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Abstract. Neutrosophic set theory as a generalization of the fuzzy set theory and intuitionistic
fuzzy set theory is an effective tool to deal with inconsistent, imprecise, and vague information.
TOPSIS is a multiple attribute method to identify solutions from a finite set of alternatives based
upon simultaneous minimization of distance from an ideal point and maximization of distance
from a nadir point. In this paper, we first develop a new Hamming distance between single-valued
neutrosophic numbers and then present an extension of the TOPSIS method for multi-attribute
group decision-making (MAGDM) based on single-valued neutrosophic sets, where the inform
ation about attribute values and attribute weights are expressed by decision-makers based on
neutrosophic numbers.
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1. SECTION HEAD

Multi-attribute decision making (MADM) as a component of decision science is
a substantial and essential part of daily life which can be applied in various areas,
such as society, economics, management, military, and engineering technology. In
most cases, it is intricate for decision-makers to accurately reveal a preference when
solving MADM problems with imprecise, vague or incomplete information. Under
these conditions, in the past few decades, various types of sets, such as fuzzy sets
[32], interval-valued fuzzy sets [33], intuitionistic fuzzy sets [1, 3], interval-valued
intuitionistic fuzzy sets [2], type 2 fuzzy sets [8, 11], type n fuzzy sets [8], hesitant
fuzzy sets [29] and neutrosophic set theory [26], have been introduced and widely
used in the solution of significant decision-making problems. The neutrosophic set
theory which is an extension of the intuitionistic fuzzy set provides a practical tool to
deal with indeterminate and inconsistent information that exist commonly in the real
conditions. A given neutrosophic set such as N has three independent components,
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namely the truth membership TN(x), the indeterminacy membership IN(x) and falsity-
membership FN(x).

The technique for order performance by similarity to ideal solution (TOPSIS) was
first developed by Hwang and Yoon [11] for solving a MADM problem. It bases upon
the concept that the chosen alternative should have the shortest distance from the
positive ideal solution (PIS) and the farthest from the negative ideal solution (NIS).
In the process of TOPSIS, the performance ratings and the weights of the criteria are
given as crisp values. In recent years a lot of MADM methods [4, 14–16, 30, 31] and
multi-attribute group decision making (MAGDM) methods [6, 17, 19] based on the
extension of the TOPSIS method have been proposed.

In order to evaluate human resources, Jin et al. [14] introduced an extended TOP-
SIS method for MADM based on intuitionistic fuzzy sets where the attribute values
given by decision-makers are the intuitionistic fuzzy numbers. Wei and Liu [31]
presented an extended TOPSIS method based on uncertain linguistic variables to
manage high technological risks. In order to resolve MADM problems, Liu in [16]
presents an extension of the TOPSIS method where the weights and decision values
of the alternatives are considered as interval vague values. Liu and Su [15] pro-
posed an extended TOPSIS based on trapezoid fuzzy linguistic numbers and present
a method for determining attribute weights. Rădulescu. C. and Rădulescu. I. [24] by
modifying the variable ρ in the Minkowski distance measure proposed an extended
TOPSIS method for ranking cloud service providers. Verma et al. [30] proposed
an interval-valued intuitionistic fuzzy TOPSIS method for solving a facility location
problem. Balin [4] proposed an extension of TOPSIS based on interval-valued spher-
ical fuzzy sets to select the most effective stabilizing system for naval ships. In [6]
Chen proposed a symmetric approach to extend the TOPSIS to the fuzzy environ-
ment for MAGDM problems in which the weights of various attributes and ratings of
alternatives in regard to the different attributes indicated by linguistic variables. By
defining a distance formula of generalized interval-valued fuzzy numbers in [17] Liu
proposed an extended TOPSIS method for MAGDM problems where the attribute
values and weights given by different decision-makers are all generalized interval-
valued fuzzy numbers. In this respect, to choose adequate security mechanisms in e-
business processes, Mohammadi et al. [19] proposed a fuzzy TOPSIS method based
on group recommendation.

In this research, we first develop a distance measure to calculate the distance
between single-valued neutrosophic numbers and then present an extended TOPSIS
method for MAGDM under the neutrosophic environment where the attribute values
and weights given by decision-makers (DMs) are represented by single-valued neut-
rosophic numbers (SVNNs). The key of our proposed method is that the different
neutrosophic decision matrices presented by different decision-makers are converted
into a single matrix and create an aggregated group decision matrix. The remaining
of this research is marshaled as follows: in the next section, we will briefly review the
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basic concepts of neutrosophic sets, the operation rules of single-valued neutrosophic
sets, and the distance between them. Section 3 presents a distance measure to calcu-
late the distance between SVNNs and describes the steps of the proposed method to
rank the alternatives. Section 4 gives a numerical example to explain the validity of
the proposed method. The study is concluded in Section 5.

2. PRELIMINARIES

This section provides a brief review of particular preliminaries regarding neutro-
sophic sets, the distance between neutrosophic sets (NSs) and some other important
concepts.

Definition 1 ([22, 27]). A neutrosophic set (NS) N in a domain X(finite uni-
verse of objectives) can be represented by TN : X → ]0−,1+[ , IN : X → ]0−,1+[ and
FN : X → ]0−,1+[ that satisfy the condition 0− ≤ TN(x)+ IN(x)+FN(x)≤ 3+∀x ∈ X .
Where TN(x), IN(x) and FN(x) denote the truth, indeterminacy and falsity member-
ship functions, respectively.

Definition 2 ([20,21]). A neutrosophic set N is contained in another neutrosophic
set M, if and only if:

In f TN(x)≤ In f TM(x),

SupTN(x)≤ SupTM(x),

In f IN(x)≥ In f IM(x),

SupIN(x)≥ SupIM(x),

In f FN(x)≥ In f FM(x),

SupFN (x)≥ SupFM (x) ,

(2.1)

for all x ∈ X .

Definition 3 ([25]). The complement of a neutrosophic set N is denoted by Nc and
can be defined as T c

N(x) = {1}�TN(x), Ic
N(x) = {1}�IN(x) and Fc

N(x) = {1}�FN(x)
for all x ∈ X .

Definition 4 ([18, 28]). Let X be a domain. A single-valued neutrosophic set
(SVNS) N in the domain X can be denoted as N = {x,TN(x), IN(x),FN(x);x ∈ X},
where TN : X → [0,1], IN : X → [0,1] and FN : X → [0,1] are three maps in X that sat-
isfy the condition 0≤ TN(x)+FN(x)+ IN(x)≤ 3 ∀x ∈ X . The numbers TN(x), FN(x)
and IN(x) are the degree of truth, falsity and indeterminacy membership of element x
to N, respectively.

Remark 1. For a SVNS N, the trinary (TN(x), IN(x),FN(x)) is called a single-
valued neutrosophic number (SVNN). For convenience, the trinary (TN(x), IN(x),
FN(x)) is often denoted by (T, I,F).
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Definition 5 ([9, 18]). Let x = (T1, I1,F1) and y = (T2, I2,F2) be two SVNNs. The
mathematical operations between x and y are defined as follows:

I. x⊕ y = (T1 +T2−T1T2, I1I2,F1F2) , (2.2)

II. x⊗ y = (T1T2, I1 + I2− I1I2,F1 +F2−F1F2) , (2.3)

III. λx =
(

1− (1−T1)
λ, Iλ

1 ,F
λ

1

)
,λ > 0, (2.4)

IV. xλ =
(

T λ
1 ,1− (1− I1)

λ,1− (1−F1)
λ
)
,λ > 0. (2.5)

Definition 6 ([10, 13]). The complement of a SVNS N is denoted by Nc and is
defined as T c

N(x) = FN(x), Ic
N(x) = 1− I(x) and Fc

N(x) = TN(x) for all x∈ X . Therefore
[Nc = {x,FN(x),1− IN(x),TN(x);x ∈ X}.]

Definition 7 ([7,12]). Let N = {x,TN(x), IN(x),FN(x);x ∈ X} and M = {x,TM(x),
IM(x),FM(x);x ∈ X} be two single-valued neutrosophic sets, the Hamming distance
between N and M is defined as follow:

dH(x,y) =
1
6
(|TN(x)−TM(x)|+ |IN(x)− IM(x)|+ |FN(x)−FM(x)|) , (2.6)

also, the Euclidian distance between N and M is defined as follow:

dE(N,M) =

√
1
6
((TN(x)−TM(x))2 +(IN(x)− IM(x))2 +(FN(x)−FM(x))2) . (2.7)

Definition 8 ([5, 23]). d(N,M) is said to be a distance measure between neutro-
sophic sets if it satisfies the following properties:

P1: d(N,M)≥ 0.
P2: d(N,M) = 0 if and only if N = M for all N,M ∈ NSs.
P3: d(N,M) = d(M,N).
P4: If N ⊆ M ⊆ O where O ∈ NSs in X then: d(N,O) ≥ d(N,M) and

d(N,O)≥ d(M,O).

3. THE PROPOSED METHOD

In this section, we first propose a new Hamming distance based on the Hausdorff
metric between single-valued neutrosophic numbers. Then we will use this distance
to present a new multi-attribute group decision-making method (MAGDM) based on
the combination of neutrosophic sets and extended TOPSIS method.

3.1. Extended Hausdorff distance

Let X = {x1,x2, ...,xn} be a finite universe of objectives. Consider two neutro-
sophic sets N and M in X where N = {xi,TN(xi), IN(xi),FN(xi);xi ∈ X} and
M = {xi,TM(xi), IM(xi) ,FM(xi);xi ∈ X}. Then denote

d(N,M) =
1
n

n

∑
i=1

[
(|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)

6
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+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
]. (3.1)

Theorem 1. d(N,M) is a distance between two neutrosophic sets N and M in X .

Proof. It is obvious d(N,M) satisfies P1-P3 of Definition 8. Therefore we only
need to prove d(N,M) satisfies P4. To this aim let O = {x,TO(x), IO(x),FO(x);x ∈ X}
be another neutrosophic set. In this case, if N ⊆M ⊆ O then we have:

d(N,M) =
1
n

n

∑
i=1

[
(|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)

6

+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
],

and

d(N,O) =
1
n

n

∑
i=1

[
(|TN(xi)−TO(xi)|+ |IN(xi)− IO(xi)|+ |FN(xi)−FO(xi)|)

6

+
max(|TN(xi)−TO(xi)| , |IN(xi)− IO(xi)| , |FN(xi)−FO(xi)|)

3
].

It’s easy to see

|TN(xi)−TO(xi)| ≥ |TN(xi)−TM(xi)| ,
|IN(xi)− IO(xi)| ≥ |IN(xi)− IM(xi)| ,
|FN(xi)−FO(xi)| ≥ |FN(xi)−FM(xi)| ,

so we have:
(|TN(xi)−TO(xi)|+ |IN(xi)− IO(xi)|+ |FN(xi)−FO(xi)|)

6

+
max(|TN(xi)−TO(xi)| , |IN(xi)− IO(xi)| , |FN(xi)−FO(xi)|)

3

≥ (|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)
6

+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
.

Therefore we can get the inequality d(N,O) ≥ d(N,M). By the same reason we
can get d(N,O) ≥ d(M,O). So d(N,M) satisfies P4 of Definition 8. That is to say,
d(N,M) is a distance measure between neutrosophic sets N and M. �

3.2. The extended TOPSIS method for multi-attribute group decision-making

Suppose that A = {A1, A2, . . . ,An} be a set of alternatives, B = {C1,C2, . . . ,Cm}
be a set of attributes and D = {D1, D2, . . .Dk} be a set of decision-makers (DMs).
Let w̄p =

[
w̄p

1 , w̄
p
2 , ..., w̄

p
m
]

be a vector of weights for attributes determined by DM Dp
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where w̄p
j is a single-valued neutrosophic number denoting the weight of attribute C j

given by decision-maker Dp. 1≤ j ≤ m and 1≤ p≤ k.
Assume that Wp represents the weight of DM Dp. If a decision group has k mem-

bers then WP = 1
k , where Wp ∈ [0,1] and ∑

k
p=1Wp = 1.

Let Xp = [xi j]m×n be a decision matrix of the n alternatives in regard to the m
attributes characterized by decision-maker Dp, shown as follows:

C1 C2 · · · Cm

Xp =

A1
A2
...

An


xp

11 xp
12 ... xp

1m
xp

21 xp
22 ... xp

2m
...

...
. . .

...
xp

n1 xp
n2 ... xp

nm

 , (3.2)

where xi j = (Ti j, Ii j,Fi j) is a single value neutrosophic number for the alternative Ai
in regard to the attribute C j.

The procedure of our proposed method can be summarized as follows:
Step 1. According to the weighting vector w̄p, the decision matrix XP and the multi-
plication operator of SVNSs presented in (2.3) calculate the weighted decision matrix
(WDM) EVP as follows:

C1 C2 · · · Cm C1 C2 · · · Cm

EVp =

A1
A2
...

An


xp

11⊗ w̄P
1 xp

12⊗ w̄P
2 ... xp

1m⊗ w̄P
m

xp
21⊗ w̄P

1 xp
22⊗ w̄P

2 ... xp
2m⊗ w̄P

m
...

...
. . .

...
xp

n1⊗ w̄P
1 xp

n2⊗ w̄P
2 ... xp

nm⊗ w̄P
m

=


yp

11 yp
12 ... yp

1m
yp

21 yp
22 ... yp

2m
...

...
. . .

...
yp

n1 yp
n2 ... yp

nm

 .
(3.3)

Step 2. Based on the obtained WDMs and the weight of decision-makers we can
get the aggregated group decision matrix AG of all decision-makers D1,D2, ...,Dk as
follows:

D1 D2 · · · Dk

AG =

A1
A2
...

An


G11 G12 · · · G1k
G21 G22 · · · G2k

...
...

. . .
...

Gn1 Gn2 · · · Gnk

 , (3.4)

where Gip is a neutrosophic value, representing the sum of alternatives in regard to
DM Dp, and can be calculated as follows:

Gip =WP[y
p
i1⊕ yp

i2⊕ ·· ·⊕ yp
im],

where WP is the weight of decision-maker DP and⊕ is the addition operator presented
in (2.2).
Step 3. Based on the obtained aggregated group decision matrix we know that the
elements Gip are SVNNs. The absolute neutrosophic positive ideal solution (NPIS)



AN EXTENSION OF TOPSIS FOR MAGDM 399

P+and the neutrosophic negative ideal solution (NNIS) P−can be defined as follows:

P+ = (G+
1 ,G

+
2 , ...,G

+
k ),

P− = (G−1 ,G
−
2 , ...,G

−
k ),

(3.5)

where G+
j = (1,0,0) and G−j = (0,1,1), j = 1,2, ..,k. Also we can select the virtual

positive ideal solution and negative ideal solution by selecting the best values for each
attribute from all alternatives as follows:{

G+
j = (max

i
Ti j,min

i
Ii j,min

i
Fi j) = (T+

j , I+j ,F
+
j ),

G−j = (min
i

Ti j,max
i

Ii j,max
i

Fi j) = (T−j , I−j ,F
−
j ),

1≤ j ≤ k. (3.6)

Step 4. Based on the proposed distance measure in (3.1). calculate the distance
between alternative Ai and the elements in the obtained positive ideal solution P+ as
follows:

d+
i =

n

∑
j=1

Gi j−G+
j =

1
n

n

∑
j=1

[

(∣∣∣Ti j−T+
j

∣∣∣+ ∣∣∣Ii j− I+j
∣∣∣+ ∣∣∣Fi j−F+

j

∣∣∣)
6

+
max

(∣∣∣Ti j−T+
j

∣∣∣ , ∣∣∣Ii j− I+j
∣∣∣ , ∣∣∣Fi j−F+

j

∣∣∣)
3

], (3.7)

also, the degree of distance between the alternative Ai and the elements in the obtained
negative ideal solution P− can be calculated as follows:

d−i =
n

∑
j=1

Gi j−G−j =
1
n

n

∑
j=1

[

(∣∣∣Ti j−T−j
∣∣∣+ ∣∣∣Ii j− I−j

∣∣∣+ ∣∣∣Fi j−F−j
∣∣∣)

6

+
max

(∣∣∣Ti j−T−j
∣∣∣ , ∣∣∣Ii j− I−j

∣∣∣ , ∣∣∣Fi j−F−j
∣∣∣)

3
], (3.8)

where 1≤ i≤ n,1≤ j≤ k.
Step 5. Compute the relative closeness coefficient to choose the most appropriate
and efficient decision by ranking the alternatives as follows:

R∗i =
d−i

d+
i +d−i

,1, ...,n. (3.9)

Step 6. Utilize the relative closeness coefficients to sort the alternatives. The bigger
R∗i is, the better alternative Ai is.

4. ILLUSTRATIVE EXAMPLE

In this section, an example based on TOPSIS method for MAGDM under the neut-
rosophic environment is used as a demonstration of the applications and the effect-
iveness of the proposed decision-making method.
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Suppose that there is a panel to compare four car companies A1,A2,A3 and A4 as
the alternatives. Also assume that three attributes such as “Quality (C1)”, “Design
(C2)” and “Price (C3)”. A committee of three decision-makers D1,D2 and D3 has
been formed to rank the alternatives and choose the best company. Assume that the
decision values of company alternatives A1,A2,A3 and A4 in regard to the attributes
“Quality”, “Design” and “Price” given by the decision-makers D1,D2 and D3 based
on single-valued neutrosophic numbers, as shown in Table 1, Table 2 and Table 3,
respectively.

TABLE 1. The decision values given by D1

Quality Design Price
A1 (0.1771,0.5573,0.5013) (0.1079,0.3390,0.4857) (0.1932,0.6289,0.9274)
A2 (0.8296,0.7725,0.4317) (0.1822,0.2101,0.8944) (0.8959,0.1015,0.9175)
A3 (0.7669,0.3119,0.9976) (0.0991,0.5102,0.1375) (0.0991,0.3909,0.7136)
A4 (0.9345,0.1790,0.8116) (0.4898,0.9064,0.3900) (0.0442,0.0546,0.6183)

TABLE 2. The decision values given by D2

Quality Design Price
A1 (0.3433,0.5493,0.9542) (0.6465,0.7565,0.2815) (0.8352,0.9727,0.5906)
A2 (0.9360,0.3304,0.0319) (0.8332,0.4139,0.2304) (0.3225,0.3278,0.6604)
A3 (0.1248,0.6195,0.3369) (0.3983,0.4923,0.7111) (0.5523,0.8378,0.0476)
A4 (0.7306,0.3606,0.6627) (0.7498,0.6947,0.6246) (0.9791,0.7391,0.3488)

TABLE 3. The decision values given by D3

Quality Design Price
A1 (0.4513,0.5038,0.3610) (0.2815,0.4494,0.0839) (0.1386,0.1892,0.4035)
A2 (0.2409,0.4896,0.6203) (0.7311,0.9635,0.9748) (0.5882,0.6671,0.1220)
A3 (0.2409,0.8770,0.8112) (0.1378,0.0423,0.6513) (0.3662,0.5864,0.2684)
A4 (0.8562,0.3531,0.0193) (0.8367,0.9730,0.2312) (0.8068,0.6751,0.2578)

Therefore the corresponding decision matrices X1,X2 and X3 can be shown as follows,
respectively:

C1 C2 C3

X1 =


(0.1771,0.5573,0.5013),(0.1079,0.3390,0.4857),(0.1932,0.6289,0.9274)
(0.8296,0.7725,0.4317),(0.1822,0.2101,0.8944),(0.8959,0.1015,0.9175)
(0.7669,0.3119,0.9976),(0.0991,0.5102,0.1375),(0.0991,0.3909,0.7136)
(0.9345,0.1790,0.8116),(0.4898,0.9064,0.3900),(0.0442,0.0546,0.6183)

 ,
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C1 C2 C3

X2 =


(0.3433,0.5493,0.9542),(0.6465,0.7565,0.2815),(0.8352,0.9727,0.5906)
(0.9360,0.3304,0.0319),(0.8332,0.4139,0.2304),(0.3225,0.3278,0.6604)
(0.1248,0.6195,0.3369),(0.3983,0.4923,0.7111),(0.5523,0.8378,0.0476)
(0.7306,0.3606,0.6627),(0.7498,0.6947,0.6246),(0.9791,0.7391,0.3488)

 ,

C1 C2 C3

X3 =


(0.4513,0.5038,0.3610),(0.2815,0.4494,0.0839),(0.1386,0.1892,0.4035)
(0.2409,0.4896,0.6203),(0.7311,0.9635,0.9748),(0.5882,0.6671,0.1220)
(0.2409,0.8770,0.8112),(0.1378,0.0423,0.6513),(0.3662,0.5864,0.2684)
(0.8562,0.3531,0.0193),(0.8367,0.9730,0.2312),(0.8068,0.6751,0.2578)

 .
Suppose that the attribute weights given by three DMs D1,D2 and D3 are shown as
follows:

C1 C2 C3
W1 = [(0.2834, 0.3900, 0.8344),(0.8962, 0.4979, 0.6096),(0.8266, 0.6948, 0.5747)] ,

C1 C2 C3
W2 = [(0.3260, 0.8844, 0.6748),(0.4564, 0.7209, 0.4385),(0.7138, 0.0186, 0.4378)] ,

C1 C2 C3
W3 = [(0.1170, 0.2462, 0.5466),(0.8147, 0.3427, 0.5619),(0.3249, 0.3757, 0.3958)] .

Furthermore, because the decision group in this example has three members we can
consider W1 =W2 =W3 =

1
3 .

The proposed method is currently applied to solve this problem and the computational
procedure is summarized as follows:

Step 1. Construct the weighted decision matrices EV1,EV2 and EV3 as follows:

C1 C2 C3

EV1 =


(0.0502,0.7300,0.9174),(0.0967,0.6681,0.7992),(0.1597,0.8867,0.9691)
(0.2351,0.8612,0.9059),(0.1633,0.6034,0.9588),(0.7405,0.7258,0.9649)
(0.2173,0.5803,0.9996),(0.0888,0.7540,0.6633),(0.0819,0.8141,0.8782)
(0.2648,0.4992,0.9688),(0.4389,0.9530,0.7619),(0.0365,0.7115,0.8377)

 ,

C1 C2 C3

EV2 =


(0.1119,0.9479,0.9851),(0.2951,0.9320,0.5966),(0.5962,0.9732,0.7698)
(0.3052,0.9226,0.6852),(0.3803,0.8364,0.5679),(0.2302,0.3403,0.8091)
(0.0407,0.9650,0.7908),(0.1818,0.8583,0.8378),(0.3942,0.8408,0.4646)
(0.2382,0.9261,0.8903),(0.3422,0.9148,0.7892),(0.6989,0.7439,0.6339)

 ,
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C1 C2 C3

EV3 =


(0.0528,0.6260,0.7103),(0.2293,0.6381,0.5987),(0.0450,0.4938,0.6396)
(0.0282,0.6153,0.8278),(0.5956,0.9760,0.9890),(0.1911,0.7922,0.4695)
(0.0837,0.9073,0.9144),(0.1122,0.3705,0.8473),(0.1189,0.7418,0.5580)
(0.1002,0.5124,0.5553),(0.6817,0.9822,0.6632),(0.2621,0.7972,0.5516)

 .

Step 2. Based on the obtained WDMs EV1,EV2, EV3 and addition operator of SVNN
shown in (2.2) construct the aggregated group decision matrix of all decision-makers
as follows:

D1 D2 D3

AG =


(0.0930,0.1442,0.2368),(0.2491,0.2866,0.1508),(0.1010,0.0658,0.0907)
(0.2780,0.1257,0.2794),(0.2228,0.0875,0.1049),(0.2274,0.1586,0.1281)
(0.1151,0.1187,0.1941),(0.1748,0.2300,0.1026),(0.0944,0.0831,0.1441)
(0.2009,0.1128,0.2061),(0.2830,0.2101,0.1485),(0.2629,0.1337,0.0677)

 .
Step 3. Determine the virtual NPIS and NNIS as:

G+
j =

[
(0.2780,0.1128,0.1941),(0.2830,0.0875,0.1026),(0.2629,0.0658,0.0677)

]
,

G−j =
[
(0.0930,0.1442,0.2794),(0.1748,0.2866,0.1508),(0.0944,0.1586,0.1441)

]
.

Step 4. Calculate the distance of each alternative from NPIS and NNIS, respectively,
as follows:

d+
1 = 0.3028, d+

2 = 0.1377, d+
3 = 0.2715, d+

4 = 0.1435,
d−1 = 0.1148, d−2 = 0.2799, d−3 = 0.1246, d−4 = 0.2397.

Step5. Based on (3.9), the relative closeness coefficient of each candidate can be
calculated as follows:

R∗1 = 0.2748, R∗2 = 0.6703, R∗3 = 0.3146, R∗4 = 0.6255.

Therefore, the ranking order of the four alternatives is A2,A4,A3 and A1. Obviously,
the best selection is A2.

Remark 2. In recent years, a lot of extended TOPSIS methods have been presented
to deal with MAGDM problems that only consider crisp or incomplete information
on their calculation. But until now there hasn’t been any TOPSIS method to consider
and handle indeterminate and inconsistent information that exists commonly in real
decision-making problems. In order to overcome this drawback, this paper for the
first time presents an extended TOPSIS method for MAGDM problems based on a
single-valued neutrosophic set. Although by using the neutrosophic sets we are faced
with a large class of problems the proposed method has less calculation and is more
flexible for decision making in the real world.
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5. CONCLUSION

In general, decision-making problems are included uncertain and imprecise in-
formation, and neutrosophic sets can depict this kind of information easier and bet-
ter. Because TOPSIS is an important decision-making method, and the neutrosophic
sets can handle the incomplete, indeterminate and inconsistent data, it is important
to establish an extended TOPSIS method based on NSs. In this paper, we first de-
velop a distance measures which is an effective and simple tool to measure the dis-
tance between two single-valued neutrosophic numbers and then present an extended
TOPSIS method to deal with multi-attribute group decision-making (MAGDM) un-
der neutrosophic environment, where decision-makers express the attribute weights
and attribute values for alternatives by using neutrosophic numbers. Although the
proposed method presented in this paper is illustrated by a personal selection prob-
lem, however, it can also be applied to problems such as information project selection,
material selection and many other areas of management decision problems.
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