B +

Ro (x) = e o ()

—;L]) Ro(Pl)eéfglp(t)dt7

i

Ro(x) = (B

Ralo) = (B + 2  Ralpmre 0%, o) = (s -

Rolw) = (B~ 15 ) Ralpn) el o,

(v=1,3)

0<x<pi;
P1 <x < p2;

P2 <x <,

o) Ro(pr)e w0,
L (p )e—éﬁzp(t)dt7
5

ZYE) Ry (pa) eb fnr0,

T:Fgé) <az¢°°§2+§>,

and ® (x) = [y 2|p ()| + (x—1)|q(¢)])dt and the functions K, (x,t) satisfies the in-
equality
" 1Ky (6, 0) | df < €90 _ |
with
=1, c2:<ﬁf+\51\+2+§>,
n
= (oo By +187 D+ 5 (B + 1B D+ T+ )
where
¢* (x) = xoxFapi +pi, By = 2( 1i[2>,
b= (x) = Bx—Bp2+¢* (p2), 55 (x) = —Bx+Bp2+¢7 (p2),
e
1 Y oafy T 1 1
(07 5) (w2 =) w5 (1eg)
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The proof is done as in [8].

Theorem 2. Let p(x) € W) (0,7) and q(x) € L, (0,n). The functions A (x,t),
B(x,t), whose first order partial derivatives, are summable on [0,m], for each
x € [0,m] such that representation

©(x,A) = @p (x,A) + /XA (x,1) coshedt + /XB (x,t) sinArdt
0 0

is satisfied.

If pr <x < pa:
0(ed) = (BT + 2o) Ko (pr)cos 26 () - & [ p(0ya]
+(Br —f)Ro<p1>cos [xg <>+$ “pa] e

+/ A(x,1) cosktdtJr/ (x,1) sinAzdt,

whereBli:%(Ocli%>.lfp2<x§n:

0 (x,h) = (Bz B)Rl (p2) cos [w / ]
<Bz B>R2 (p2)cos |A _ B/p

(-  LAPSENE é NG } 29)
o5/ 0

(8- B ) Raom)cos 1

X
+ [ A(x,t)coshtdt+ B (x,t) sinAedt,
D2 p2

(XBz

where B = 5 <0L2 5

A (x,6" (x)) cos B((xx)

) Moreover, the equations

+B(x,g" (x)) sin %)
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Al (0+0) —A (ng (0 -0) = (B — 11) Rolon) G, B )

200/ 202 o
x) [* 2

+(BI£)R°2(§1)COSB((X)/O <q(t)+pa(2t)>dt (2.12)

B(rg (9+0) B (xg (1)-0) = (B — 1) B o PO (g (0))
x) ¥ 2

—<Bl—£)R°2(§1)sinBé)/o (q(t)+pa(2t)>dt 2.13)

B(x,0) = aAg:’t) 70:0 (2.14)

R } X

A (0)+0) =4 (s () -0) = (B = 5 ) B2 (o) p 0)sin 27

X 2 X
—(Bz—;%) RZ;[’;Z)/O (q<t>+”B§’) dtcosmé) (2.15)
Bxs (9+0)-B(ns (9-0) = (B = 12 ) 2 (09— p (0) cos 25"

2
n <L’>2 - g%) Rzz(gZ) /Ox <q (1) + "Eg’)) d sin “’éx) (2.16)

)
X 2 X
_ (Bz _ 2%) Rlz(gz) /0 (q (1) + pBg[) dt cosmé) (2.17)

B (x,s" (x)+0) =B (x,s" (x) —0) = —  B; — Y2) Rlz(l?)

( )
+ (32 - g%) Rlz(é”) /Ox <q(t) n "E?) dt sinméx) (2.18)
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B(x.b™ (x)+0) =B (x,b™ (x)~0) = ( s+ ;g) 2 (0 0) - p(0) cos 2
(- 5) S P as o
A" () +0) =4 (10" (9 -0) == (B + 25 ) FLE2) (00— p(0) sin 25
(15 [ (w5
B (x,b" (x) +0) =B (x,b" (x) - 0) = (Bz* * gfs) Rlz(s’?) (p(x) = p(0)) cos (DL(%X)
N I

are held. If in addition we suppose that p (x) € W5 (0,7), g (x) € W, (0,7), the func-
tions A (x,1), B(x,t) the following system are provided.

2 2
TALD g (A er) —2p () 2L PA L)
X t ot (2.23)
0°B (x,t) 0A (x,1) 0°B (x,t) '
T—CI(X)B(X,[)‘FZP(X) % N2

where
_ o? p1<x<po
n= B> pr<x<m.
The proof is done as in [7].

Conversely, if the second order derivatives of functions A (x,7), B(x,t) are sum-
mable on [0,7] and A (x,7), B(x,t) provides (2.23) system and equations (2.10) —
(2.22), then the function @ (x,A) which is defined by (1.3) — (1.6) is a solution of
(1.1) satisfying boundary conditions (1.2).

Definition 1. If there is a nontrivial solution y (x) that provides the (1.2) condi-
tions for the (1.1) problem, then Ay is called eigenvalue. Additionally, yo (x) is called
the eigenfunction of the problem corresponding to the eigenvalue Ay.

Let us assume that ¢ (x) satisfies the following conditions.

/On{\y’ @)’ +q(x) |y(x)|2}dx> 0. (2.24)

For all y (x) € W} [0,7] such that y (x) # 0 and y’ (0) -y (0) —' (%) - y () = 0.

Lemma 1. The eigenvalues of the boundary value problem L are real.
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Proof. We set [ (y) := [—y" + q(x)y]. Integration by part yields

B T = T , ) )
(0= [ 10)y@dr= [ {y @ +ab@l}dxe @29
Since condition (2.24) holds, it follow that (I (y),y) > 0. O

Lemma 2. Eigenfunction corresponding to different eigenvalues of problem L are
orthogonal in the sense of the equality

(L T
(A +7»k)/0 8 (x) y (x, ) y (x, Aic) dx — 2/0 P (x)y (6, M)y (x, M) dx = 0. (2.26)
The proof of Lemma 2 carried out as claim [14].

3. PROPERTIES OF THE SPECTRUM
Let y(x,A) and @ (x,A) be any two solutions of equation (1.1),
Wy (x,2),0 (M) =y (x,1) 0" (x, ) =¥ (x, M) ¢ (x,A),

Wronskian dosen’t depend on x. In this case, it depends only on the A parameter.
Although it is shown as W [y, @] = A(L). A(A) is called the characteristic function
of L . Clearly, the function A (A) is entire in A. It follows that, A(A) has at most a
countable set of zeros {A,, }.

Lemma 3. The zeros {A,} of the characteristic function A(N) coincide with the
eigenvalues of the boundary value problem L . The functions (x,Ao) and @ (x,\)
are eigenfunctions corresponding to the eigenvalue A,, and there exist a sequence
(Bn) such that

v (x,A) = Bu@ (x, M), B, # 0. 3.1

The proof of the Lemma 3 is done as in [27].
Let use denote

T T
ocn:/ S(x)(pz(x,kn)dx—i/ PO () dx, n=1,273..... (32)
0 n J0O

The numbers {0, } are called normalized numbers of the problem L.
Lemma 4. The equality A(\,) = 20,0, is obtained. Here A = 2.
Proof. Since @ (x,A) and ¥ (x,A) are the solutions of (1.1),

—¢" (0, M) + [2Ap (x) + ¢ (1)) @ (x, 1) = A?8 (x) @ (x, 1),
=W (x,A) + [2p (x) +q ()] W (1, 1) = A8 (x) y (x,4)

equations are provided. Hence, we differentiate the equalities with respect to

¢ (52 + 2Ap () + ()6 (1) = W8 (1) (.0) + 2AS (x) ~ 2p ()] 0 (5,1,
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S (62 + 2 () g (W (x,3) = W38 ()W (1) + A8 (¥) — 2p ()] w (x,4) .
Thanks to these equations

PR W )~ 1) W) f = =238 -2 W p AWk,

4 {<I><x,>»> W (A~ ¢ (5) -w(x,m} — [208(0) — 29 ()] (1) W (x. ).

If the last equations are integrated from x to 7 and from O to x, respectively, by the
discontinuity conditions, we obtain

_ {m(&,m-u'/@,m—@'(a,x)-\?f@,x)}
= [ 12080 -2 @0 E Ny E N

T

and
fbenven-oenven - [ee-2enervens

If we add the last equalities side by side, we get
W o@&n) WEn)]| +W [@EN) WEN] =~
— [ 238 -2 @0 E Ny E N

for A — A, this yields

AOw) = = [ 2MB ()~ 20 (B Bug? (62

0
:2%5,,{/“5(&) / o2 (&, 0) dE_,} 2B
0
Denote,
L= {A: A =|A)+8,6>0,n=0,1,2,... },
Gy={A:[A=2A)]>8,6>0,n=0,1,2,... },

where § is sufficiently small positive number. For sufficiently large values of n, one
has

IA(A) —Ag(M)| < (; [el(Pr—paztap2—apitpy), Ael,.  (33)
As it is shown in [19], [Ag (A)| > Csel™™ for all A € G35, where Cs > 0

lim ¢ "™M®(A(L) = Ag (M)

[A=5e0



INVERSE PROBLEM FOR SINGULAR DIFFUSION OPERATOR 185

Ao

T T
= lim ¢ /mMr (/ A (T,t) cos Medt +/ B(m,1) sin?»tdt) =0
0 0

is constant. On the other hand, since for sufficiently large values of n (see[23]) we
get (3.3). The Lemma 4 is proved. O

Lemma 5. The problem L(o.,p1,p2) has countable set of eigenvalues. If one
denotes by A1, \,, ... the positive eigenvalues arranged in increasing order and by
A_1,A_2,... the negative eigenvalues arranged in decreasing order, then eigenvalues
of the problem L (., p1, p2) have the asymptotic behavior

dy ky
_ 30
A =Ry +35 A0 + @ n — oo,
where k,, € b, d,, is a bounded sequence and
nm
M = + n); su n)| =c < +oo.
" Br—Bpr+opr—opi+pi i (n) nP|‘~I’1( )|

Proof. According to previous lemma, if n is a sufficiently large natural number
and A € [, we have [Ag(L)] > Cgel™ ™ > Ssellmhr  |A (L) — Ag (A)|. Applying
Rouche’s theorem, we conclude that for sufficiently large n inside the contour I',
the functions Ag (A) and Ag (A) +{A(A) — Ao (A)} = A(A) have the same number of
zeros. That is, there are exactly (n+ 1) zeros A1, A2, ..., A,. Analogously, it is shown
by Rouche’s theorem that, for sufficiently large values of n, the function A(A) has a
unique zero inside each circle |A—AJ| < 8. Since 8 > 0 is a arbitrary, it follows that
M = A0+ ¢, where 3510108,, =0.IfA(A,) =0, we have

Ao (kg +€,) + /RA (T,1) cos (7»2 +&,) tdt + /RB(n,t) sin (kg +¢,)tdt =0, (3.4)
0 0

Ao (M) +e,) = <Bz |3> Ri (p2)cos {(XS +¢,)b" (m) — é /pjp(r)dt]
<Bz B> Ry (p2)cos | (1] +e1) b () —é [: p(t)dt]

<B2 - B) R (p2)cos -(7»24—8,,) st (7t)+B pzp(t)dt]
<Bz B)Rz (p2) cos (k2+en) s~ (n)—i—é pjp t

Since Ag (A) is an analytical function,

| A(AD)
Ao(k2+£n):Ao(k2)£n+%(7»2)en+o e4..., limeg, =0.

2! n—oo
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A is the roots of the Ag (L) = 0 equation Ag (A) +€,) = [A (A)) +o (1)] €y, N —>
0

is provided.

: s~ (x)—0
[% (A)) —i—o(l)} en+/ A(m,1) cos (l2+en)tdt
D

2

+/ (w,1)cos (ko—i—sn th—/ A(m,t)cos (7\,2+8n) tdt
) -0
+/ A(m,t)cos (M) +¢, tdt+/ A(m,t)cos (M) +¢,) tdt
b= (x)+0 +(x)+
s (x)—0 0 st(x)— ) 0
+ B(m,1)sin (A, +¢,) tdt +/ (n,t) sin (A, +€,) tdt
)40
bJr (x)—0
+/ B(m,t)sin (A) +¢, tdt—i—/ B(m,t)sin (A +&,) tdt

+/ B(m,t)sin (A +&,)tdt =0
b (x)+0

It is easy to see that the function Ag (A) = 0 is type of [16], so there is a g > 0 such
AN
A (1)

that > 1 > 0 is satisfied for all n. We also have

ni
Br—PBp2+opr —api + pi

20—

+y1(n), (3.6)

where sup |y (n)| < M is for some constant M > 0 [18]. Further, substituting (3.6)

into (3.5) after certain transformations, we reach €, € b.
Since ( for A; (m,1) sin (A) +€,) tdr) € L and ([ B; (70,1) cos (A) +&,) tdt) € I, we
have

s (-5 el o)
N (Bz B m) Ri(p2) o -X2s+ (M) + (J)(x)]
)
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_ (B Yz> Ri(p2) [kﬁs* (1) + m(x)}

2B op B
+ ([52 + ;%) RZ(BZZ) cos [x}:b (n) — “’lgx)]
# (54 2) 2 cos [0 () 28] [ - 0 |+
where
s (-3l ey
(o 33) g e 5
+ (Bz - ;%) Rzz(gz) sin |A2™ () — coéx)
+ (Bz* - 2%) Rlz(é”) sin -:7»219* (m)— wéx)i] /O " (q(0)+ P2 () dt
o (s- ;g)fz%zﬂ cos 185~ ) +( o;m
_ B—_Lz Ry (p2 cos K,?s*(n)—i—m X
+ EBZ - i[j; RZZ(B;) cos %Ob (m) — ml?x)-]
2 T35 ) o2 n B
(B ) M os ot (- 27 | | b ) - pi0)]
is bounded sequence. The proof is completed. 0

The @ (x,A) function is |A| — e in the region D = {A : arg € [g,w — €|} for x > po,

0ed) = (B + 5 e (<107 ) -wia) (140 (3 ) ) =

it has an asymptotic representation where w (x) = [, p (¢)dt and B = 3 (062 F O‘TBZ) .
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4. INVERSE PROBLEM

Let us consider the boundary value problem L :

(1(y) = ="+ 245 (x) + G (x)]y =28 (x)y, x € (0,m)
Y(0)=0,y(m)=0

- )y(p140)=duy(p1—0)

Y (P1+0) =By (51 = 0) +irTry (51 —0)

Y(P2+0) = 02y (p2—0)

LY (P2+0) = B2y (52— 0) + iAoy (52 —0)

Let the function & (x,A) denote solution of (1.1) that satisfy the conditions
@' (0) =1, P (m) = 0 respectively and jump conditions (1.3) — (1.6). Lets define
itas M (A) :=®(0,A). The ® (x,A) and M (A) functions are called the Weyl solution
and the Weyl function, respectively.

P (x,A) =M (L) .@(x,A) +S(x,A) A # Ay, n=1,2,3,...
is true. Because of W [9,S]|,_o =9 (0,1) S (0,A) — ¢’ (0,1)S(0,X) =1 #0, ¢ (x,A)
and S (x,A) solutions are linear independent. When y (x,A) is solution (1.1),
W60 =A (R0 (51) +BR)S (x,),
W (x,A) =A(XN) @ (x,A) +B(A)S (x,L).

Due to boundary conditions, A(A) = y(0,A),B(A) = ¢ (0,A) = —A(X). Then
v (x,A) =y (0,A) @ (x,A) —A(A) S (x,A) is obtained. Hence,

o= LI sensmmeh).  mhy =402

The M (A) function is a meromorphic function.

Theorem 3. [fM (L) = M (\), then L = L.
Proof. Let us define the matrix P (x,A) = [Pjx (x,A)], (j,k = 1,2) by the formula

(SN _ (st
¢ (AP (x,1) JEINLRENY

Pi () = —p () LM L 5 () YA

In this case

Po () =) Y
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P (5.2) =~/ (x.1) ‘T’/Z(a)” e L,
P (x,0) = —9 (x, 1) W/A%’»)M +¢' (x, ) ‘N"Z()(Cg) .
Hence,
P (50) =0 (64 [§ (6 )+ M (1)@ (6,0)] =8 (6 1) S (x, 1)+ M (1) - @ (x,1)]
—p (618 (61) = F (6 ) S (1) + [M(A) =M ()| 9(x. W) (x,1),
Pra (6, 0) =5 (6, ) S (6,2) M ()0 (6, 0)] = @ (1) [S(6.2) 8 (2)- 6 (3. )
=P (x, 1S (x2) =0 (M) S (1) + [M (M) = M (A)] @ (x 1B (. ),

Par (62) =0/ (61) [5 (62)+ M ()-8 (6 1)] =6 (1) [8 (0. 0) + M (A) @' (3,2)]
=/ (505 (50 = (NS (1) + () =M W) ¢ (V)P (1)),
P2 (5, 1) = (6,2) [S' (5. 1) + M ()¢ (2. 1)] +0 (6,2) [S (6, 0) + M (1) -G (v, 1)
=¢' (x, 1) (x,1) =@ (x,\)S(x,A) + [M(x) —M’(x)} ¢ (%, 1) (x,1).
from M (A) = M (A):

Pii(x ) = 9(x, )8 (1) =6 (x, 1) S (x,A),
Py (x,A) =@ (x,1) S (x,A) — (x A)S(x,A),

Py (x, 1) = @' (£, 1) 8 (¢, 1) =6 (x, 1) S’ (x,}),
P (x,1) = @' (£, 1) S (2, 1) =@ (x,1) S (x,1)

are obtained. When M (L) = M (), it is clear that the P; 4 (x,A), (j,k = 1,2) func-
tions are full functions according to A. From (3.3); for Vx € [0, 7], ¢ , Cs constants
that provide |Pi; (x,A)| < ¢ and |P12 (x,A)| < Cs inequalities can be shown. From
the Liouville theorem P;; (x,A) = A (x) and Py, (x,A) = 0. From
¢ (x,2) @ (x, 1) = ¢ (x,1) P (x,}) = ( ),
P (x,N)- @ (x, 1) —@(x,1)- P (x,h) =

¢ (x,A) =@ (x,1)-A(x), @ (x,1) =D (x,1) - A (x) (4.1)
are obtained and

w [(P, CI)] =W o (x7 )\') ’ WA()(C;\’})\')
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— s P A) V(0.2 0ed) + AR S (1)
== LW o (52) (e ]+ W [0l (5] =

And similarly W {6, Ef)] = 1 is obtained. If this equation is written in place of (4.1),

1=W[o(x,\),®xA)] =W [A(x)@(x,?\,),A(x)fb(x,X)}

=AW [§(x2),8(x,1)] =47 (x
is obtained.
Therefore, (Bz ) # 1, p1 = p1, p2 = p2. We have A (x) =1 from (4.1)
¢ (x,A) =@ (x,\) and CID(x,k) =d(x,0).
When ¢ (x,A) = @ (x, L),
—¢"+[2p (x) +q ()] 9 =123 (x) g,
—@"+ 24 (x) +¢(0)] 0 =13 (x)
are obtained.

(223 -8()) +2A(p ()~ p(x) + (4() =G (1)) }o=0  (for¥ 1)

8(x) =8 (x), p(x) = p(x) and ¢ (x) = §(x) a.e. For every A in discontinuity condi-
tions,

(ap —0)9(p1—0,A)=0
(Bi—B1) @/ (p1—0.2)+ (1 — ) @ (p1 —0,) =0
(02 — 2)<P(pz—0 A) =0
<52—62>(P/(P2—0,7~) (2—T1)o(p2—0,A) =0

oy =0,p1 = Bla'Yl =% and oz = 02, B2 = P2, 72 = To.
Consequently L = L. The proof is completed. O
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