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İLKNUR SAKAOĞLU AND MEHMET ÜNVER
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1. INTRODUCTION

Recall that Korovkin type approximation theory deals with the problem of ap-
proximating a function f by a sequence fTn .f;x/g of positive linear operators over
a certain space of real valued functions (see, e.g, [1], [10]). In particular, this type
of results in the space LpŒa;b� of integrable functions on a compact interval may be
found in [2], [3], [6], [11] and for the space LpŒ�1;1I�1;1� of the integrable mul-
tivariable functions on Œ�1;1�� Œ�1;1� in [12]. Also Gadjiev and Orhan [8] have
given a Korovkin type approximation theorem, via statistical convergence, on Lp-
spaces. Some further results concerning the statistical approximation in the space of
locally integrable functions may be found in [5] and [4]. The aim of this paper is to
study statistical Korovkin type results for statistically uniformly bounded sequences
of positive linear operators which map the space of multivariable integrable functions
into itself.

First of all, we recall some basic definitions and notations used in this paper.
Let AD .ajn/ be a nonnegative regular matrix. The A-density of K �N is given by

ıA.K/ WD lim
j

X
n2K

ajn:

The first author was supported by the Scientific and Technological Research Council of Turkey
(TUBITAK).

c
 2012 Miskolc University Press
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A sequence x D .xn/ is called A-statistically convergent to a number L if for every
" > 0;

ıA .fn 2N W jxn�Lj � "g/D 0: (1.1)
It is not difficult to see that 1.1 is equivalent to

lim
j!1

X
nWjxn�Lj�"

ajn D 0; for every " > 0:

This limit expression is denoted by stA� lim
n
xn DL: The case in which AD C1; the

Cesàro matrix, reduces to statistical convergence [7].
Let AD .ajn/ be a nonnegative regular matrix. Then the sequence x D .xn/ is said
to be strongly A-summable to L if

lim
j

X
n

ajn jxn�Lj D 0:

By LpŒa;bIc;d � we denote the space of all functions f defined on Œa;b�� Œc;d � for
which

dZ
c

bZ
a

jf .x;y/jp dxdy <1; 1� p <1:

In this case, the Lp norm of a function f in LpŒa;bIc;d �; denoted by kf kp, is given
by

kf kp WD

0@ dZ
c

bZ
a

jf .x;y/jp dxdy

1A1=p

:

If T is a positive linear operator from Lp into Lp then the operator norm kT kLp!Lp

is given by
kT kLp!Lp

WD sup
kf kpD1

kTf kp

2. Lp-APPROXIMATION THEOREMS IN STATISTICAL SENSE

In [12] Zaritskaya has given the following Korovkin type theorem for a uniformly
bounded sequence of positive linear operators which map the space
LpŒ�1;1I�1;1� into itself.

Theorem 1. Let fTng be a uniformly bounded sequence of positive linear ope-
rators from LpŒ�1;1I�1;1� into itself. Then convergence of the sequence fTnf g to
f in Lp norm holds for any function f 2 LpŒ�1;1I�1;1� if and only if

lim
n
kTn.fi Ix;y/�fi .x;y/kp D 0; i D 1;2;3;4 (2.1)

where f1.t;�/D 1; f2.t;�/D t; f3.t;�/D �; f4.t;�/D t
2C�2:
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In this section, replacing ordinary “limit” operation by “A� statist ical limit”
operation, we give an analogues result for Theorem 1.

Theorem 2. Let AD .ajn/ be a non-negative regular summability matrix and let
fTng be an A� statist ical ly uniformly bounded sequence of positive linear
operators from LpŒa;bIc;d � into LpŒa;bIc;d �, 1 � p <1: Then for any function
f 2 LpŒa;bIc;d �;

stA� lim
n
kTn.f Ix;y/�f .x;y/kp D 0 (2.2)

if and only if

stA� lim
n
kTn.fi Ix;y/�fi .x;y/kp D 0; i D 1;2;3;4 (2.3)

where f1.t;�/D 1; f2.t;�/D t; f3.t;�/D �; f4.t;�/D t
2C�2:

Proof. It is obvious that 2.2 implies 2.3. To show that 2.3 implies 2.2, let fTng

be an A� statist ical ly uniformly bounded sequence of positive linear ope-
rators and f 2 LpŒa;bIc;d �: Then there exist M > 0 such that ıA.K0/ D 1 where

K0 WD

n
n 2N W kTnkLp!Lp

�M
o
: Given " > 0, there exist ni ."/ and Ki � N of

density 1 such that

kTn.fi Ix;y/�fi .x;y/kp < "; i D 1;2;3;4 (2.4)

for all n 2 Ki and n > ni ."/: Then inequality 2.4 holds for all

n 2K WD
4T

iD0

Ki and n > n0 WDmaxfni W i D 1;2;3;4g:

Since C Œa;bIc;d �; the set of continuous functions on Œa;b� � Œc;d � is dense in
LpŒa;bIc;d �, for any " > 0 there exists g 2 C Œa;bIc;d � such that

kf .x;y/�g.x;y/kp < ":

Hence for all n 2K and n > n0 we have

kTn.f Ix;y/�f .x;y/kp � kTn.f �gIx;y/kpCkTn.gIx;y/�g.x;y/kp

Ckf .x;y/�g.x;y/kp

< ".1CM/CkTn.gIx;y/�g.x;y/kp : (2.5)

By the continuity of g on Œa;b�� Œc;d �; for any " > 0 there exists ı > 0 such that for
all .x;y/; .t;v/ 2 Œa;b�� Œc;d � satisfying .t �x/2C .� �y/2 < ı2 we have

jg.t;�/�g.x;y/j< ":

Note that

jg.t;�/�g.x;y/j � jg.t;�/jC jg.x;y/j

<
2H

ı2
�.t;�/
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for all .x;y/; .t;v/ 2 Œa;b� � Œc;d � satisfying .t � x/2 C .� � y/2 � ı2 where
�.t;�/ WD .t � x/2C .� � y/2 and H D kg.x;y/kC Œa;bIc;d� : Then for any .x;y/;
.t;v/ 2 Œa;b�� Œc;d � we also have

jg.t;�/�g.x;y/j< "C
2H

ı2
�.t;�/: (2.6)

On the other hand one can get

kTn.gIx;y/�g.x;y/kp � kTn .jg.t;�/�g.x;y/j Ix;y/kp

CH kTn.f1Ix;y/�f1kp : (2.7)

Using the linearity and positivity of the operators Tn and inequality 2.6, we get for
any n 2K and n > n0 that

kTn .jg.t;�/�g.x;y/j Ix;y/kp �





Tn

�
"C

2H

ı2
�.t;�/Ix;y

�




p

� "
�
kTn.f1Ix;y/�f1kpC1

�
C
2H

ı2
kTn .�.t;�/Ix;y/kp

� "
�
kTn.f1Ix;y/�f1kpC1

�
C
2H

ı2

˚
kTn.f4Ix;y/�f4kp

C
�
˛2
Cˇ2

�
kTn.f1Ix;y/�f1kp

C2˛ kTn.f2Ix;y/�f2kp

C 2ˇ kTn.f3Ix;y/�f3kp

	
(2.8)

where ˛ Dmaxfjaj ; jbjg and ˇ Dmaxfjcj ; jd jg: It follows from 2.5, 2.7 and 2.8, for
all n 2K and n > n0; that

kTn.f Ix;y/�f .x;y/kp � ".2CM/

C

�
H C "C

2H

ı2

�
˛2
Cˇ2

��
kTn.f1Ix;y/�f1kp

C
4H˛

ı2
kTn.f2Ix;y/�f2kp

C
4Hˇ

ı2
kTn.f3Ix;y/�f3kp

C
2H

ı2
kTn.f4Ix;y/�f4kp : (2.9)

Using 2.3, inequality 2.9 can be made small enough for all n 2K and n> n0. Hence,
we have

stA� lim
n
kTn.f Ix;y/�f .x;y/kp D 0
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which concludes the proof. �

Since any boundedA�statist ical ly convergent sequence is stronglyA�summable
[9], the following result holds immediately.

Corollary 1. Let A D .ajn/ be a nonnegative regular summability matrix and
let fTng be a uniformly bounded sequence of positive linear operators from
LpŒa;bIc;d � into LpŒa;bIc;d � satisfies

lim
n
kTn.f1Ix;y/�f1.x;y/kp D 0

and
stA� lim

n
kTn.fi Ix;y/�fi .x;y/kp D 0; i D 2;3;4:

Then for any function f 2 LpŒa;bIc;d �

lim
j!1

1X
nD1

ajn kTn.f Ix;y/�f .x;y/kp D 0:

Now using the same methods as in the proof of Theorem 2, one can get the fol-
lowing result easily.

Theorem 3. Let AD .ajn/ be a non-negative regular summability matrix and let
fTng be an A� statist ical ly uniformly bounded sequence of positive linear
operators from LpŒJ � into LpŒJ �, 1� p <1: Then for any function f 2 LpŒJ �;

stA� lim
n
kTnf �f kp D 0 (2.10)

if and only if
stA� lim

n
kTnfi �fikp D 0; i D 1;2; :::;mC2 (2.11)

where f1.t1; :::; tm/ D 1; fi .t1; :::; tm/ D ti ; .i D 2;3; :::;m C 1/,

fmC2.t1; :::; tm/D
mP

kD1

t2
k

and J WD J1�J2:::�Jm; Ji D Œai ;bi � ; i D 1;2;3; :::;m:

In this theorem if we choose;
i) mD 1 and AD I; the identity matrix, we get Dzyadyk’s result [6].
ii) mD 1 and AD C1; the Cesàro matrix, we get Theorem 7 in [8].
iii) mD 2 and AD I; we get Theorem 1.
iv) mD 2, we get Theorem 2.

Remark 1. Let AD .ajn/ be a non-negative regular summability matrix for which
lim
j

max
n
ajnD 0. Then it is well known that A�statist ical convergence is stronger

than ordinary convergence [9]. We can choose a non-negative
A� statist ical ly null but non-convergent sequence .�n/. Let the operators Un

on LpŒ�1;1I�1;1� be defined by

Un .f Ix;y/D .1C�n/Tn.f Ix;y/
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for all f 2 LpŒ�1;1I�1;1� where

Tn.f Ix;y/D
1

1C2�n

8<:
f .x;y/; 2�n � jxj � 1 or 2�n � jyj � 1

1
4

1R
�1

1R
�1

f .x;y/dxdy; jxj< 2�n and jyj< 2�n :

To show that fUng satisfies Theorem 2 but it does not satisfy Theorem 1, we will
show that fTng is uniformly bounded sequence satisfying condition (2.1). A simple
calculation shows that for all n 2N, kTnf kp < 8

1=p kf kp and kTnkLp!Lp
< 81=p:

Hence fTng is a uniformly bounded sequence of positive linear operators from
LpŒ�1;1I�1;1� into LpŒ�1;1I�1;1�, 1� p <1: Also it is easy to verify that

kTn.f1Ix;y/�f1.x;y/kp D 4
1=p

�
1�

1

1C2�n

�
;

kTn.f2Ix;y/�f2.x;y/kp D kTn.f3Ix;y/�f3.x;y/kp

D

�
4

pC1

��
1�

1

1C2�n

�p �
1�2�n

�
C2�n.pC2/

��1=p

and

kTn.f4Ix;y/�f4.x;y/kp <

��
1�

1

1C2�n

�
2pC3

C2p�n16

�1=p

:

Hence we necessarily have

lim
n
kTn.fi Ix;y/�fi .x;y/kp D 0; i D 1;2;3;4:
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