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Abstract. In this paper, all normal extensions of the minimal operator associated with the singu-
lar degenerate linear differential expressions for first order in the Hilbert space of vector-functions
are investigated in terms of boundary values. As well, it analyses the spectrum parts of any nor-
mal extension.
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1. INTRODUCTION

A densely defined closed operator T : D(T) C H — H in a Hilbert space H is
said formally normal if D(T) C D(T*) and ||Tx|| = ||T*x|| for all x € D(T). This
definition is equal to (Tx,Ty) = (T*x,T*y) for all x,y € D(T) C D(T*). A formally
normal operator 7 in H is a normal operator such that D(T') = D(T*). An unbounded
normal operator was given the first satisfactory description by Neuman [25]. The
fundamental results in the normal extension of unbounded formally normal operators
in a Hilbert space are attributable to Kilpi [14-16] and Davis [7]. Besides, Biriuk
and Coddington [4], Coddington[6], Stochel and Szafraniec [20-22] developed it as
a general theory, and advanced it. Some results of this idea can also be found in
[10-13,27].

Differential operator analysis is partly inspired by problems in physics, geometry,
applied mathematics, quantum mechanics, quantum field theory, and so on [17, 24,

]. In addition, several authors [1,2,9, 18, 19,23] have studied the theory of the
degenerate Cauchy problem in Banach spaces. Carrol and Showalter [5] performed
the first research in this area, which has many important theoretical results and ap-
plications.

In this study, we give the boundary conditions for any normal extension of first
order singular operator with a degeneration. We consider singularities to occur only
at the end points of the domain of the Hilbert valued functions in L*(Hj,(—e0,a)) @
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L*(H,, (b, +o0)). The difference of this study from [27] is that the differential expres-
sion is degenerated.

Throughout the article, we use the notations Range(T'), Ker(T), 6.(T), 6,(T) for
the range of T, the kernel of T, the continuous spectrum of 7" and the point spectrum
of T, respectively.

2. NORMAL EXTENSIONS OF THE MINIMAL OPERATOR

Let H, and H, be separable complex Hilbert spaces, Ay : H, — Hy, be linear bounded
positive selfadjoint operators with closed range and KerAy # {0} and By : Hy — Hy
be linear bounded selfadjoint operators for k = 1,2. Consider the Hilbert space of
vector-functions

j_[ = Lz(Hla (—oo’a)) @LZ(H% (b7 +°°))a a<b.
with the inner product given by for all u(r) = (u;(¢),u2(2)),v(t) = (vi(t),v2(t)) € H
a

—+oo
((0) v ()= [ 0 (1) 01 ) i+ / (126)v2 1))

—o0

where u; (t),v1(t) € L*(Hy,(—o0,a)) and uy(t), v(t) ELZ(HZ,(b +o0)). We deal with
)=

the linear degenerate differential expression for u(z ur(t)) € H
A (1)) +Biu(t), t
u(ry) = § A O) +Bun )’ = @1
(Auz (1)) + Baua(t), t>b

where dim Range(A;) = dim Range(A;) > 0 and (—1)By > 0, for k = 1,2. Formally
adjoint of this differential expression in the space # is in the form

)= Awi (@) +Bivi(t), t<a
l+(v(t>)_{—(Az\/z(l‘))/—l-Bz\/z(l‘), ts b (2.2)

where v(t) = (vi(2),v2(t)) € H.

Now, consider the operator L, on the dense linear manifold in #

Dy :={u(t) € H : Z(Pz )iy @i(t) fi = (@1 (1) fir, 92 (1) fi2),

91 (1) € G5 (—o0,a), 0in(2) GCO( o), fik € Hr, k=1,2,n € N}

and Lyu(t) := I(u(t)). L{, has closure because the domain of L{; contains Df,. We say
that the closure operator of L{, in # is called the minimal operator associated with
the linear differential expression (2.1) and denote by L.

Additionally, the minimal operator L(J)r in # generated by the linear differential
expression (2.2) can be given. The adjoint operator of L(J)r (Lo) in H is called the
maximal operator generated by (2.1) ((2.2)) and is denoted by L (L") [3, 8]. We note
that if 7 is a closable operator on a Hilbert space H and S : H — H is a bounded
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operator, then T +S =T+ S and D (T +S) = D (T) where T is the smallest closed
extension of 7'. In this fact and [27] it can be easily seen that Ly C L, L(J)r cLT,

D(Ly) ={u= (u1,u2) € H : (Ayu1)’, (Aoun)") € H, uy(a) € KerAy, uy(b) € KerAy}

and D(L) = {u = (ul,uz) cH: ((Alul),,(Azuz),) S ,'7'[}
Also, we denote Hyy := KerAy, Hy := RangeAy, Ay = A\Hkl : Hyy — Hjp and
Byj = B]ij :Hyj — Hyj, fork=1,2,and j =0, 1.

Theorem 1. The following statements are equivalent:

(i) Lo is a formally normal operator on H.
(ii) AgBr = BiAy, k=1,2.

Proof. (i) — (ii) Let Ly be a formally normal operator on #, then for each
u(t) = (u1(t),uz(t)),v(t) = (vi(t),v2(t)) € D(Ly) C D(L;) the following equality
holds

(Lou(t), Lov(t)) 4y — (Lou(t), Lov(t)) 5
=2 [ (A1 (1)) Bvi(0) oy oy B (0, A1 (0)) o (o
- ((A20200))'B22(0) oy 31y + (B220), (A2200)) s, 2oy | =0
Also, if it is used before the inequation for e u(t),ev(t) € D(Ly), then
((B1A1 = A1B1)ur (1),v1 (1)) 125y (—oosa)) T (B2A2 —A2B2)ua (1), v2(1)) 1241, (b, 400y = O
Since D(Ly) is dense in #, we have
AuBy = BiAg fork = 1,2.
(if) — (i) In this case, since By are bounded linear operator
By (Aguy (1)) = (BrAguy (1))’

is true for k = 1,2. Therefore,from the first equation and this result it is can be
obtained that L is a formally normal operator. g

Theorem 2. Let AyBy = BiAg, k = 1,2 be hold. L, is any normal extension of the
minimal operator Ly iff the domain of L, is equal to a restriction of D(L) satisfied the
following boundary condition

AY2u(b) = WA\ u(a),
Alu(a) € Ker(—B1)"/%, AYu(b) € Ker(B,)"/?

where W : H\y — Hj| is a unitary operator. Moreover, the unitary operator W is
defined uniquely by the extension Ly, i.e. L, = Ly.
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Proof. Let L, be a normal extension of the minimal operator Ly. In this case, we
have

(Lota(r),u(t)) gy — (ult), Liyu(t)) o = 1A} *ula) ||, — 145 *u(b) |3, = 0.

for all u € D(L,) = D(L};). Therefore, there is an isometric operator WA}/ 2u(a) =
A;ﬂu(b), u € D(L,). Moreover,

H, = {u(a) € Hy :u(t) € D(Ly)},

Hp, ={u(b) € Hy :u(t) € D(L,)}
are subspaces of H; and H,, respectively. We claim that H, = H; and H, = H>.
Otherwise, there exist a nonzero element f; € H- or f» € HbL and it can be defined
two functions such that ui(t) = (¢'Aj]' f1,0) and us(t) = (0,e7'Ay f2) in #.
Moreover, for all u € D(L,)

(Lnte(2), s (1)) g — (u(t), Lyug (£)) 5 = (Aru(a), ui(@)) g, — (Aoua(b), ux (b)), = 0

is true. This result implies ux € D(L}), but ux ¢ D(L,), k = 1,2. Because L, is a
normal operator, it is a contradiction. Therefore, W : Hj, — H3; is a unitary operator
and determined uniquely by the extension of L,.

On the other hand, L, is a normal extension operator of Lo, for every u(t) € D(L,)
the following inequalities hold

(Lnta(t), Lnta(2)) 5 — (Lyua(t), Lyu(2)) 5

—2 [(BIA}/Zu(a),A}/Zu(a))H - (BZA;/Zu(m,A;”u(b))H }
1 2
= =2[[(=B1A1)"2u(a) |, —2Il(B2A2)"*u(b) |, = 0.
Hence, u(a) € Ker(—B;)'/? and u(b) € Ker(B,)'/>.
Conversely, suppose that W : Hj; — Hp; is a unitary operator and the boundary
conditions

AY?u(b) = WAV u(a),u(a) € Ker(—By)"/2, u(b) € Ker(B,)'"/>

are satisfied. In this case, the adjoint operator Ly * is generated by the differential-
operator expression (2.2) and D(Ly ) = D(Lw ™). Also, the other condition of normal
extensions in # can be easily obtained. ([l

Corollary 1. If any of B| or B, is a one to one operator, then there isn’t any
normal extension of Ly in #.

Corollary 2. If there exists a normal extension of Ly in H, then

dimKer(—Bi;)"/? = dimKer(By;)'/? > 0.
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3. THE SPECTRUM PARTS OF NORMAL EXTENSIONS

In this section, the spectrum parts of any normal extension Ly of minimal oper-
ator Ly generated by (2.1) in H and boundary conditions with the unitary operator
W :Hy — Hy and

AYu(b) = WA u(a),
A}/zu(a) € Ker(—Bl)l/z,Aé/zu(b) € Ker(B;)'/?
will be investigated. Also, it will be considered that 0 € 6,((—Bi1)'/?) N6 ,((Ba1)'/?).

Theorem 3. Letting Ly be a normal extension of Ly, then the point spectrum
6,(Lw) of Lw is the following form

p(Lw) = 6p(B10) UG,(Bxo).

Proof. Consider a problem for the point spectrum for the normal extension Ly,
ie.
Lyu(t) =u(t), u(t) € D(Lw), k€ C.

It can be written u(t) = (u;(2),uz(t)) = (u10(t) + w11 (1), u20(t) + u21 (t)), wii(t) €
Hy, k=1,2,i=0,1. Also, since the restriction operator Ay; on Hyj, k = 1,2 have a
bounded inverse, u;, (1) exists. The solution of this problem in A’

upi (1) = eI BIN < fi € Hyy,
() = e B NED) g 5 b € Hy,
Aé/zfz = WA%ﬂfl,
Biujo(t) = Auyo(t), Bauao(t) = Auno(1).
Also, Ai/zfl € Ker(B)) and Aé/zfz € Ker(B;), from Theorem 1 it must be
uri (1) = ML <a fi € Hy,
w1 (t) = M 0 5 b f € Hy,
A2 f=wa’ g,
Biuio(t) = Auyo(t), Bauao(t) = Auno(t).
But (u11(t),u21(2)) € H iff fr =0, k= 1,2, as a result of this
6p(Lw) = 6,(B10) US,(Bao).
O

Theorem 4. Letting Ly be any normal extension of Ly, then the continuous spec-
trum 6.(Lw ) of Ly is in form

GC(Lw) = iRUGC(Bl()) UGC(BZ()).
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Proof. It is known that the spectrum of normal operators [8],
o6(Lw) C 6(ReLw )+ ic(ImLy ),

where ReLy and ImLy are real part and imaginary part of Ly. If A = A, + i\
€ 6.(Lw), then A, € 6(ReLy ) and A; € 6(ImLy ).
Let us deal with the solution of the following problem of the normal extension Ly,

Lwu(t) =Mu(t)+ f(t), u(t) € D(Lw), f(t) € H, L € C.

For u(t) = (u1(t),uz(t)) = (u11(t) + ur0(t),u21 (t) + u20(2)), uri(t) € Hy,
k=1,2,i=0,1
Ay (8) + Bruny (1) = Many (6) + fur (8), un (¢), fur () € L2 (Hi, (—o0,a)),
Ay (£) + Baun (1) = Muay (£) + far (¢), uaa (¢), f1 (¢) € L* (Han, (b, 20)),
AV 11 (b) = WAV w11 (), ury (a) € Ker(—B1)"/2, up1 (b) € Ker(B,)'/2,
Biouio(1) = Muio(1) + fio(1), w10(1), fio(r) € L (Hio, (—e,a)),
Boouao(t) = Mo (t) + f1o(t), uzo(t), fo(t) € L*(Hag, (b, )).

In this case, when A, # 0 or A, € 6.(Bjg) UG.(Byo) there isn’t any solution of this
problem. Also, because of the boundary conditions and Theorem 1 the general solu-
tion is in the following form

a
up (t) = Ml =9 f —/e_A?‘l(B‘_D“")(I_S)Aﬁlfu (s)ds, t <a, fi € Hyy,

t
Uzl (t) = eikiA;ll (tib)fz + /efAzill (Bzfix")(tfs)Agllfﬂ (S) ds, t > b, fr € Hyy.

On the other hand, there exists a function

f(t) _ (e(1+iki)Afll (tfa)flxje(flJriki)Az’ll (tfb)fz*)

Y

Ay fi € Ker(Bu), k=1,21in 7{, then
a
Uil ([) = ei}\-iAil (l—a)fl _ /ei}\‘[Afll (l—a)eAl’l1 (s—u)Al—llfl*ds
— €ik{A;11(l_a)f1 _'_eiX;Al*ll([—a) (eA (t a) )f] L 1<a, fl}\‘ c Hll’
t
oy (1) = M D) fy 4 / Ml (D) gl =P g1
b

?\.,'A71 t—b
— el 21 ( )f27\, —

i

eMiAn 1=0) (=AN(=b) _ Y2 £ S b £y € Hyy.
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Also, u(t) = (uy () ,uz1 (£)) € D(Lw ) iff £ = fi . £ = —fo and AY 2 5 = WA/

Because of this result for oo € C\{1}, we have

i

f(x(t) — (6(14’17\.,')141711 (l‘fa)f'l*7 ae(*l‘l’i}\.,‘)Agll (l‘*b)‘fz*)7

where A, fi € Ker(By), for k = 1,2. There is no solution Lyu(t) = iAu(t) + fo(t)
in D(Ly ). This result completes of the proof. O
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