
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 22 (2021), No. 2, pp. 521–527 DOI: 10.18514/MMN.2021.3368

THE FIRST THREE LARGEST NUMBERS OF SUBUNIVERSES OF
SEMILATTICES

DELBRIN AHMED AND ESZTER K. HORVÁTH
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Abstract. Let (L,∨) be a finite n-element semilattice where n ≥ 5. We prove that the first largest
number of subuniverses of an n-element semilattice is 2n, while the second largest number is
28 ·2n−5 and the third one is 26 ·2n−5. Also, we describe the n-element semilattices with exactly
2n, 28 ·2n−5 or 26 ·2n−5 subuniverses.
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1. INTRODUCTION AND OUR RESULT

For a semilattice (L,∨), Sub(L,∨) will denote its subuniverse-lattice. By a sub-
universe, we mean a subsemilattice or the emptyset. All semilattices occurring in this
paper will be assumed to be finite. On a semilattice (L,≤), we have a natural partial
ordering defined by

x ≤ y ⇐⇒ x∨ y = y.
Conversely, if (L,≤) is partial order in which any two elements x,y have a least
upper bound x∨ y, then (L,∨) is a semilattice. For any x,y in a join-semilattice, x∧ y
is defined by their infimum provided it exists; if this infimum does not exist, then x∧y
is undefined. Let P and Q be posets with disjoint underlying sets. Then the ordinal
sum P+ord Q is the poset on P∪Q with s ≤ t if either s, t ∈ P and s ≤ t; or s, t ∈ Q
and s ≤ t; or s ∈ P and t ∈ Q. To draw the Hasse diagram of P+ord Q, we place the
Hasse diagram of Q above that of P and then connect any minimal element of Q with
any maximal element of P; see Figure 1. If K with 1 and L with 0 are finite posets,
then their glued sum K+glu L is the ordinal sum of the posets K \{1K}, the singleton
poset, and L \ {0L}, in this order; see Figure 2. Note that +glu is an associative but
not a commutative operation.

The semilattices H3 and H4 will be used later, see Figure 3.
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FIGURE 1. The ordinal sum P+ord Q of P and Q

FIGURE 2. The glued sum K+glu L of K and L

Our result is motivated by similar results, see Ahmed and Horváth [1], Czédli
[3–7] and Czédli and Horváth [8]. To obtain more information about lattice theory
and semilattices we direct the reader to the bibliography indicated in [9, 10] and [2],
respectively.

For a natural number n ∈ N+ := {1,2,3, . . .}, let

NS(n) := {|Sub(L)| : L is a semilattice of size |L|= n}.

Theorem 1. If 5 ≤ n ∈ N+, then the following assertions hold.
(i) The largest number in NS(n) is 2n = 32 · 2n−5. Furthermore, an n-element

semilattice (L,∨) has exactly 2n subuniverses if and only if (L,∨) is a chain.
(ii) The second largest number in NS(n) is 28 ·2n−5. Furthermore, an n-element

semilattice (L,∨) has exactly 28 · 2n−5 subuniverses if and only if (L,∨) ∼=
H3+gluC1 or (L,∨)∼=C0 +ord H3+gluC1, where C0 and C1 are finite chains.

(iii) The third largest number in NS(n) is 26 · 2n−5. Furthermore, an n-element
semilattice (L,∨) has exactly 26 · 2n−5 subuniverses if and only if (L,∨) ∼=
H4+gluC1 or (L,∨)∼=C0 +ord H4+gluC1, where C0 and C1 are finite chains.

2. TWO PREPARATORY LEMMAS

An element u of a semilattice L is called a narrow element, or a narrows for short,
if u ̸= 1L and L = ↑u∪↓u. That is, if u ̸= 1L and x∥u holds for no x ∈ L.
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The notion of a binary partial algebra is well known, but the reader can refresh
his/her knowledge from [4]. Let A be a finite n-element binary partial algebra. A
subuniverse of A is a subset X of A such that X is closed with respect to all partial
operations. The set of subuniverses of A will be denoted by Sub(A). The relative
number of subuniverses of A denoted by σk(A) is defined as follows:

σk(A) = |Sub(A)| ·2k−n.

In order to comply with [8], will use k = 5. The original definition of σk is given in
the paper of Czédli [4], there he used k = 8.

Lemma 1. If (K,∨) is a subsemilattice and H is a subset of a finite semilattice
(L,∨), then the following three assertions hold.

(i) With the notation t := |{H ∩S : S ∈ Sub(L,∨)}|, we have that

σk(L,∨)≤ t ·2k−|H|.

(ii) σk(L,∨)≤ σk(K,∨).
(iii) Assume, in addition, that (K,∨) has no narrows. Then σk(L,∨) = σk(K,∨)

if and only if (L,∨) is (isomorphic to) C0 +ord (K,∨)+gluC1, where C1 is a
chain, and C0 is a chain or the emptyset.

Proof. Parts (i) and (ii) can be extracted from the proof of in Lemma 2.3 of [4].
The argument there yields a bit more than stated in (i) and (ii); namely, for later
reference, note the following.

If σk(L,∨) = σk(K,∨), then for every S ∈ Sub(K,∨) and every
subset X of L\K we have that S∪X ∈ Sub(L,∨). (2.1)

Next, to prove part (iii), let n := |(L,∨)| and m := |(K,∨)|. Let k := 5, the case
of another k is analogous. Assume that (K,∨) has no narrows. First, let (L,∨) =
C0 +ord (K,∨)+gluC1. It is obvious that whenever X ⊆ L\K and S ∈ Sub(K,∨),
then S∪X ∈ Sub(L,∨). Since L\K has 2|L|−|K| subsets, |Sub(L,∨)| ≥ |Sub(K,∨)| ·
2|L|−|K|. Dividing this inequality by 2n−5 = 2m−5 · 2|L|−|K| we obtain the required
equality, as the converse inequality given in part (ii).

Conversely, assume the equality in (iii). We claim that

for all y ∈ K and for all x ∈ L\K, y ∦ x. (2.2)

Suppose the contrary. If y ∈ K, then {y} ∈ Sub(K). If x ∈ L \K and y||x, then
{y,x} is not a subuniverse of L, contradicting (2.1).

We claim that

for all x ∈ L\K, x ̸> 1K implies that for all y ∈ K, x < y. (2.3)

Suppose the contrary and pick x in L \K and y ∈ K such that x ̸> 1K and x ̸< y.
Using (2.2) and x ̸= y, we have that y < x < 1K . Let p :=

∨
{s ∈ K : s < x}; this

exists by finiteness and y ≤ p ≤ x. In fact, p ∈ K as K is a subsemilattice of L but
x ̸∈ K, so y ≤ p < x. Now let u ∈ K such that u ̸≤ p. We know from (2.2) that u ∦ x.
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If we had u ≤ x (in fact, u < x since x ̸∈ K), then u would be one of the joinands
defining p and so u ≤ p would be a contradiction. Hence x < u, and so p < x < u
implies p < u. We have seen that, for any u ∈ K, u ̸≤ p implies p < u. In other
words, K = ↑K p∪↓K p, which means p is a narrows, contradicting our assumption on
K. Thus, (2.3) holds. Finally, we show that L\K is a chain. Indeed, if L\K is not a
chain, say a||b, a∈ L\K and b∈ L\K, then ∅∈ Sub(K) extended by {a,b} ̸∈ Sub(L)
would contradict (2.1). Define C1 = {x ∈ L\K : x ≥ 1K}; it is a chain (a subchain of
L \K). Let C0 = (L \K) \C1; it is either a chain or empty. If C0 is empty, then L is
K+glue C1, as required. If C0 is nonempty, then its elements are less than any element
of K by (2.3), and so L =C0 +ord K +glue C1, as required. □

The following lemma can be proved by a computer program, but for the reader’s
convenience, we give its proof.

FIGURE 3. H3 and H4

Lemma 2. For the join-semilattices given in Figure 3 the following assertions
hold.

(i) σ5(H3) = 28,
(ii) σ5(H4) = 26,

Proof. The notations given by Figure 3 will be used. For later reference, note that
if (L,∨) is a chain then |Sub(L,∨)|= 2|(L,∨)|.

For (i), observe that

|{S ∈ Sub(H3,∨) : a ̸∈ S}|= 4, (S is chain),

|{S ∈ Sub(H3,∨) : a ∈ S,{b}∩ S =∅}|= 2, and

|{S ∈ Sub(H3,∨) : a ∈ S,{b}∩ S ̸=∅}|= 1,

whereby |Sub(H3,∨)|= 4+2+1 = 7 = 28 ·23−5, note that σ5(H3) = 28 proves (i).
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For (ii), let us compute

|{S ∈ Sub(H4,∨) : c ̸∈ S}|= 7, by (i) ,

|{S ∈ Sub(H4,∨) : c ∈ S,{a,b}∩ S =∅}|= 2, and

|{S ∈ Sub(H4,∨) : c ∈ S,{a,b}∩ S ̸=∅}|= 4.

Hence, |Sub(H4,∨)|= 7+2+4 = 13 = 26 ·24−5, while σ5(H4) = 26 proves (ii).

Remark 1. For counting subsemilattices, a computer program is available on G.
Czédli’s webpage: http://www.math.u-szeged.hu/˜czedli/

□

3. THE REST OF THE PROOF

Proof of Theorem 1. Part (i) is trivial. For part (ii) let (L,∨) be an n-element sem-
ilattice. We know from Lemma 1 (iii) that if

(L,∨)∼= H3+gluC1 or (L,∨)∼=C0 +ord H3+gluC1, where C0 and C1 are chains,
(3.1)

then σ5(L) = σ5(H3) = 28, indeed. Conversely, assume that σ5(L) = 28. Then it
follows from part (i) that L is not a chain. So L has two incomparable elements, a and
b. Clearly, {a,b,a∨b} is a join-subsemilattice isomorphic to H3. But σ5(H3) is also
28 by Lemma 2 (i). Thus, Lemma 1 (iii) immediately yields that L is of the desired
form. By this we completed the proof of part (ii) of Theorem 1.

We prove part (iii).
Assume that (L,∨) is of the given form, then σ5(L,∨) = 26 is clear from Lemma

2 (ii) and Lemma 1 (iii). In order to prove the converse, that is, the nontrivial im-
plication, assume that σ5(L,∨) = 26. By Theorem 1 (i), (L,∨) has two incomparable
elements, a and b. By part Theorem 1 (ii), {a,b} is not the only 2-element anti-
chain in L since otherwise σ5(L,∨) would be 28. To complete the proof, consider the
following cases.

Case 1: There is an antichain {c,d} disjoint from {a,b}, where the elements
a, b, c, d are distict. Let x := a∨ b and y := c∨ d. There are cases depending
on t := |{a,b,c,d,x,y}|, which is 4, 5, or 6. The number of possible cases can be
reduced by symmetry: a and b play a symmetric role, so do c and d, and so do {a,b}
and {c,d} and thus x and y. We consider three sub-cases as we will see below:

Sub-case 1a: Now t = 6. Take the partial algebra U1 = {a,b,c,d,x,y} with a∨b=
x and c∨ d = y. This six-element partial algebra has σ5(U1) = 24.5, this can be
checked by the mentioned computer program. By Lemma 2.3 from [4] we obtain
that σ5(L)≤ σ5(U1)≤ 24.5, contradicting σ5(L) = 26. Thus, this case is excluded.

Sub-case 1b: Now t = 5. By symmetry, y= c∨d is not a new element, so y= c∨d
is either x or a. The case y = b need not be considered because a is symmetric to b.
Therefore, this sub-case 1b is split in two cases as follows:
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First, where y = x, this case is captured by taking the partial algebra U2 =
{a,b,c,d,x} with a∨b = x, c∨d = x. It has σ5(U2) = 25 by the mentioned computer
program. Like above, this implies σ5(L)≤ σ5(U2)≤ 25, contradicting σ5(L) = 26.

Second, where y = a, this case is captured by taking the partial algebra U3 =
{a,b,c,d,x} with a∨b = x, c∨d = a. This five-element partial algebra has σ5(U3) =
24 < 26, and we get a contradiction as above.

By the above we can note that the sub-case 1b is excluded since so are both of its
subcases.

Sub-case 1c: Here t = 4. Then x = a∨b is one of c and d. By symmetry, we can
assume that a∨b = c. However, then a < c < c∨d, b < c < c∨d, whereby y = c∨d
is none of the elements a,b,c,d, contradicting t = 4. So this case is excluded.

After having all of its sub-cases excluded, we obtain that Case 1 is excluded. That
is, no two-element antichain is disjoint from {a,b}. But remember that there is an-
other two-element antichain, whereby, by a-b symmetry, we consider Case 2: there
is an element c such that a and c are incomparable. Again there are two sub-cases
according to the position of b and c.

Sub-case 2a: Here b and c are also incomparable. Here, we have to investigate,
how many of a∨ b, a∨ c, and b∨ c are equal to a∨ b∨ c. Since the answer could
be 0,1,2 or 3 (and using symmetry), it suffices to consider only the following four
join-semilattices. The first join-semilattice is K0 = {a,b,c,z,x,y,1} with edges ax,
bx, by, cy, az, cz, x1, y1, z1 and equalities a∨ b = x, b∨ c = y, a∨ c = z; this gives
σ5(K0) = 15.25. The second join-semilattice is K1 = {a,b,c,x,y,1} with edges ax,
bx, by, cy, x1, y1 and equalities a∨b= x, b∨c= y, a∨c= 1; this gives σ5(K1)= 18.5.
The third is K2 = {a,b,c,x,1} with edges ax,bx,x1,c1 and constraints a∨ b = x,
a∨ c = 1, b∨ c = 1 ; this gives σ5(K2) = 22. The fourth is K3 = {a,b,c,1} with
edges a1,b1,c1, and equalities a∨ b = 1, a∨ c = 1, b∨ c = 1; this gives σ5 = 24.
Since one of K0, K1, K2, and K3 is a subsemilattice of L and all the four σ5 values of
these join-semilattices are smaller than 26, therefore sub-case 2a is excluded.

Sub-case 2b: Here b and c are comparable in addition to that a and c are incom-
parable and so do a and b. At present, b and c play a symmetric role. So we can
assume that b < c. Suppose, for contradiction, that x := a∨ b < a∨ c =: 1. By the
incomparabilities assumed, |{a,b,c,x,1}| = 5; for example if x = a∨ b = c is im-
possible since it would yield a < c. The mentioned constraints are defining K. Now
σ5(K) = 23 < 26 gives a contradiction. So a∨b < a∨ c fails but a∨b ≤ a∨ c since
b < c. Therefore, with 1 = a∨ b = a∨ c, {a,b,c,1} is a subsemilattice (isomorphic
to) H4.

Now that all other possibilities have been excluded, we know that H4 is a join-
subsemilattice of (L,∨). Observe that H4 has no narrows. Therefore, by Lemma 1
(iii), (L,∨) is of the desired form. By this, the proof of Theorem 1 is completed.

□
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