Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 22 (2021), No. 2, pp. 625-638 DOI: 10.18514/MMN.2021.3325

AN EFFICIENT METHOD FOR SOLVING SECOND-ORDER
DELAY DIFFERENTIAL EQUATION

ERKAN CIMEN AND SEVKET UNCU
Received 29 April, 2020

Abstract. In this paper, the initial-value problem for a linear second order delay differential
equation is considered. To solve this problem numerically, an appropriate difference scheme is
constructed by using the method of integral identities which contains basis functions and inter-
polating quadrature rules with weight and remainder term in integral form. Besides, the method
is proved to be first-order convergent in discrete maximum norm. The numerical illustration
provided support the theoretical results. Finally, the proposed method is compared with the im-
plicit Euler method.
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1. INTRODUCTION

Delay differential equations (DDEs) are very important and useful in many areas
of science and engineering, for instance, physics, biomathematics, medicine, eco-
nomics, chemistry, etc [7, 8, 13, 16]. Firstly, DDEs occur in modeling effects and in-
teractions between cancer cells, namely tumor population [17]. In engineering, time
delays often arise in many life systems like sensors and dynamical processes [14].
Additionally, DDEs can be used in modelling in bridge constructions, traffic cont-
rol, robot technology, physiological processes and diseases, climate systems, signal
transmission [2, 12, 13].

Besides, metal cutting processes [9], bistable device [22], the controlled flexible
structures [23] are modelled by second order DDEs. For example, the damped li-
near oscillator with delayed velocity feedback described by the second order delay
differential equation

X(t) +ex! (t) + kx(t) = vx(t — ) +wx/(t — 1) + fcos(Ar),

where ¢ > 0, kK > 0, v and w are constants, representing the damping coefficient,
the stiffness coefficient, the feedback gains of displacement path and velocity path,
respectively and 7T is constant time delay, f is the external force (for details, see [10]).
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Motivated by the above works, we consider the following initial value problem
with delay in the interval = [0, T]:

Lu:=u"(t)+a(t)u' (t) +b(t)ud (t —r) +c(t)ult —r) = f(t), rel, (1.1)

u(t)=@(t),  t€l; uW'(0)=vy (1.2)
where I = (0,T] = U1, [, ={t :rp-1 <t <rp}, 1 <p<mand ry=sr, 0 <
s < m, and Iy = [—r,0] (for simplicity we suppose that T /r is integer; i.e., T = mr).

a(t) > o> 0,b(t), c(t), f(t) and @(r) are sufficiently smooth functions on I and Iy,
Y is a real number, r is a constant large delay. The existence and uniqueness of a
solution to second order DDEs is discussed in [3,5,6, 11,13, 24].

In this study, the delay term r is chosen as large. Because if r is taken as small, it
can be easily reduced to ordinary differential equation with the help of Taylor series,
which such equations take place a lot in the literature. However, the interest in large
delay equations has been remarkable in recent years.

Even if this problem is linear, it may not always be possible to find the exact
solution. Therefore, it is important to develop effective numerical methods to solve
DDEs. In the past two decades, several numerical methods have been proposed for
the second order DDEs problem including finite difference method [4,20], two-point
block method [18], Adams—Moulton method [19], variational iteration method [15],
Legendre-Gauss spectral collocation method [25], initial value method [21].

The aim of this study is to present a more effective numerical method than classical
methods such as Euler and Runge—Kutta. This method to be used for the numerical
solution of (1.1)—(1.2) consists of a finite difference scheme given on a uniform mesh.
The scheme is constructed by the method based on using appropriate quadrature rules
with the weight and remainder terms in integral form. These results in a local trun-
cation error containing only first derivative of the exact solution and hence facilitates
examination of the convergence. This method of approximation has the advantage
that the schemes can also be more effective than classical schemes such as Euler in
the case when the continuous problem is considered under certain restrictions.

The remainder of this paper is as follows. We put forward some important proper-
ties of the exact solution in Section 2 and introduce the finite difference discretization
in Section 3. In Section 4, we analyze the error estimates for the approximate solution
and prove the convergence in the discrete maximum norm. In Section 5, we present
numerical results which confirm the theoretical analysis. The paper ends with a sum-
mary of the main conclusions.

Throughout the paper, C denotes a generic positive constant. Some specific, fixed
constants of this kind are indicated by subscripting C and C.

2. PROPERTIES OF EXACT SOLUTION

Here, we give some properties of the exact solution of (1.1)-(1.2), which are
needed in the analysis of appropriate numerical solution. For any continuous function
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g(t), we use
T
= = t = = t)|dt
el = lgllos = max gl Nl =Nl = [ letolan,
18]l = ll8lles s, » Iglli, =lgllig,,  0<p<m.

Lemma 1. Ifa, b, ¢, f € C(I) and ¢ € C'(Iy), then for the solution u of the problem
(1.1)—(1.2) we have

Jull., , <Cp, 1< p<m, 2.1)
Hu/HDO,p S 6}’7 1 S p S m, (22)
where
Co=o (WAl + 1Bl [0 + el 9lleo])s
Cr= M+ [l Fllcy + 118l [0 o+ 1€l 1911 0],
Cp = (Cpr +Ifllyp + 10l , Cot +lelly ,Cpm1)s 2<p<m,
Co=Cp 1+ |l + bl ,Cpi+llclle ,Cer],  2<p<m.

Proof. The proof is by induction in p. First, for ¢ € I,,, from (1.1) we have

— [ a(s)ds ! —j'a(s)ds
W) =i, e v+ [ FEe 23
Tp—1
t g t s !
= | als)ds — Ja(m)dn
u(t)—u/(rpfl)/e = da+/ds/F(§)e e e
Fp—1 Fp—1 Fp—1
4 s
, p— Jalds / F —Jamyn
—u(rp_l)/e Pl d§+/d§F(§)/e E ds 2.4)
Ip—1 rp—1 g“;

with
F(t)=f(@t)=b@)u' (t—r)—c(t)u(t—r).
Now, for p =1 (¢ € I}), from (2.4) we have

t

Cfoas ~ Jam)d
i <) [e o Cags [agre) fo 2 as
0

0

t
< [ e
0
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t

+ (17 @1 D@1 &= )] e &) [e2as
g

0
<ol y(1-e%)

t

+a’1/[|f(§)\ + 15 E)| | &= r)|+[e(§) lu(§ — )I|](1 —e %)) dE,.
0
So, we get

()] < o [+ 11+ 151 |91 g+ el 1@l o] = Cr.

Next, from (2.3), we have
W] < [+ [17 @1+ @I € )|+ 1@ G~ nllle g
0

< 1+ 0 M+ Bl [0+ el 191l (1 = ) =,

thus the inequalities (2.1) and (2.2) are valid for p = 1. And now, let the inequalities
(2.1) and (2.2) be true for p = k. That is,

Ci= 0 [Coot I+ 1B 4 Cor + el e |

Ci=Crot + 0 || Flloos+ 10l eo g ot + ll€llea s Cer .
Fort € Iy, because of (2.4) we get

Tk

u(t)] < \u/(rk)\/e_“(é"k)d§+/d§\p(§)‘/e—a(s—é)ds
143 g

< (171 ‘u’(rk)‘ (1 _ef(x(tfrk))

t

ot [UF@I+ 6@ | )| +le @) g~ ) (1 - e D)t

Tk
<o 'Cita! AN g1+ 1811 gy Cr - llelly gpr Gl
and from (2.3) we have
‘u/(t)‘ < ‘u/(rk)‘e_a(t_r")

+ [Ur©I+1bE) [ (E=n)] +le @)l lu(—r)he I

< Cy +(x71[‘|f||oo7k+1 + Hb”oo7k+16k+ HCHWJ<+1 Cel(1 - eia(tirk)) =Cit1
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Therefore the inequalities (2.1) and (2.2) hold for p = k+1. ]

3. THE DIFFERENCE SCHEME AND MESH
We further denote by @y, the uniform mesh on I:
oy, = {ti=ih,i=1,2,....No, h=T /N, = r/N}
which contains N mesh points at each subinterval /, (1 < p <m):
oy, ={ti: (p—1)N+1<i<pN}, 1<p<m,

and consequently
m
ay, = [ J oy,
p=1

For any mesh function g(¢), we set g; = g(#;) and y; denote by an approximation of
u(t) at t;. We use the notation

o _ 8T 8-l o 8i+1 & gl
gt,t h ) gt,l h
8+l —8i-1 it —Zgi+gi71
g%i - 2 ) 8iti — h2 )
= = < p<m.
HgHoo7p ”gH‘x’:(‘)Np llzla%);,‘gl‘ 1 —p—m

To construct the numerical method, we begin with the identity

[ L=t [T Fewi)de, 1< i< N, 3.1

ti—1 ti—1
with basis functions

\I/l(l)(l)v fio <t <t

yi(r) = \Ifl@(f)a 1 <t <tiyr,
0, otherwise,

where
ft, ] (m)dn gg
j;:’ l e[ a(m )dnds
YHrl dn
wl@) ) =1|1- f J ds ef,?a(t)dr’

st o alnn g

are the solutions of the following problems, respectively:

{ Vi (1) = (a()wi(t)) =0, i <t<t;,
Vilti-1) =0, wi(ti) = 1,
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{ Vi (1) = (a()yi(t)) =0, <t <ti,
yi(ti) = 1, Wi(tis1) = 0.
The relation (3.1) is rewritten as

tiv1 tit1
s / O di +h / Yl (1) wi(t)di

+h / "(t —r)yi(t)dt +h" " c(t)u(t —r)y;(t)de

i1
tiv1

=h~" [ fOwi(n)dr (3.2)

i1

for t € (ti—1,ti+1). Using the formulas (2.1) and (2.2) from [I] on each interval
(ti—1,4;) and (;,¢;41) taking into account (3.2) we have the following precise rela-
tion

Eui = Aiu;m —I—Biu;,,,-,N —i—C,u(t) .+Diu(t) N +Eu_n=F +Ri7 1<i< NOa
)i

with
Ai= —;/f,.hla<r>wl”<t>dr+; O (1),
Bi=—5 [ 1)+ (=)@l 0
3 [ O+ e 0

F=i [ e+t _f()”()dr,

R":hl/t.t?ld’ {C(r)m(ﬁ ff,< (Wil >>] / -k (33)

ti—
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On the other hand, in order to define an approximation for the initial condition
(1.2), we begin with the identity

[y @de =" [ pow® @,

with

t [Mam)d
W(O) (l‘) — (1= ftto efst] (Mdn g¢ e.ﬁi)a(T)dT’
f;()l efs a(ﬂ)dnds

which is the solution of the problem
WO f WO~ @O @) =0, w<r<n
v (1) =1, y (1) =o0.
In a similar way as above, we have
Aottro = By + 1,

where

t
Ag=h"" <1+ / la(t)\y(o)(t)dt>,
fo
11

t _
Bo=h v+ ' [ FewO0)di—h uy / (0w (1)di
Io

To

_hflu,y_N /tl [b(1) —l—tc(t)]q;(o) (t)dt,

fo

O = [ anbley® (1) / (- Kol B

fo 0

o [Mar o) [l 6 - Ko E)dE 64)

o 1o
Consequently, we propose the following difference scheme for approximating the
problem (1.1)—(1.2):

by = Ay i+ Biyin + Ciy? T Diy(t) o~
yi = OQj, —N<i< 0; Ey() EA()y[’Q = BQ. (36)

N+Eiyi7N =F, I1<i<MNy, (3.5)

Moreover, we can easily propose the implicit Euler method as an alternative to the
approximate solution of the problem (1.1)—(1.2):

byi=yuitany by Aeyin=fi,  1<i<N, (3.7
yi=@i,  —N<i<O0; lyo =yr0 =Y. (3.8)
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4. CONVERGENCE ANALYSIS OF THE METHOD

To analyze the convergence of the method, we define the error function z; = y; — u;,
0 <i < Ny, which is the solution of the following discrete problem

Kzi:Ria 1 SISN0> (41)
=0, —No<i<O0; lzo = -, (4.2)
where the truncation errors R; and 0 are given by (3.3) and (3.4), respectively.

Lemma 2. Ifa, ¢, f € C(I), b € C'(I), and ¢ € C'(Ly), then for the truncation
errors R; and r(o), we have
IR[loey <CN, 4.3)

‘r(‘” <CNL. (4.4)

Proof. From (3.3), if we rewrite R;,

Tit1

Ry < ch™" [ (o)) + 00+ la) Do) [ ol =)

ti—q
lit1

<ont [Manto) [ e

li-1
and, by virtue of Lemma 1 and 0 < y;(7) < C,
|Rl| < Ch7
which implies (4.3). Now, we have to prove (4.4). From (3.4), we get

<ot | " dnlelo)] + [10)| + )] 16w 1) / il &) at
and also, due to Lemma | and 0 < yy(¢) < C, we have
‘r(o)} < Ch.
g

Lemma 3. For z;, which is the solution of the problem (4.1)—(4.2), the following
estimate holds:

|lzt] <M

k—1
rO 22 Y IRl 1<k < N, (45)
j=1

where
M= TAale(HmeHICHm)T’ Ay = elPlltlell)T

Proof. If v; = z;;, then we can write the equation (4.1) as follows,

AiZi i+ Bizii-n + CiZtt) + DiZ(; T Eizi N =R;
i Ji
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C.
Aivei+ EI(W +vi-1) =G;
where

G; =R;—Bizj i—n — Dizo | N Eizin

ti—

Solving this difference equation with respect to v;, we obtain

1
vi=v00Qi+ Y 0 Qix (4.6)
k=1
where
0 { 1, k=1, 0 2hG;
ik = j 2A,—hC; i k= ’
L lj:k+172A,-+hC,-’ 1<k<i—1, 2A; + hC;

Taking into account v; = z;; in (4.6), we write

zip1 = zi+voQi+h Y Qi 4.7
k=1

Solving the first-order difference equation (4.7) we obtain
i—1 k

zl—zH—hZZonH—hZ Z(I),ij

=1

i—1 k

r

Next, since 24; + hC; > 0 and 0 < (24; — hC;)/(24; +hCl~) <1(1<i< No),
h|rO] N h|rO|(i—1)
Agp Ao

|z <

i—1
1Y IR e g+ (161 A+ Nelloo) fzens1 | 4 |z |+ [zx-n-1])]
k=1

hN() F(O) i1
< A" Y (IRl g + (15l + llelle) 2 1]-
0 k=1
Thus, we have
TR0
|zi| < +hZHRIImk+h 15/ + Il ZIZkI

Using difference analogue of Gronwall’s inequality, we get

|zi| < [TA0 ’ “"ZHRH ] (18l +lelloa )i

which gives (4.5). ]

Now, we formulate the theorem, which expresses the main result of the paper.
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Theorem 1. For a, ¢, f € C(I), b € C'(I), and ¢ € C'(Iy), the solution of the
difference problem (3.1)—(3.2) is first order convergent to the solution of (1.1)—(1.2):

Hy_ u”oo,(DNO S CN_I'

Proof. It immediately follows from (4.5) by taking into consideration (4.3)—(4.4).
O

5. NUMERICAL RESULTS

In this section, we present the numerical results obtained not only by the proposed
method (3.5)—(3.6) but also by the other method (3.7)—(3.8), confirming the theore-
tical results.

Example 1. We consider the particular problem:

W) +2u (1) +u(t—1)—ut—1)+e"=0, 0<t<2 (5.1
u(t)=¢, —-1<t<0, u'(0)=1. (5.2)

whose the exact solution is

u(t) = l+e ! —e %, t€(0,1],
Tl (1) +(1=2e)e "+ A[(1+31)e? —2]e ¥, t€(1,2].

Also, we define the exact error ¢! and the computed maximum pointwise error "

as follows:

N — vy — N — N
€ = ’yl ul’v € llg."g}vel .
The computational results for solving the problem (5.1)-(5.2) obtained by using
both the present method (PM) and the implicit Euler method (EM) are shown in

the Tables 1-3.

6. CONCLUSION

In this paper, we have developed the finite difference method for solving the linear
second order DDE. We have shown that the method has first order convergence in the
discrete maximum norm. The numerical results for the test problem are computed
for different values N in Tables 1-3. The graph comparing the numerical results
obtained from both methods is shown in Fig. 1. The computational results with both
methods in Table 3 and Fig. 1 show that the proposed method is more effective than
the other method. The ideas presented method here can be used for the study of
initial or boundary value problems for linear differential equations with delay as well
as neutral type.
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TABLE 1. The numerical results on (0, 2] for Example 1(PM).

635

ti u; yi(N =64) % yi(N =128) el
0.125 1.1036961 1.1036953 8.277E—7 1.1036959 2.069E —7
0.250 1.1722701 1.1722687 1.472E—6 1.1722698 3.681E —7
0.375 1.2149227 1.2149208 1.974E —6 1.2149222 4.936E —7
0.500 1.2386512 1.2386489 2.365E—6 1.2386506 5.914E—7
0.625 1.2487566 1.2487540 2.670E —6 1.2487560 6.675E—17
0.750 1.2492364 1.2492335 2907E —6 1.2492357 7.268E —7
0.875 1.2430881 1.2430850 3.092E—6 1.2430873 7.730E —7
1.000 1.2325442 1.2325409 3.235E—6 1.2325433 8.089E —7
1.125 1.2203862 1.2203905 4.365E—6 1.2203872 1.091E —6
1.250 1.2123285 1.2123368 8.219E—6 1.2123306 2.055E —6
1.375 1.2122725 1.2122821 9.654E —6 1.2122749 2.413E—6
1.500 1.2219502 1.2219598 9.585E —6 1.2219526 2.396E —6
1.625 1.2417225 1.2417311 8.636E —6 1.2417246 2.159E —6
1.750 1.2711252 1.2711324 7.223E—6 1.2711270 1.806E —6
1.875 1.3092394 1.3092450 5.617E—6 1.3092408 1.404E —6
2.000 1.3549343 1.3549382 3.990E —6 1.3549353 9.974E —7
TABLE 2. The numerical results on (0, 2] for Example 1 (EM).
t; u; yi(N = 64) 61-64 yi(N = 128) 61128
0.125 1.1036961 1.1062957 2.600E —3 1.1049940 1.298E —3
0.250 1.1722701 1.1768911 4.621E—3 1.1745781 2.308E —3
0.375 1.2149227 1.2211157 6.193E—3 1.2180167 3.094E —3
0.500 1.2386512 1.2460666 7.415E—3 1.2423569 3.706E —3
0.625 1.2487566 1.2571224 8.366E —3 1.2529384 4.182E —3
0.750 1.2492364 1.2583412 9.105E—3 1.2537885 4.552E —3
0.875 1.2430881 1.2527673 9.679E —3 1.2479284 4.840E —3
1.000 1.2325442 1.2426699 1.013E—2 1.2376087 5.065E —3
1.125 1.2203862 1.2307176 1.033E—2 1.2255527 5.167E—3
1.250 1.2123285 1.2226009 1.027E—2 1.2174656 5.137E —3
1.375 1.2122725 1.2223646 1.009E —2 1.2173198 5.047E —3
1.500 1.2219502 1.2318340 9.884FE —3 1.2268938 4.944F —3
1.625 1.2417225 1.2514273 9.705E —3 1.2465769 4.854F —3
1.750 1.2711252 1.2807138 9.589FE —3 1.2759216 4.796E —3
1.875 1.3092394 1.3187915 9.552E —3 1.3140176 4.778E —3
2.000 1.3549343 1.3645361 9.602E —3 1.3597371 4.803E—3
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TABLE 3. Comparison of " for both methods on (0,2] for Example 1.

N  V(EM) eV (PM) N eV (EM) eV (PM)

32 2.066E —2 3.906E —5 256 2.584E—3 6.104E—7
64 1.034E—2 9.766E—6 512 1292E—3 1.526E—7
128 5.169E—3 2442E—6 1024 6.462E—4 3.817E—38

Yi
135
1.30 -
1.25 -
1.20 -
r —@—— Exact Solution
1.15 —
r ---m--- PM
1.10 —
1.05 F EM
L/
L | | | Ly
0.5 1.0 1.5 2.0

FIGURE 1. Computational results of Example 1 for N = 64.
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