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Abstract. Best proximity point theorems ensure the existence of an approximate optimal solution
to the equations of the type f (x) = x when f is not a self-map and a solution of the same does not
necessarily exist. Best proximity points theorems, therefore, serve as a powerful tool in the theory
of optimization and approximation. The aim of this article is to consider a global optimization
problem in the context of best proximity points in a complete metric space. We establish an
existence of best proximity result for multivalued mappings using Wardowski’s technique.
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1. INTRODUCTION AND PRELIMINARIES

Nadler [9] defined a Hausdorff concept by considering the distance between two
arbitrary sets as follows.

Let (Ω,η) be a complete metric space (in short, MS) and let CB(Ω) be the family
of all nonempty closed and bounded subsets of the nonempty set Ω. For M ,N ∈
CB(Ω), define the map H : CB(Ω)×CB(Ω)→ [0,∞) by

H (M ,N ) = max{sup
ξ∈N

∆(ξ,M ), sup
δ∈M

∆(δ,N )},

where ∆(δ,N ) = infξ∈N η(δ,ξ). Then (CB(Ω),H ) is an MS induced by η.
Let M ,N be any two nonempty subsets of the MS (Ω,η). The following notations

will be used throughout:

M0 = {µ ∈M : η(µ,ν) = η(M ,N ) for some ν ∈N },
N0 = {ν ∈N : η(µ,ν) = η(M ,N ) for some µ ∈M },

where η(M ,N ) = inf{η(µ,ν) : µ ∈M ,ν ∈N }.
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For M ,N ∈CB(Ω), we have

η(M ,N )≤H (M ,N ).

We say that µ ∈M is a best proximity point (in short, BPP) of the multivalued map
Γ : M → CB(N ) if ∆(µ,Γµ) = η(M ,N ). υ ∈ Ω is said to be a fixed point of the
multivalued map Γ : Ω→CB(Ω) if υ ∈ Γυ.

Remark 1.
(1) In the MS (CB(Ω),H ), υ∈Ω is a fixed point of Γ if and only if ∆(υ,Γυ) = 0.
(2) If η(M ,N ) = 0, then a fixed point and a BPP are identical.
(3) The metric function η : Ω×Ω→ [0,∞) is continuous in the sense that if
{υn},{ξn} are two sequences in Ω with (υn,ξn)→ (υ,ξ) for some υ,ξ ∈Ω,
as n→ ∞, then η(υn,ξn)→ η(υ,ξ) as n→ ∞. The function ∆ is continuous
in the sense that if υn→ υ as n→ ∞, then ∆(υn,M )→ ∆(υ,M ) as n→ ∞

for any M ⊆Ω.

The following Lemmas are noteworthy.

Lemma 1 ([2, 4]). Let (Ω,η) be an MS and M ,N ∈CB(Ω). Then
(1) ∆(µ,N )≤ η(µ,γ) for any γ ∈N and µ ∈Ω;
(2) ∆(µ,N )≤H (M ,N ) for any µ ∈M .

Lemma 2 ([9]). Let M ,N ∈ CB(Ω) and let υ ∈M , then for any r > 0, there
exists ξ ∈N such that

η(υ,ξ)≤H (M ,N )+ r.
But we may not have any ξ ∈N such that

η(υ,ξ)≤H (M ,N ).

Further, when N is compact, there exists ξ ∈Ω such that η(υ,ξ)≤H (M ,N ).

The concept of H -continuity for multivalued maps is listed next.

Definition 1 ([5]). Let (Ω,η) be an MS. We say that a multivalued map Γ : Ω→
CB(Ω) is H -continuous at a point µ0, if for each sequence {µn} ⊂ Ω, such that
lim
n→∞

η(µn,µ0) = 0, we have lim
n→∞

H (Γµn,Γµ0) = 0 (i.e., if µn → µ0, then Γµn → Γµ0

as n→ ∞).

Definition 2 ([9]). Let Γ : Ω→CB(Ω) be a multivalued map. We say that Γ is a
multivalued contraction if H (Γµ,Γν)≤ λη(µ,ν) for all µ,ν ∈Ω, where λ ∈ [0,1).

Remark 2.
(1) If Γ is H -continuous on every point of M ⊆Ω, then it is said to be continuous

on M .
(2) A multivalued contraction Γ is H -continuous.

In 2012, Wardowski [16] defined the concept of F-contraction as follows.
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Definition 3. Let F : (0,+∞)→ (−∞,+∞) be a function which satisfies the fol-
lowing:

(F1) F is strictly increasing;
(F2) For each sequence {un}n∈N ⊂ (0,+∞),

lim
n→+∞

un = 0 if and only if lim
n→+∞

F (un) =−∞;

(F3) There is t ∈ (0,1) such that lim
u→0+

utF (u) = 0.

Let F denote the class of all such functions F . If (Ω,η) is an MS, then a self-map
T : Ω→ Ω is said to be an F−contraction if there exist τ > 0, F ∈ F , such that for
all µ,ν ∈Ω,

η(T µ,T ν)> 0⇒ τ+F(η(T µ,T ν))≤ F(η(µ,ν)).

Multivalued F-contractions were defined by Altun et al. [1] as follows.

Definition 4 ([1]). Let (Ω,η) be an MS. A multivalued map Γ : Ω→CB(Ω) is said
to be a multivalued F-contraction (MVFC, in short) if there exist τ > 0 and F ∈ F
such that

τ+F(H (Γµ,Γν))≤ F(η(µ,ν)) (1.1)
for all µ,ν ∈Ω with Γµ 6= Γν.

Remark 3. An MVFC is H -continuous.

We can find the concept of P-property in [12], whereas the notion of weak P
property was defined by Zhang et al. [18].

Definition 5 ([12]). Let (Ω,η) be an MS and M ,N be two non-empty subsets of
Ω such that M0 6= φ. The pair (M ,N ) is said to have the P-property if and only if
η(µ1,ν1) = η(M ,N ) = η(µ2,ν2) implies η(µ1,µ2) = η(ν1,ν2), where µ1,µ2 ∈M0
and ν1,ν2 ∈N.

Definition 6 ([18]). Let (Ω,η) be an MS and M ,N be two non-empty subsets of
Ω such that M0 6= φ. The pair (M ,N ) is said to have the weak P-property if and only
if η(µ1,ν1) = η(M ,N ) = η(µ2,ν2) implies η(µ1,µ2)≤ η(ν1,ν2), where µ1,µ2 ∈M0
and ν1,ν2 ∈N0.

BPP theorems for F-contractive non-self mappings were studied by Omidvari et al.
[11] with the help of P-property. Later, Nazari [10] investigated BPPs for a particular
type of generalized multivalued contractions by using the weak P-property.

Srivastava et al. [13,14] presented Krasnosel’skii type hybrid fixed point theorems
and found their very interesting applications to fractional integral equations. Xu et
al. [17] proved Schwarz lemma that involves boundary fixed point. Very recently,
Debnath and Srivastava [6] investigated common BPPs for multivalued contractive
pairs of mappings in connection with global optimization. Debnath and Srivastava
[7] also proved new extensions of Kannan’s and Reich’s theorems in the context
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of multivalued mappings using Wardowski’s technique. Further, a very significant
application of fixed points of F(ψ,ϕ)-contractions to fractional differential equations
was recently provided by Srivastava et al. [15].

In this paper, we introduce a best proximity result for multivalued mappings with
the help of F-contraction and the weak P property. Also we provide an example
where the P-property is not satisfied but the weak P-property holds.

2. BEST PROXIMITY POINT FOR MVFC

In this section, with the help of the notion of F-contraction, we show that an
MVFC satisfying certain conditions admits a BPP.

Theorem 1. Let (Ω,η) be a complete MS and M ,N be two non-empty closed
subsets of Ω such that M0 6= φ and that the pair (M ,N ) has the weak P-property.
Suppose Γ : M →CB(N ) be a MVFC such that Γµ is compact for each µ ∈M and
Γµ⊆N0 for all µ ∈M0. Then Γ has a BPP.

Proof. Fix µ0 ∈M0 and choose ν0 ∈ Γµ0 ⊆ N0. By the definition of N0, we can
select µ1 ∈M0 such that

η(µ1,ν0) = η(M ,N ). (2.1)
If ν0 ∈ Γµ1, then

η(M ,N )≤ ∆(µ1,Γµ1)≤ η(µ1,ν0) = η(M ,N ).

Thus η(M ,N ) = ∆(µ1,Γµ1), i.e., µ1 is a BPP of Γ. Therefore, assume that ν0 /∈ Γµ1.
Since Γµ1 is compact, by Lemma 2, there exists ν1 ∈ Γµ1 such that

0 < η(ν0,ν1)≤H (Γµ0,Γµ1).

Since F is strictly increasing, the last inequality implies that

F(η(ν0,ν1))≤ F(H (Γµ0,Γµ1))

≤ F(η(µ0,µ1))− τ. (2.2)

Since ν1 ∈ Γµ1 ⊆N0, there exists µ2 ∈M0 such that

η(µ2,ν1) = η(M ,N ). (2.3)

From (2.1) and (2.3) and using weak P−property , we have that

η(µ1,µ2)≤ η(ν0,ν1). (2.4)

From (2.2) and (2.4), we have

F(η(µ1,µ2))≤ F(η(ν0,ν1))≤ F(η(µ0,µ1))− τ. (2.5)

If ν1 ∈ Γµ2, then

η(M ,N )≤ ∆(µ2,Γµ2)≤ η(µ2,ν1) = η(M ,N ).

Thus η(M ,N ) = ∆(µ2,Γµ2), i.e., µ1 is a BPP of Γ. So, assume that ν1 /∈ Γµ2.
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Since Γµ2 is compact, by Lemma 2, there exists ν2 ∈ Γµ2 such that

0 < η(ν1,ν2)≤H (Γµ1,Γµ2).

Using the fact that F is strictly increasing, we have that

F(η(ν1,ν2))≤ F(H (Γµ1,Γµ2))

≤ F(η(µ1,µ2))− τ

≤ F(η(µ0,µ1))−2τ (using 2.5).

Since ν2 ∈ Γµ2 ⊆N0, there exists µ3 ∈M0 such that

η(µ3,ν2) = η(M ,N ). (2.6)

From (2.5) and (2.6) and using weak property P, we have that

η(µ2,µ3)≤ η(ν1,ν2). (2.7)

From (2.6) and (2.7), we have

F(η(µ2,µ3))≤ F(η(ν1,ν2))≤ F(η(µ0,µ1))−2τ. (2.8)

Continuing in this manner, we obtain two sequences {µn} and {νn} in M0 and N0
respectively, satisfying

(B1) νn ∈ Γµn ⊆N0,
(B2) η(µn+1,νn) = η(M ,N ),
(B3) F(η(µn,µn+1))≤ F(η(νn−1,νn))≤ F(η(µ0,µ1))−nτ,

for each n = 0,1,2, . . ..
Put αn = η(µn,µn+1) for each n = 0,1,2, . . .. Taking limit on both sides of (B3) as

n→ ∞, we have
lim
n→∞

F(αn) =−∞.

Using (F2), we obtain
lim
n→∞

αn = 0. (2.9)

Using (F3), there exists k ∈ (0,1) such that

α
k
nF(αn)→ 0 as n→ ∞. (2.10)

From (B3), for each n ∈ N, we have that

F(αn)−F(α0)≤−nτ.

This implies
α

k
nF(αn)−α

k
nF(α0)≤−nα

k
nτ≤ 0. (2.11)

Letting n→ ∞ in (2.11) and using (2.9), (2.10), we obtain

lim
n→∞

nα
k
n = 0.

Thus there exists n0 ∈N such that nαk
n ≤ 1 for all n≥ n0, i.e., αn ≤ 1

n
1
k

for all n≥ n0.
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Let m,n ∈ N with m > n≥ n0. Then

η(µm,µn)≤
m−1

∑
i=n

η(µi,µi+1) =
m−1

∑
i=n

αi

≤
∞

∑
i=n

αi ≤
∞

∑
i=n

1

i
1
k
.

Since the series ∑
∞
i=n

1

i
1
k

is convergent for k ∈ (0,1), we have η(µm,µn) → 0 as

m,n→ ∞. Hence {µn} is Cauchy in M0 ⊆ M . Since (Ω,η) is complete and M
is closed, we have lim

n→∞
µn = θ for some θ ∈M .

Since Γ is H -continuous (for it is an MVFC), we have

lim
n→∞

H (Γµn,Γθ) = 0. (2.12)

Exactly in the similar manner as above, using (B3), we can prove that {νn} is Cauchy
in N and since N is closed, there exists ξ ∈ B such that lim

n→∞
νn = ξ.

Since η(µn+1,νn) = η(M ,N ) for all n ∈ N, we have

lim
n→∞

η(µn+1,νn) = η(θ,ξ) = η(M ,N ).

We claim that ξ ∈ Γθ. Indeed, since νn ∈ Γµn for all n ∈ N, we have

lim
n→∞

∆(νn,Γθ)≤ lim
n→∞

H (Γµn,Γθ) = 0.

Therefore, ∆(ξ,Γθ) = 0. Since Γθ is closed, we have ξ ∈ Γθ.
Now,

η(M ,N )≤ ∆(θ,Γθ)≤ η(θ,ξ) = η(M ,N ).

Hence ∆(θ,Γθ) = η(M ,N ), i.e., θ is a BPP of Γ. �

A Geraghty type [8] result follows as a consequence of our previous theorem. Let
G be the class of functions g : [0,∞)→ [0,1) satisfying the condition: g(ξn)→ 1
implies ξn → 0. An example of such a map is g(ξ) = (1+ ξ)−1 for all ξ > 0 and
g(0) ∈ [0,1).

Definition 7. Let M ,N be two non-empty subsets of a MS (Ω,η). A multival-
ued map Γ : M → CB(N ) is said to be a multivalued Geraghty-type F-contraction
(MVGFC, in short) if there exist τ > 0, F ∈ F and g ∈ G such that

τ+F(H (Γµ,Γν))≤ g(η(µ,ν)) ·F(η(µ,ν)) (2.13)

for all µ,ν ∈Ω with Γµ 6= Γν.

Corollary 1. Let (Ω,η) be a complete MS and M ,N be two non-empty closed
subsets of Ω such that M0 6= φ and that the pair (M ,N ) satisfies the weak P-property.
Suppose Γ : M →CB(N ) be a MVGFC such that Γµ is compact for each µ∈M and
Γµ⊆N0 for all µ ∈M0. Then Γ has a BPP.
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Proof. Since g(t) ∈ [0,1) for all t ∈ [0,∞), from (2.13), we have that

τ+F(H (Γµ,Γν))≤ F(η(µ,ν)) (2.14)

for all µ,ν ∈M with Γµ 6= Γν. Thus, Γ is an MVFC and hence from Theorem 1 it
follows that Γ has a BPP. �

Remark 4. Corollary 1 extends the results due to Caballero et al. [3] and Zhang et
al. [18] to their multivalued analogues using F-contraction.

Next, we provide some examples in support of our main result.

Example 1. Consider Ω = R with usual metric η(µ,ν) = |µ−ν| for all µ,ν ∈ Ω.
Let M = [5,6] and N = [−6,−5]. Then η(M ,N ) = 10 and M0 = {5}, N0 = {−5}.
Define the multivalued map Γ : M →CB(N ) such that

Γµ = [
−µ−5

2
,−5] for all µ ∈ [5,6].

Therefore Γ(5) = {−5} (i.e., Γµ⊆N0 for all µ ∈M0).
We claim that Γ is a MVFC. Let H (Γµ,Γν)> 0. Then we have

H (Γµ,Γν) = H ([
−µ−5

2
,−5], [

−ν−5
2

,−5])

= |(−µ−5
2

)− (
−ν−5

2
)|

=
|ν−µ|

2

=
η(µ,ν)

2
< η(µ,ν).

From the last inequality, we have that ln(H (Γµ,Γν)) < ln(η(µ,ν)), and further,
τ + ln(H (Γµ,Γν)) ≤ ln(η(µ,ν)), for any τ ∈ (0, ln2]. Therefore, we have that
τ+F(H (Γµ,Γν))≤ F(η(µ,ν)), for any τ ∈ (0, ln2], where F(t) = ln t, t > 0.

Finally, it is easy to check that (M ,N ) satisfies weak P-property. Thus, all condi-
tions of Theorem 1 are satisfied and we observe that µ = 5 is a BPP of Γ.

In fact, in Example 1, the pair (M ,N ) satisfies P-property (and hence the weak
P-property as well). Next, we present an example in which the pair (M ,N ) satisfies
only the weak P-property but not the P-property.

Example 2. Consider Ω = R2 with the Euclidean metric η.
Let M = {(−5,0),(0,1),(5,0)} and N = {(µ,ν) : ν= 2+

√
2−µ2,µ∈ [−

√
2,
√

2]}.
Then η(M ,N ) =

√
3 and M0 = {(0,1)}, N0 = {(

√
2,2),(−

√
2,2)}.

Define the multivalued map Γ : M →CB(N ) such that

Γ(−5,0) = {(−
√

2,2),(−1,3)}, Γ(0,1) = {(
√

2,2)}, Γ(5,0) = {(
√

2,2),(1,3)}.
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It is easy to check that Γ is a MVFC with τ = ln2 and F(t) = ln t, t > 0.
Finally, we observe that

η((0,1),(
√

2,2)) = η((0,1),(−
√

2,2)) =
√

3 = η(M ,N ),

but
η((0,1),(0,1)) = 0 < η((

√
2,2),(−

√
2,2)) = 2

√
2.

Thus, (M ,N ) satisfies weak P-property, but not the P-property. Therefore, all
conditions of Theorem 1 are satisfied and since ∆((0,1),Γ(0,1)) =

√
3 = η(M ,N ),

we conclude that (0,1) is a BPP of Γ.

3. CONCLUSION

We have proved our main result with a strong condition that images of the MVFC
are compact sets. Relaxation of this compactness criterion is a suggested future
work. We have shown the non-triviality of the assumption of the weak P-property
by presenting an example which does not satisfy the P-property but satisfies only the
weak P-property. The results due to Caballero et al. [3] and Zhang et al. [18] are also
extended to their multivalued analogues as a consequence of our results.
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