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Abstract. The models of retrial queues M/M/K/K with delayed feedback are considered. If upon
arrival of primary call (p-call) there are free channels then it occupies one of them for a some
exponentially distributed time; otherwise, it in accordance to Bernoulli scheme either leaves the
system forever or go to orbit for retrial calls (r-calls). After the customer is served completely,
it will decide based on Bernoulli scheme either to join the orbit for re-service after some delay
(delayed feedback) or to leave the system forever. If upon arrival r-call there is a free server, then
the arriving call begins to be served immediately; otherwise, it in accordance to Bernoulli scheme
either leaves the orbit or return to orbit. An approximate method to calculation of the steady-state
probabilities of the appropriate two-dimensional Markov chain as well as performance measures
of the system is developed. Results of numerical experiments are demonstrated.
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1. INTRODUCTION

Retrial of calls are a common phenomenon in queuing systems. In retrial queuing
(RQ) systems arriving new calls who find all servers and waiting room occupied is
decide to leave the system forever or to join the retrial group to try again for their
service after a random period of time. Performance modeling of RQ systems has
attracted many researchers since they adequately describe many real life problems,
e.g. in switching systems, telecommunication networks, computer networks, invent-
ory systems etc. [1, 10]. For comprehensive survey and list of references in this field
see [11, 23].

Retrial phenomenon is observed in queuing systems with feedback (FB) as well.
In such systems serviced calls require repeated service depending on some factors,
e.g. quality of service, response time in the system, etc. For the state of the art of the
theoretical and practical researches in queuing systems with FB see [19].
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Note that almost all papers on RQ have considered the systems without feedback.
However, retrial queuing systems with delayed feedback (RQwDFB) are suitable
models for many practical situations, e.g. multiple access telecommunication sys-
tems, where data that is transmitted erroneously are sent again can be modeled as
retrial queue with feedback.

In the literature there are few works devoted to study RQwDFB. It seems that
RQwDFB for the first time has been investigated in paper [5]. In this paper authors
investigated an RQwDFB M/M/c/c with infinite orbit capacity when c = 1, 2. An
arriving call is served immediately if one of the servers is idle, and if all servers are
busy, it will either join the retrial group to try again after a random period of time
or leave the system forever without service. On retrials, each customer is treated
the same as a primary customer. If retrial call finds free servers, it receives service
immediately, and if all the servers are busy, it will either leave the system forever or
join the retrial group. All calls in the retrial group act independently of each other.
The retrial time is exponentially distributed with finite mean and is independent of all
previous retrial times and all other stochastic processes in the system. After the call
is served completely, it will decide either to join the retrial group again for another
service or to leave the system forever. They found the joint probability generating
function (PGF) of the number of busy servers and the number of customers in the
retrial group for c = 1, 2.

In [21] considered an RQwDFB M/G/1/1 with single server vacation and constant
retrial rate where the server is subjected to starting failures. It is assumed that the
retrial time is governed by an arbitrary distribution. The server leaves for a vacation
as soon as the system becomes empty. When the server returns from the vacation and
finds no calls, he waits free for the first customer to arrive from outside the system.
If the server is started successfully (with a certain probability), the call gets service
immediately; otherwise, the repair for the server starts immediately and the call must
leave for the orbit and make a retrial later. The system size distribution at random
points and various performance measures are derived.

In [2, 3, 8] considered Markovian models of single server RQwDFB. Models with
two types of calls under non-pre-emptive and pre-emptive priority service disciplines
are investigated in [3] and [2], respectively. In both papers [3] and [2] the retrial,
loss and feedback allowed for low priority calls only. If the server is free at the
time of the arrival of low priority call, then an incoming call immediately begins
to be serviced; after completion of service, low priority call either may re-join the
orbit of infinite size or leaves the system. If the server is busy then the arriving low
priority call goes to orbit and becomes a source of repeated calls. If the server is
free at the time of the arrival of high priority customer, then the arriving call begins
to be served immediately and high priority customer leaves the system after service
completion. In [3] the non-pre-emptive priority service discipline is used, i.e. if the
server is engaging with low priority call and the higher priority call comes then the
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high priority call will get service only after completion of the service of low priority
call who is in service. In [2] the pre-emptive priority service is used, i.e. if the
server is engaging with low priority call and the higher priority call enters then the
high priority call will get service immediately and the low priority call who is in
service goes to orbit without completion of his service. The model of single server
RQwDFB with batch service under multiple server vacations is considered in [8]. It
is assumed that upon completion the service batch of calls in accordance to Bernoulli
scheme either may join the queue or leaves the system. If after completion of the
service number of calls in the queue less than a given threshold, then server leaves
for a multiple vacation period with exponential distribution. The arriving call in
accordance to Bernoulli scheme either may join the queue or leaves the system when
server is busy or in vacation.

Model of RQwDFB M/M/1/N, N<∝, with two orbits is considered in [4]. If upon
arrival, the calls find the queue full, then they decide to stay for an attempt to get
service or leave the system. Arriving customers who decide to stay for an attempt
have to choose one of the orbits in accordance with the probabilities that depend
on thresholds in orbits. After the call is served completely, it may decide to either
attempt for re-service or leave the system forever. In this case, the selection of one of
the orbits occurs according to the Bernoulli scheme.

Recently in [25] considered an RQwDFB M/G/1 with negative calls under working
vacation and working breakdowns. The PGFs for the numbers of calls in the orbit
under different server status are derived. Various system performance measures and
some special cases were discussed.

To study models of RQwDFB in [4, 5, 8, 21, 25] PGF approach is used while in
[2, 3] matrix-geometric method [22] is applied.

Note that indicated above works devoted to single-server RQwDFBs. Moreover,
in these works it is assumed that the retrial and feedback probabilities are constant
quantities, i.e. they do not depend on the state of the system. These assumptions
significantly limit the application areas of the proposed models, since in practice
RQwDFB contains many servers and in these systems decisions about going into
orbit or leaving orbit without getting re-service often depend on the current state of
the system.

Models of multi-server RQwDFBs, in contrast its single-server counterpart, are
not studied (exception is [5] in which two-server system is investigated as well). This
paper is motivated by the work [5]. The novelty of our contribution is threefold.
Firstly, we consider models of multi-server RQwDFB with both finite and infinite
capacity of orbit. Secondly, we take into account that retrial, feedback probabilities
as well as balking probabilities from the orbit are state-dependent; in other words, we
assume that both arrived and departure calls as well as retrial calls have information
about number of calls in orbit, i.e. appropriate decisions depend on number of calls
in orbit. Thirdly, we propose an approximate method to study the proposed models
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of RQwDFB. The developed method allows calculate the steady-state probabilities
as well as performance measures of the models under study for arbitrary number of
channels and capacity of orbits for retrial and feedback calls. Moreover, calculations
are realized by explicit formulas that contains tabulated quantities.

Proposed here approach to study models of RQwDFB based on the idea of theory
of space merging of Markov chains [12]. The space-merging algorithm (SMA) for
the first time was used to calculation of the steady-state probabilities of the two-
dimensional Markov chain (2D MC) in [6, 17, 18]. Recently hierarchical SMA to
study 3D MC is developed in [13]. In last decade many researchers develop similar
SMAs to study 2D MC in various areas of applications [7,9,14–16,24]. In all papers,
authors note high efficiency of SMA (in both sense of accuracy and complexity) in
comparison with other numerical methods.

This paper is structured as follows. Basic mathematical model of the investigated
RQwDFB is described in Section 2. Generator matrix of the constructed 2D MC is
created in Section 3. Here exact method to calculate its steady-state probabilities is
indicated and explicit formulas for performance measures of the investigated system
is developed as well. In Section 4, approximate method for solving indicated above
problems is proposed. Results of numerical experiments that show high accuracy of
the approximate method as well as behavior of performance measures versus system
parameters are demonstrated in Section 5. Conclusions are given in Section 6.

2. MODEL DESCRIPTION

First consider the model with finite capacity of orbit, i.e. let maximum capacity of
orbit is R, R < ∞ .The system contains K > 1 identical channels and a new arriving
calls (or primary calls, p-calls) form Poisson flow with rate λ. An incoming p-call is
accepted for service if at this moment there is a free channel; otherwise, i.e. if upon
arrival of p-call all channels are busy, then it either go to orbit with a probability
(w.p.) αr or leave the system w.p. 1−αr when there are r calls in the orbit, αR = 0.

Calls from orbit (r-calls) independently each other generates request to service. It
is assumed that times between arrivals of r-calls have common exponential distribu-
tion with mean η−1 , i.e. if there are r calls in orbit then arrival intensity is rη (linear
retrial rate). If upon arrival of r-call all channels are busy, then it either leave the orbit
w.p. σr or return to orbit w.p. 1−σr when there are r calls in the orbit.

After completion of the service process, the call, according to the Bernoulli scheme,
either w.p. βr go to orbit in order to requires repeated service after some positive
delay, or with a complementary probability 1− βr leaves the system forever when
there are r calls in the orbit, βR = 0.

Service times for both types of p-calls and r-calls are independent and identically
distributed (i.i.d.) random variables (r.v.) and suppose that their distribution function
is exponential one with a common average 1

/
µ.
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It is assumed that the arriving of p-calls from outside, the arriving of r-calls from
orbit and service of calls, are independent of each other.

The problem is to determine the steady-state probabilities of a given system. The
solution of this problem allows us to find the following performance measures of
the system: loss probabilities of x-calls, Px , x ∈ {p,r}; the average number of busy
channels (Kav)and the average number of r-calls in orbit (Lr).

3. GENERATION OF Q-MATRIX AND FORMULAS FOR PERFORMANCE MEASURES

First consider model with finite capacity of orbit. The state of the system at ar-
bitrary moment of the time is defined by two-dimensional vector (b, r), where b is
total number of busy channels and r is number of r-calls in orbit. Taking into account
the type of distribution functions of all r.v. that are involved in the formation of the
model we conclude that the state space of the appropriate two-dimensional Markov
chain (2D MC) is determined as follows:

S = {1, 2, ..., K}×{0, 1, ..., R} . (3.1)

Transition intensity from state (b, r) to state (b′, r′) is denoted by q((b,r),(b′,r′)).
These quantities are determined as follows:

For case 0 ≤ b ≤ K −1:

q
(
(b,r) ,

(
b′, r′

))
=


λ , if (b′,r′) = (b+1,r) ,
bµβr, if r < R, (b′,r′) = (b−1,r+1) ,
bµ(1−βr) , if r < R, (b′,r′) = (b−1,r) ,
bµ , if r = R, (b′,r′) = (b−1,R) ,
rη , if (b′,r′) = (b+1,r−1) .

(3.2)

For case b = K:

q
(
(K,r) ,

(
b′, r′

))
=


λαr, if r < R, (b′,r′) = (K,r+1) ,
Kµβr, if r < R, (b′,r′) = (K −1,r+1) ,
Kµ(1−βr) , if r < R, (b′,r′) = (K −1,r) ,
Kµ , if r = R, (b′,r′) = (K −1,R) ,
rησr, if (b′,r′) = (b+1,r−1) .

(3.3)

From relations (3.2) and (3.3) we conclude that all states of space (3.1) are com-
municated each other, i.e. steady-state probabilities are existing. Let p(b,r) denote
stationary probability of state (b,r) ∈ S.

The performance measures of the system are determined as follows:

Kav =
K

∑
b=1

b
R

∑
r=0

p(b,r) ; (3.4)

Lr =
R

∑
r=1

r
K

∑
b=0

p(b,r) ; (3.5)
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Pp = p(K,R)+
R−1

∑
r=0

(1−αr) p(K,r) ; (3.6)

Pr =
R

∑
r=1

σr p(K,r) . (3.7)

For the model with moderate dimension of state space (3.1) the steady-state prob-
abilities might be calculated from system of equilibrium equations (SEE). Due to
the complex structure of the obtained GM (see formulas (3.2) and (3.3)), it is not
possible to find analytical solution of SEE. To solve the indicated problem Neuts’
matrix-geometric method and its modifications as well as spectral expansion method
[20] might be used. However, these methods often suffer from computational in-
stability for large values of number of channels and orbit capacity. Therefore, an
alternative (approximate) method for solving this problem is given below. It is based
on the space merging approach for multidimensional MCs and it allows calculate the
steady-state probabilities and performance metrics via explicit formulas. Moreover,
the obtained formulas contain quantities that are tabulated even, i.e. Erlang’s loss
formulas etc.

4. APPROXIMATE METHOD BASED ON SPACE MERGING APPROACH

For the correct application of the developed method, it is required satisfying the
following condition: the state space (3.1) is decomposed into classes in a such a
way that the transitions between states within classes are much larger than transitions
between states of different classes. This condition is fulfilled under certain ratios of
the initial parameters of the system. Let us assume that arrival rate of p-calls is much
larger than arrival rate of r-calls, i.e. below we assume that the following conditions
are fulfilled: η << λ .

When fulfilling this assumption, we consider the following splitting of the state
space (3.1):

S =
R⋃

r=0

Sr, Sr
⋂

Sr′ =∅, r ̸= r′, (4.1)

where Sr = {(b,r) ∈ S : b = 0, 1, ...,K} , r = 0, 1, ...., R.
Under accepted above assumptions the transitions between states within classes Sr

are much larger than transitions classes between states of different classes. Based on
splitting (4.1) in the state space (3.1), the following merge function is defined:

U (b,r) =< r >, (b,r) ∈ Sr, (4.2)

where < r > is the merged state which includes all states from the class Sr,
r = 0, 1, ..., R. We denote Ω = {< r > : r = 0, 1, ..., R} .
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Approximate values of the steady-state probabilities of the initial 2D MC are de-
noted by p̃(b, r). They are determined as follows:

p̃(b,r) = ρr (b)π(< r >) , (4.3)

where ρr (b) is the probability of state (b,r) within splitting model with state space
Sr, π(< r >) is the probability of merged state < r >∈ Ω.

Remark 1. Because of in splitting model with state space Sr states (b,r) are unique-
ly defined by component b, hereinafter these states are denoted as scalar b,
b = 0,1, . . . ,K.

From (3.2) and (3.3) we conclude that the probabilities of the states of splitting
models with spaceSr, 0 ≤ r ≤ R−1 , coincide with the state probabilities of the one-
dimensional birth-death process (1D BDP) in which the birth intensity is equal to λ

and the death intensity in the state b is equal to bµ(1−βr). So, steady-state probabil-
ities ρr (b) , 0 ≤ r ≤ R−1 , coincide with steady-state probabilities of Erlang’s model
M/M/K/K with load νr = λ

/
µ(1−βr), i.e.

ρr (b) =
νb

r

b!

/
K

∑
i=0

νi
r

i!
, b = 0, 1 , ..., K . (4.4)

By same way we conclude that the probabilities of the states of splitting model
with space SR coincide with the state probabilities of the 1D BDP in which the birth
intensity is equal to λ and the death intensity in the state b is equal to bµ. In other
words, steady-state probabilitiesρR (b) , 0 ≤ b ≤ K , coincide with steady-state prob-
abilities of Erlang’s model M/M/K/K with load ν = λ

/
µ.

Merged model with state space Ω represents 1D BDP as well. Transition rates
between its states denote by q(< r >, < r′ >) . It is clear that q(< r >,< r′ >) =
0 if |r− r′|> 1. Positive transition rates are calculated as follows:

For 0 ≤ r ≤ R−1 :

q(< r >,< r+1 >) = λαrρr (K)+µβr

K

∑
b=1

bρr (b)

= λαrEB (νr,K)+µβrBav (νr,K) .

(4.5)

For 1 ≤ r ≤ R :

q(< r >,< r−1 >) = rη

K−1

∑
b=1

ρr (b)+ rησrρr (K)

= rη(1− (1−σr)EB (νr,K)) .

(4.6)

Hereinafter, EB (x, K) and Bav (x, K) denote the Erlang B-formula and the average
number of busy channels for the M/M/K/K system with a load x, respectively, i.e.

EB (x, K) =
xK

K!

/
K

∑
k=0

xk

k!
; Bav (x, K) = x(1−EB (x, K)) .
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Therefore, from relations (4.5) and (4.6) we conclude that the probabilities of
merged states are calculated by classical formulae for 1D BDP:

π(< r >) =
r−1

∏
i=0

Λi

Mi+1
π(< 0 >) , r = 1, ...,R, (4.7)

where Λi = q(< i >,< i+1 >), Mi = q(< i >,< i−1 >) and π(< 0 >) is found
from normalizing condition, i.e. ∑

R
r=0 π(< r >) = 1.

Finally, taking into account relations (4.3), (4.4) and (4.7), approximate values of
the steady-state of the initial 2D MC are found. Further, after certain mathematical
transformations, we obtain the following approximate formulas for calculating the
performance measures (3.4)-(3.7) of the system under study:

Kav ≈
K

∑
b=1

b
R

∑
r=0

ρr (b)π(< r >) ; (4.8)

Lr ≈
R

∑
r=1

rπ(< r >) ; (4.9)

Pp ≈ EB (νR,K)π(< R >)+
R−1

∑
r=0

(1−αr)EB (νr,K)π(< r >) ; (4.10)

Pr ≈
R

∑
r=1

σrEB (νr,K)π(< r >) . (4.11)

Case of infinite orbit capacity. Note that in the case of constants probabilities αr,
βr and σr for all the possible r, the formulas (4.8)-(4.11) are even more simplified.
Moreover, in this case it is possible to obtain explicit solutions for models with an
infinite orbit capacity.

So, for a model with an infinite orbit capacity (R = ∞), the state probabilities in-
side all splitting models with space Sr, r = 0,1,2, . . . coincide with the state probab-
ilities of the Erlang model M/M/K/K with load ν

/
(1−β) (see formula (4.4)). From

relations (4.5) and (4.6) we conclude that for this model the probabilities of merged
states coincide with the probabilities of the states of the model M/M/∞ with the load
θ = Λ

/
Ψ, i.e.

π(< r >) =
θr

r!
exp(−θ) , r =0,1,2, . . . (4.12)

where Λ = λαEB

(
ν

1−β
,K
)
+µβBav

(
ν

1−β
,K
)
, M = η

(
1− (1−σ)EB

(
ν

1−β
,K
))

.
Then by using (4.12) from formulas (4.8)-(4.11) we obtain that the performance

measures of the model with an infinite orbit capacity are approximately determined
as follows:

Kav ≈ Bav

(
ν

1−β
,K
)

; (4.13)
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Lr ≈
R

∑
r=1

rπ(< r >) = θ; (4.14)

Pp ≈ (1−α)EB

(
ν

1−β
,K
)

; (4.15)

Pr ≈ σ(1− exp(−θ))EB

(
ν

1−β
,K
)
. (4.16)

5. NUMERICAL RESULTS

Here results of numerical experiments are demonstrated. The goal of these exper-
iments is investigation of the accuracy of the developed approximate formulas. For
concreteness, we investigate the behavior of the accuracy versus the rate of r-calls
(η).

As a measure of proximity of two distributions of steady-state probabilities (exact
and approximate) the following norms are used:

Cosine similarity:

∥N∥1 =
∑(b,r)∈S p(b,r) p̃(b,r)(

∑(b,r)∈S (p(b,r))2
) 1

2
(

∑(b,r)∈S (p̃(b,r))2
) 1

2
; (5.1)

Euclidean distance:

∥N∥2 =

(
∑

(b,r)∈S
(p(b, r)− p̃(b, r))2

) 1
2

. (5.2)

Remark 2. In general, cosine similarity norm (5.1) is used to estimate the orienta-
tion of two vectors. However, in our experiments it estimates not only the orientation
of the steady-state probability vectors in various (exact and approximate) approaches,
as well as their Euclidean proximity. This is because, according to the normalization
condition, the ends of these two vectors are in the same hyper plane of the Euclidean
space of dimension (K +1)(R+1), i.e. ∑(b,r)∈S p(b,r) = ∑(b,r)∈S p̃(b,r) = 1. Non-
etheless, here values of Euclidean distance is presented as well.

Firstly, consider results of numerical experiments for the model with finite capa-
city of orbit. In these experiments it is assumed that retrial and feedback probab-
ilities as well as balking probabilities from the orbit are state-dependent and these
parameters satisfies the following conditions: 0 < αr+1 ≤ αr < 1; 0 < βr+1 ≤ βr < 1;
0 < σr ≤ σr+1 < 1. For concreteness, we assume that αr = 1

/
(r+1);

βr = 1
/(

r2 +1
)
; σr = r

/
(r+1).

Below in all experiments (for both models with finite and infinite capacity of orbit)
we assume that K = 3, λ = 40. And in experiments for model with finite capacity of
orbit it is assumed that R = 20.
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In Figure 1 the dependence of similarity norms (5.1) and (5.2) on the rate of r-
calls is demonstrated. Exact values of the steady-state probabilities are calculated
from the corresponding SEE. From these graphs we conclude that the steady-state
probabilities are calculated with high accuracy, i.e. in wide range of changing rate
of r-calls the value of similarity norm (5.1) is close to one (see Figure 1A) while
Euclidean distance (5.2) is small enough (see Figure 1B).

(A)

(B)

FIGURE 1. Dependence norms (5.1) (A) and (5.2) (B) on parameter
η for the model with finite capacity of orbit

It is important to note that when the rate of r-calls increases accuracy of calcu-
lation of the steady-state probabilities decreases, i.e. the norm (5.1) is decreasing
function versus to the rate of r-calls while norm (5.2) increases relative to the indic-
ated parameter. These facts were expected since when the rate of r-calls is small then
the transitions between states of different classes Sr , r = 0, 1, ..., R, in splitting (4.1)
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is rare, i.e. accuracy of proposed formulas becomes very high. Note that values of
norms (5.1) and (5.2) are almost independent on service rate.

Now consider the results of numerical experiments for the model with infinite
capacity of orbit, i.e. when R = ∞. In these experiments we assume that α = 0.3,
β = 0.1, σ = 0.4.

The corresponding results for the dependence of similarity norms (5.1) and (5.2)
on the rate of r-calls are shown in Figure 2.

(A)

(B)

FIGURE 2. Dependence norms (5.1) (A) and (5.2) (B) on parameter
η for the model with infinite capacity of orbit

It can be seen from the graphs that in this model accuracy of calculation of ap-
proximate values of steady-state probabilities is much better than in model with finite
capacity of orbit (see Figure 1). Here exact values of the steady-state probabilities are
calculated from the corresponding SEE by using the Python SciPy software package.
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We choose R to be so large that state probabilities p(b,R) , b = 0,3, are equal to the
machine zero (in our experiments R = 100). In this model values of norms (5.1) and
(5.2) are essentially dependent on service rate, i.e. the higher the service intensity, the
high value of norm (5.1) and lower value of norm (5.2).

6. CONCLUSION

The paper proposes mathematical models of RQwDFB in which the probabilities
of retrial, feedback and balking from the orbit depend on the current number of calls
in the orbit. We studied both models with common finite and infinite orbit capa-
city for retrial and feedback calls and developed exact and approximate methods for
calculating their performance measures.

As directions for further research, it is proposed to study similar models in which
retrial and feedback calls are distinguished. Of particular interest are also the prob-
lems of optimizing RQwDFB regarding the selected criteria for the quality of their
functioning. An important area of further research is also the study of the possib-
ility of using special functions [26] to solve the problems investigated here. These
problems are the subject of special studies.

ACKNOWLEDGMENT

The authors are very grateful to the anonymous reviewer for valuable comments
and suggestions which improved the quality and presentation of the paper.

Conflicts of interest/Competing interests: The authors declare that they have no
conflict of interest.

REFERENCES
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