

THE FIRST THREE LARGEST NUMBERS OF SUBUNIVERSES OF SEMILATTICES

DELBRIN AHMED AND ESZTER K. HORVÁTH

Received 03 June, 2020

Abstract. Let (L, \vee) be a finite n-element semilattice where $n \ge 5$. We prove that the first largest number of subuniverses of an *n*-element semilattice is 2^n , while the second largest number is $28 \cdot 2^{n-5}$ and the third one is $26 \cdot 2^{n-5}$. Also, we describe the *n*-element semilattices with exactly 2^n , $28 \cdot 2^{n-5}$ or $26 \cdot 2^{n-5}$ subuniverses.

2010 Mathematics Subject Classification: 06A12; 06B99

Keywords: finite lattice, sublattice, subuniverse, finite semilattice, number of subuniverses

1. INTRODUCTION AND OUR RESULT

For a semilattice (L, \lor) , $Sub(L, \lor)$ will denote its *subuniverse-lattice*. By a subuniverse, we mean a subsemilattice or the emptyset. All semilattices occurring in this paper will be assumed to be finite. On a semilattice (L, \le) , we have a natural partial ordering defined by

$$x \le y \iff x \lor y = y.$$

Conversely, if (L, \leq) is partial order in which any two elements x, y have a least upper bound $x \lor y$, then (L, \lor) is a semilattice. For any x, y in a join-semilattice, $x \land y$ is defined by their infimum provided it exists; if this infimum does not exist, then $x \land y$ is undefined. Let P and Q be posets with disjoint underlying sets. Then the *ordinal* sum $P +_{ord} Q$ is the poset on $P \cup Q$ with $s \le t$ if either $s, t \in P$ and $s \le t$; or $s, t \in Q$ and $s \le t$; or $s \in P$ and $t \in Q$. To draw the Hasse diagram of $P +_{ord} Q$, we place the Hasse diagram of Q above that of P and then connect any minimal element of Q with any maximal element of P; see Figure 1. If K with 1 and L with 0 are finite posets, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus \{1_K\}$, the singleton poset, and $L \setminus \{0_L\}$, in this order; see Figure 2. Note that $+_{glu}$ is an associative but not a commutative operation.

The semilattices H_3 and H_4 will be used later, see Figure 3.

© 2021 Miskolc University Press

This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary. This research of the second author was partially supported by NFSR of Hungary (OTKA), grant number K 115518.

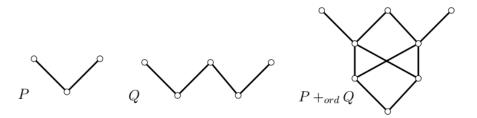


FIGURE 1. The ordinal sum $P +_{ord} Q$ of P and Q

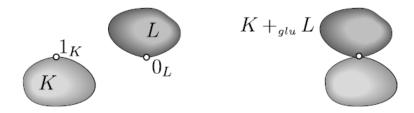


FIGURE 2. The glued sum $K +_{glu} L$ of K and L

Our result is motivated by similar results, see Ahmed and Horváth [1], Czédli [3–7] and Czédli and Horváth [8]. To obtain more information about lattice theory and semilattices we direct the reader to the bibliography indicated in [9, 10] and [2], respectively.

For a natural number $n \in \mathbb{N}^+ := \{1, 2, 3, \dots\}$, let

 $NS(n) := \{ |Sub(L)| : L \text{ is a semilattice of size } |L| = n \}.$

Theorem 1. If $5 \le n \in \mathbb{N}^+$, then the following assertions hold.

- (i) The largest number in NS(n) is $2^n = 32 \cdot 2^{n-5}$. Furthermore, an n-element semilattice (L, \vee) has exactly 2^n subuniverses if and only if (L, \vee) is a chain.
- (ii) The second largest number in NS(n) is $28 \cdot 2^{n-5}$. Furthermore, an n-element semilattice (L, \vee) has exactly $28 \cdot 2^{n-5}$ subuniverses if and only if $(L, \vee) \cong H_3 +_{glu} C_1$ or $(L, \vee) \cong C_0 +_{ord} H_3 +_{glu} C_1$, where C_0 and C_1 are finite chains.
- (iii) The third largest number in NS(n) is $26 \cdot 2^{n-5}$. Furthermore, an n-element semilattice (L, \vee) has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $(L, \vee) \cong H_4 + {}_{glu}C_1$ or $(L, \vee) \cong C_0 + {}_{ord}H_4 + {}_{glu}C_1$, where C_0 and C_1 are finite chains.

2. Two preparatory lemmas

An element *u* of a semilattice *L* is called a narrow element, or a *narrows* for short, if $u \neq 1_L$ and $L = \uparrow u \cup \downarrow u$. That is, if $u \neq 1_L$ and x || u holds for no $x \in L$.

The notion of a binary partial algebra is well known, but the reader can refresh his/her knowledge from [4]. Let \mathcal{A} be a finite *n*-element binary partial algebra. A *subuniverse* of \mathcal{A} is a subset X of \mathcal{A} such that X is closed with respect to all partial operations. The set of subuniverses of \mathcal{A} will be denoted by $Sub(\mathcal{A})$. The *relative number of subuniverses of* \mathcal{A} denoted by $\sigma_k(\mathcal{A})$ is defined as follows:

$$\sigma_k(\mathcal{A}) = |\operatorname{Sub}(\mathcal{A})| \cdot 2^{k-n}.$$

In order to comply with [8], will use k = 5. The original definition of σ_k is given in the paper of Czédli [4], there he used k = 8.

Lemma 1. If (K, \lor) is a subsemilattice and H is a subset of a finite semilattice (L, \lor) , then the following three assertions hold.

(i) With the notation $t := |\{H \cap S : S \in Sub(L, \lor)\}|$, we have that

$$\sigma_k(L,\vee) \leq t \cdot 2^{k-|H|}.$$

- (*ii*) $\sigma_k(L, \vee) \leq \sigma_k(K, \vee)$.
- (iii) Assume, in addition, that (K, \lor) has no narrows. Then $\sigma_k(L, \lor) = \sigma_k(K, \lor)$ if and only if (L, \lor) is (isomorphic to) $C_0 +_{ord} (K, \lor) +_{glu} C_1$, where C_1 is a chain, and C_0 is a chain or the emptyset.

Proof. Parts (i) and (ii) can be extracted from the proof of in Lemma 2.3 of [4]. The argument there yields a bit more than stated in (i) and (ii); namely, for later reference, note the following.

If
$$\sigma_k(L, \vee) = \sigma_k(K, \vee)$$
, then for every $S \in \text{Sub}(K, \vee)$ and every
subset *X* of $L \setminus K$ we have that $S \cup X \in \text{Sub}(L, \vee)$. (2.1)

Next, to prove part (iii), let $n := |(L, \vee)|$ and $m := |(K, \vee)|$. Let k := 5, the case of another k is analogous. Assume that (K, \vee) has no narrows. First, let $(L, \vee) = C_0 +_{ord} (K, \vee) +_{glu} C_1$. It is obvious that whenever $X \subseteq L \setminus K$ and $S \in Sub(K, \vee)$, then $S \cup X \in Sub(L, \vee)$. Since $L \setminus K$ has $2^{|L|-|K|}$ subsets, $|Sub(L, \vee)| \ge |Sub(K, \vee)| \cdot 2^{|L|-|K|}$. Dividing this inequality by $2^{n-5} = 2^{m-5} \cdot 2^{|L|-|K|}$ we obtain the required equality, as the converse inequality given in part (ii).

Conversely, assume the equality in (iii). We claim that

for all
$$y \in K$$
 and for all $x \in L \setminus K$, $y \not\models x$. (2.2)

Suppose the contrary. If $y \in K$, then $\{y\} \in \text{Sub}(K)$. If $x \in L \setminus K$ and y||x, then $\{y,x\}$ is not a subuniverse of *L*, contradicting (2.1).

We claim that

for all
$$x \in L \setminus K$$
, $x \not\ge 1_K$ implies that for all $y \in K$, $x < y$. (2.3)

Suppose the contrary and pick x in $L \setminus K$ and $y \in K$ such that $x \neq 1_K$ and $x \notin y$. Using (2.2) and $x \neq y$, we have that $y < x < 1_K$. Let $p := \bigvee \{s \in K : s < x\}$; this exists by finiteness and $y \leq p \leq x$. In fact, $p \in K$ as K is a subsemilattice of L but $x \notin K$, so $y \leq p < x$. Now let $u \in K$ such that $u \nleq p$. We know from (2.2) that $u \nmid x$. If we had $u \le x$ (in fact, u < x since $x \notin K$), then u would be one of the joinands defining p and so $u \le p$ would be a contradiction. Hence x < u, and so p < x < uimplies p < u. We have seen that, for any $u \in K$, $u \nleq p$ implies p < u. In other words, $K = \uparrow_K p \cup \downarrow_K p$, which means p is a narrows, contradicting our assumption on K. Thus, (2.3) holds. Finally, we show that $L \setminus K$ is a chain. Indeed, if $L \setminus K$ is not a chain, say $a || b, a \in L \setminus K$ and $b \in L \setminus K$, then $\emptyset \in \text{Sub}(K)$ extended by $\{a, b\} \notin \text{Sub}(L)$ would contradict (2.1). Define $C_1 = \{x \in L \setminus K : x \ge 1_K\}$; it is a chain (a subchain of $L \setminus K$). Let $C_0 = (L \setminus K) \setminus C_1$; it is either a chain or empty. If C_0 is empty, then L is $K +_{glue} C_1$, as required. If C_0 is nonempty, then its elements are less than any element of K by (2.3), and so $L = C_0 +_{ord} K +_{glue} C_1$, as required. \Box

The following lemma can be proved by a computer program, but for the reader's convenience, we give its proof.

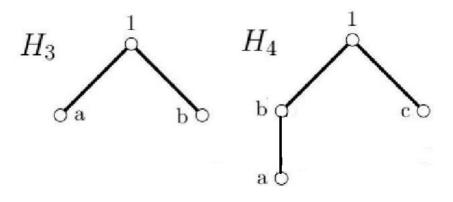


FIGURE 3. H_3 and H_4

Lemma 2. For the join-semilattices given in Figure 3 the following assertions hold.

(*i*) $\sigma_5(H_3) = 28$,

(*ii*) $\sigma_5(H_4) = 26$,

Proof. The notations given by Figure 3 will be used. For later reference, note that if (L, \vee) is a chain then $|Sub(L, \vee)| = 2^{|(L, \vee)|}$.

For (i), observe that

$$|\{S \in \operatorname{Sub}(H_3, \lor) : a \notin S\}| = 4, \quad (S \text{ is chain}), \\ |\{S \in \operatorname{Sub}(H_3, \lor) : a \in S, \{b\} \cap S = \varnothing\}| = 2, \text{ and} \\ |\{S \in \operatorname{Sub}(H_3, \lor) : a \in S, \{b\} \cap S \neq \varnothing\}| = 1, \end{cases}$$

whereby $|\operatorname{Sub}(H_3, \vee)| = 4 + 2 + 1 = 7 = 28 \cdot 2^{3-5}$, note that $\sigma_5(H_3) = 28$ proves (i).

For (ii), let us compute

$$|\{S \in \operatorname{Sub}(H_4, \lor) : c \notin S\}| = 7, \quad \text{by (i)}, \\ |\{S \in \operatorname{Sub}(H_4, \lor) : c \in S, \{a, b\} \cap S = \varnothing\}| = 2, \text{ and} \\ |\{S \in \operatorname{Sub}(H_4, \lor) : c \in S, \{a, b\} \cap S \neq \varnothing\}| = 4.$$

Hence, $|\operatorname{Sub}(H_4, \vee)| = 7 + 2 + 4 = 13 = 26 \cdot 2^{4-5}$, while $\sigma_5(H_4) = 26$ proves (ii).

Remark 1. For counting subsemilattices, a computer program is available on G. Czédli's webpage: http://www.math.u-szeged.hu/~czedli/

3. The rest of the proof

Proof of Theorem 1. Part (i) is trivial. For part (ii) let (L, \vee) be an *n*-element semilattice. We know from Lemma 1 (iii) that if

$$(L, \vee) \cong H_3 +_{glu} C_1 \text{ or } (L, \vee) \cong C_0 +_{ord} H_3 +_{glu} C_1, \text{ where } C_0 \text{ and } C_1 \text{ are chains,}$$

$$(3.1)$$

then $\sigma_5(L) = \sigma_5(H_3) = 28$, indeed. Conversely, assume that $\sigma_5(L) = 28$. Then it follows from part (i) that *L* is not a chain. So *L* has two incomparable elements, *a* and *b*. Clearly, $\{a, b, a \lor b\}$ is a join-subsemilattice isomorphic to H_3 . But $\sigma_5(H_3)$ is also 28 by Lemma 2 (i). Thus, Lemma 1 (iii) immediately yields that *L* is of the desired form. By this we completed the proof of part (ii) of Theorem 1.

We prove part (iii).

Assume that (L, \vee) is of the given form, then $\sigma_5(L, \vee) = 26$ is clear from Lemma 2 (ii) and Lemma 1 (iii). In order to prove the converse, that is, the nontrivial implication, assume that $\sigma_5(L, \vee) = 26$. By Theorem 1 (i), (L, \vee) has two incomparable elements, *a* and *b*. By part Theorem 1 (ii), $\{a,b\}$ is not the only 2-element antichain in *L* since otherwise $\sigma_5(L, \vee)$ would be 28. To complete the proof, consider the following cases.

Case 1: There is an antichain $\{c,d\}$ disjoint from $\{a,b\}$, where the elements a, b, c, d are distict. Let $x := a \lor b$ and $y := c \lor d$. There are cases depending on $t := |\{a,b,c,d,x,y\}|$, which is 4, 5, or 6. The number of possible cases can be reduced by symmetry: a and b play a symmetric role, so do c and d, and so do $\{a,b\}$ and $\{c,d\}$ and thus x and y. We consider three sub-cases as we will see below:

Sub-case 1a: Now t = 6. Take the partial algebra $U_1 = \{a, b, c, d, x, y\}$ with $a \lor b = x$ and $c \lor d = y$. This six-element partial algebra has $\sigma_5(U_1) = 24.5$, this can be checked by the mentioned computer program. By Lemma 2.3 from [4] we obtain that $\sigma_5(L) \le \sigma_5(U_1) \le 24.5$, contradicting $\sigma_5(L) = 26$. Thus, this case is excluded.

Sub-case 1b: Now t = 5. By symmetry, $y = c \lor d$ is not a new element, so $y = c \lor d$ is either x or a. The case y = b need not be considered because a is symmetric to b. Therefore, this sub-case 1b is split in two cases as follows:

First, where y = x, this case is captured by taking the partial algebra $U_2 = \{a, b, c, d, x\}$ with $a \lor b = x$, $c \lor d = x$. It has $\sigma_5(U_2) = 25$ by the mentioned computer program. Like above, this implies $\sigma_5(L) \le \sigma_5(U_2) \le 25$, contradicting $\sigma_5(L) = 26$.

Second, where y = a, this case is captured by taking the partial algebra $U_3 = \{a, b, c, d, x\}$ with $a \lor b = x, c \lor d = a$. This five-element partial algebra has $\sigma_5(U_3) = 24 < 26$, and we get a contradiction as above.

By the above we can note that the sub-case 1b is excluded since so are both of its subcases.

Sub-case 1c: Here t = 4. Then $x = a \lor b$ is one of c and d. By symmetry, we can assume that $a \lor b = c$. However, then $a < c < c \lor d$, $b < c < c \lor d$, whereby $y = c \lor d$ is none of the elements a, b, c, d, contradicting t = 4. So this case is excluded.

After having all of its sub-cases excluded, we obtain that Case 1 is excluded. That is, no two-element antichain is disjoint from $\{a, b\}$. But remember that there is another two-element antichain, whereby, by a-b symmetry, we consider **Case 2:** there is an element *c* such that *a* and *c* are incomparable. Again there are two sub-cases according to the position of *b* and *c*.

Sub-case 2a: Here *b* and *c* are also incomparable. Here, we have to investigate, how many of $a \lor b$, $a \lor c$, and $b \lor c$ are equal to $a \lor b \lor c$. Since the answer could be 0, 1, 2 or 3 (and using symmetry), it suffices to consider only the following four join-semilattices. The first join-semilattice is $K_0 = \{a, b, c, z, x, y, 1\}$ with edges *ax*, *bx*, *by*, *cy*, *az*, *cz*, *x*1, *y*1, *z*1 and equalities $a \lor b = x$, $b \lor c = y$, $a \lor c = z$; this gives $\sigma_5(K_0) = 15.25$. The second join-semilattice is $K_1 = \{a, b, c, x, y, 1\}$ with edges *ax*, *bx*, *by*, *cy*, *x*1, *y*1 and equalities $a \lor b = x$, $b \lor c = 1$; this gives $\sigma_5(K_1) = 18.5$. The third is $K_2 = \{a, b, c, x, 1\}$ with edges *ax*, *bx*, *x*1, *c*1 and constraints $a \lor b = x$, $a \lor c = 1$, $b \lor c = 1$; this gives $\sigma_5(K_2) = 22$. The fourth is $K_3 = \{a, b, c, 1\}$ with edges *a*1, *b*1, *c*1, and equalities $a \lor b = 1$, $a \lor c = 1$, $b \lor c = 1$; this gives $\sigma_5 = 24$. Since one of K_0 , K_1 , K_2 , and K_3 is a subsemilattice of *L* and all the four σ_5 values of these join-semilattices are smaller than 26, therefore sub-case 2a is excluded.

Sub-case 2b: Here *b* and *c* are comparable in addition to that *a* and *c* are incomparable and so do *a* and *b*. At present, *b* and *c* play a symmetric role. So we can assume that b < c. Suppose, for contradiction, that $x := a \lor b < a \lor c =: 1$. By the incomparabilities assumed, $|\{a,b,c,x,1\}| = 5$; for example if $x = a \lor b = c$ is impossible since it would yield a < c. The mentioned constraints are defining *K*. Now $\sigma_5(K) = 23 < 26$ gives a contradiction. So $a \lor b < a \lor c$ fails but $a \lor b \leq a \lor c$ since b < c. Therefore, with $1 = a \lor b = a \lor c$, $\{a,b,c,1\}$ is a subsemilattice (isomorphic to) H_4 .

Now that all other possibilities have been excluded, we know that H_4 is a joinsubsemilattice of (L, \vee) . Observe that H_4 has no narrows. Therefore, by Lemma 1 (iii), (L, \vee) is of the desired form. By this, the proof of Theorem 1 is completed.

526

REFERENCES

- D. Ahmed and E. K. Horváth, "Yet two additional large numbers of subuniverses of finite lattices," *Discussiones Mathematicae - General Algebra and Applications*, vol. 39, no. 2, p. 251, 2019, doi: 10.7151/dmgaa.1309.
- [2] I. Chajda, R. Halaš, and J. Kühr, Semilattice structures. Heldermann Lemgo, 2007, vol. 30.
- [3] G. Czédli, "A note on finite lattices with many congruences," *Acta Univ. M. Belii Ser. Math.*, pp. 22–28, 2018.
- [4] G. Czédli, "Eighty-three sublattices and planarity," *Algebra universalis*, vol. 80, no. 4, p. 45, 2019, doi: 10.1007/s00012-019-0615-3.
- [5] G. Czédli, "Finite semilattices with many congruences," Order, vol. 36, no. 2, pp. 233–247, 2019, doi: 10.1007/s11083-018-9464-5.
- [6] G. Czédli, "Lattices with many congruences are planar," *Algebra universalis*, vol. 80, no. 1, p. 16, 2019, doi: 10.1007/s00012-019-0589-1.
- [7] G. Czédli, "One hundred twenty-seven subsemilattices and planarity," Order, pp. 1–11, 2019, doi: /10.1007/s11083-019-09519-x.
- [8] G. Czédli and E. K. Horváth, "A note on lattices with many sublattices," *Miskolc Mathematical Notes*, vol. 20, no. 2, p. 839–848, 2019, doi: 10.18514/MMN.2019.2821.
- [9] G. Grätzer, *Lattice theory: foundation*. Springer Science & Business Media, 2011.
- [10] I. Rival and R. Wille, "Lattices freely generated by partially ordered sets: which can be" drawn"?" *Journal für die reine und angewandte Mathematik*, vol. 1979, no. 310, pp. 56–80, 1979, doi: 10.1515/crll.1979.310.56.

Authors' addresses

Delbrin Ahmed

University of Szeged, Bolyai Institute, Aradi vértanúk tere 1,6720 Szeged, Hungary *E-mail address:* delbrin@math.u-szeged.hu

Eszter K. Horváth

(**Corresponding author**) University of Szeged, Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary

E-mail address: horeszt@math.u-szeged.hu