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Abstract. Results reported in this paper provide a generalization for some previously obtained
results. Based on comparing with the oscillatory behavior of first-order delay equations, we
provide new oscillation criteria for the solutions of even-order neutral differential equations with
a p-Laplacian like operator. The proposed theorems not only provide totally different approach
but also essentially improve a number of results reported in the literature. To demonstrate the
advantage of our results, we present two examples.
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1. INTRODUCTION

Recently, it has been recognized that higher order neutral differential equations
can describe many real life applications; see [1, 13]. As a result of this, the qualitat-
ive behavior of solutions for these equations have been the object of many scholars
during the previous years [3,7,10–12,14,15,18,22,23]. Particular emphasis has been
given to the study of oscillatory behavior of these equations which have been under
investigation by using different methods and various techniques; we refer to the pa-
pers [4–6, 9, 17, 19–21]. The consideration of higher-order equations was motivated
by the attempt to promote the work and obtain a general platform that covers all par-
ticular cases. The consideration of equations incorporating the p-Laplacian operator
has been one way to generalize existing result in the literature [2, 16, 26].

The present paper deals with the investigation of the qualitative behavior of even
order neutral differential equation(

b(t)Φp[w(κ−1)(t)]
)′
+q(t)Φp[y(δ(t))] = 0; t ≥ t0, (κ = 4,6,8, . . .) (1.1)

where Φp[s] = |s|p−2s, p > 1 and

w(t) := y(t)+a(t)y(τ(t)).

The main results are obtained under the following conditions:
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(i) b(t) is a positive continuous function on [t0,∞) with that b′(t)≥ 0 and∫
∞

t0
[b(s)]−1/(p−1)ds = ∞. (1.2)

(ii) a(t) and q(t) are continuous functions on [t0,∞) with q(t) > 0, 0 ≤ a(t) <
a0 < ∞, and that q(t) 6≡ 0 for large values of t.

(iii) τ ∈C1[t0,∞), δ ∈C[t0,∞), τ′(t)> 0, τ(t)≤ t and that

lim
t→∞

τ(t) = lim
t→∞

δ(t) = ∞.

By establishing a new oscillation theorem that compares the higher-order equation
(1.1) with a couple of first-order delay differential equations whose oscillatory be-
havior is known, we improve some existing results in the literature. Examples are
presented to illustrate the advantage of our results over previously obtained theor-
ems.

For the sake of comparison, we review some previous results. In [25], Zafer proved
that the even-order differential equation

w(κ) (t)+q(t)y(δ(t)) = 0 (1.3)

is oscillatory if

liminf
t→∞

∫ t

δ(t)
Q(s)ds >

1
e
(κ−1)2(κ−1)(κ−2), (1.4)

where Q(t) := δκ−1(t)q(t) [1−a(δ(t))]. In a similar approach, Zhang and Yan [27]
proved that (1.3) is oscillatory if

liminf
t→∞

∫ t

δ(t)
Q(s)ds >

1
e
(κ−1)!. (1.5)

It is easy to see that (κ−1)! < (κ−1)2(κ−1)(κ−2) for κ > 3, and hence the results
obtained in [27] improve those of Zafer [25].

For non-linear equation, Xing et al. [24] proved that Eq. (1.1) is oscillatory if(
δ
−1)′ (t)≥ δ0 > 0, τ

′ (t)≥ τ0 > 0, τ
−1 (δ(t))< t (1.6)

and

liminf
t→∞

∫ t

τ−1(δ(t))

q̂(s)
b(s)

sα(κ−1)ds >
1

eδ0

(
1+

aα
0

τ0

)
[(κ−1)!]α, (1.7)

where q̂(t) := min
{

q
(
δ−1 (t)

)
,q
(
δ−1 (τ(t))

)}
.

2. HYPOTHESES AND PRELIMINARIES

For our purpose, we define the following notations:

ak (t) :=
1

a(τ−1 (t))

(
1−

ε
[
τ−1
(
τ−1 (t)

)]k−1

[τ−1 (t)]k−1 a(τ−1 (τ−1 (t)))

)
; k = 2, . . . ,κ,
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R0(t) :=
(

1
b(t)

∫
∞

t
q(s) [a2(δ(s))]

α ds
)1/(p−1)

and

Rm(t) :=
∫

∞

t
Rm−1(s)ds; m = 1,2, . . . ,κ−3.

To complete the main results, we need the following lemmas.

Lemma 1. Let y ∈Cn([t0,∞),(0,∞)). Assume that y(n)(t) is of fixed sign and not
identically zero on [t0,∞), and that there exists a t1 ≥ t0 such that y(n−1) (t)y(n) (t)≤ 0
for all t ≥ t1. If

lim
t→∞

y(t) 6= 0,

then for every µ ∈ (0,1) there exists tµ ≥ t1 such that

y(t)≥ µ
(n−1)!

∣∣y(n−1)(t)
∣∣tn−1

for all t ≥ tµ.

Lemma 2. Assume that f , g ≥ 0 and β is a positive real number. Then the in-
equalities

( f +g)β ≤ 2β−1
(

f β +gβ

)
; β≥ 1

and
( f +g)β ≤ f β +gβ; β≤ 1

hold.

Lemma 3. If the function y satisfies y(i)(t) > 0, i = 0,1, . . . ,n, and y(n+1)(t) < 0,
then we have

ny(t)≥ ε ty′(t)

for ε ∈ (0,1).

Lemma 4. Assume that y is an eventually positive solution of Eq. (1.1). Then,
there exist two possible cases:

(a) w(t)> 0, w′(t)> 0, w′′(t)> 0, . . . ,w(n−1)(t)> 0, w(n)(t)< 0
(b) w(t)> 0, w(m)(t)> 0, w(m+1)(t)< 0 for all odd integers

m ∈ {1,3, . . . ,κ−3}, w(κ−1)(t)> 0, w(κ)(t)< 0,

for t ∈ [t1,∞) for some t1 ≥ t0 sufficiently large.

The lemmas given above can be found in [1, Lemma 2.2.3], [3, Lemma 1, Lemma
2], [8] and [23, Lemma 1.2], respectively.
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2.1. Oscillation Criteria

The following is the main result.

Theorem 1. Let [
τ−1
(
τ−1 (t)

)]κ−1

[τ−1 (t)]κ−1 a(τ−1 (τ−1 (t)))
≤ 1. (2.1)

Assume that there exist positive functions ϑ, ζ∈C1 ([t0,∞) ,R) satisfying ϑ(t)≤ δ(t),
ϑ(t)< τ(t), ζ(t)≤ δ(t), ζ(t)< τ(t), ζ′ (t)≥ 0 and

lim
t→∞

ϑ(t) = lim
t→∞

ζ(t) = ∞.

If there exists a constant µ ∈ (0,1) such that the differential equations

ψ
′(t)+

( [
µ
(
τ−1 (ϑ(t))

)]κ−1

(κ−1)! [b(τ−1 (ϑ(t)))]1/α

)p−1

q(t) [aκ (δ(t))]
p−1

ψ
(
τ
−1 (ϑ(t))

)
= 0

(2.2)
and

φ
′ (t)+ τ

−1 (ζ(t))Rκ−3 (t)φ
(
τ
−1 (ζ(t))

)
= 0 (2.3)

are oscillatory, then Eq. (1.1) is oscillatory.

Proof. Let y be a non-oscillatory solution of (1.1) on [t0,∞). Without loss of gen-
erality, we can assume that y is eventually positive. It follows from Lemma 4 that
there exist two possible cases (a) and (b).

Assume that the case (a) holds. From the definition of w(t), we see that

y(t) =
1

a(τ−1 (t))

[
w
(
τ
−1 (t)

)
− y
(
τ
−1 (t)

)]
.

By repeating the same process, we find that

y(t) =
w
(
τ−1 (t)

)
a(τ−1 (t))

− 1
a(τ−1 (t))

×

{
w
(
τ−1
(
τ−1 (t)

))
a(τ−1 (τ−1 (t)))

−
y
(
τ−1
(
τ−1 (t)

))
a(τ−1 (τ−1 (t)))

}

≥
w
(
τ−1 (t)

)
a(τ−1 (t))

− 1
a(τ−1 (t))

×
w
(
τ−1
(
τ−1 (t)

))
a(τ−1 (τ−1 (t)))

. (2.4)

Using Lemma 3, we get w(t)≥ εtw′ (t)/(κ−1) and hence the function v1−κ(t)w(t)
is non-increasing which gives[

τ
−1 (t)

]κ−1
w
(
τ
−1 (

τ
−1 (t)

))
≤ ε
[
τ
−1 (

τ
−1 (t)

)]κ−1
w
(
τ
−1 (t)

)
. (2.5)

by the fact that τ(t)≤ t.
Using (2.5), (2.4) turns out to

y(t)≥ 1
a(τ−1 (t))

(
1−

ε
[
τ−1
(
τ−1 (t)

)]κ−1

[τ−1 (t)]κ−1 a(τ−1 (τ−1 (t)))

)
w
(
τ
−1 (t)

)
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= aκ (t)w
(
τ
−1 (t)

)
. (2.6)

From (1.1) and (2.6), we obtain(
b(t)

[
w(κ−1) (t)

]p−1
)′

+q(t) [aκ (δ(t))]
p−1 [w(τ−1 (δ(t))

)]p−1 ≤ 0.

Since ϑ(t)≤ δ(t) and w′ (t)> 0, we get(
b(t)

[
w(κ−1) (t)

]p−1
)′
≤−q(t) [aκ (δ(t))]

p−1 [w(τ−1 (ϑ(t))
)]p−1

. (2.7)

Now, by using Lemma 1, we have

w(t)≥ µ
(κ−1)!

tκ−1w(κ−1) (t) . (2.8)

for some µ ∈ (0,1). It follows from (2.7) and (2.8) that(
b(t)

[
w(κ−1) (t)

]p−1
)′

+

([
µ
(
τ−1 (ϑ(t))

)]κ−1

(κ−1)!

)p−1

q(t) [aκ (δ(t))]
p−1

×
[
w(κ−1) (

τ
−1 (ϑ(t))

)]p−1
≤ 0

for all µ ∈ (0,1).
Thus, if we set ψ(t)= b(t)

[
w(κ−1) (t)

]p−1
, then we see that ψ is a positive solution

of the first-order delay differential inequality

ψ
′(t)+q(t)

( [
µ
(
τ−1 (ϑ(t))

)]κ−1

(κ−1)! [b(τ−1 (ϑ(t)))]1/(p−1)

)p−1

[aκ (δ(t))]
p−1

ψ
(
τ
−1 (ϑ(t))

)
≤ 0.

It is well known (see [22, Theorem 1]) that corresponding Eq. (2.2) also has a positive
solution, which is a contradiction.

Assume that the case (b) holds. Using Lemma 3, we get that

w(t)≥ εtw′ (t) (2.9)

and thus the function w(t)/t is non-increasing, eventually. Since

τ
−1 (t)≤ τ

−1 (
τ
−1 (t)

)
,

we obtain
τ
−1 (t)w

(
τ
−1 (

τ
−1 (t)

))
≤ ετ

−1 (
τ
−1 (t)

)
w
(
τ
−1 (t)

)
. (2.10)

Using (2.10), (2.4) turns out to

y(t)≥ 1
a(τ−1 (t))

(
1−

ετ−1
(
τ−1 (t)

)
τ−1 (t)a(τ−1 (τ−1 (t)))

)
w
(
τ
−1 (t)

)
= a2 (t)w

(
τ
−1 (t)

)
,
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which yields with (1.1)(
b(t)

[
w(κ−1) (t)

]p−1
)′

+q(t) [a2 (δ(t))]
p−1 [w(τ−1 (δ(t))

)]p−1 ≤ 0.

Since ζ(t)≤ δ(t) and w′ (t)> 0, we have that(
b(t)

[
w(κ−1) (t)

]p−1
)′
≤−q(t) [a2 (δ(t))]

p−1 [w(τ−1 (ζ(t))
)]p−1

. (2.11)

Integrating (2.11) from t to ∞, we obtain

w(κ−1) (t)≥ R0 (t)w
(
τ
−1 (ζ(t))

)
.

Now, integrating the above inequality from t to ∞, κ−3 times, we obtain

w′′ (t)+Rκ−3 (t)w
(
τ
−1 (ζ(t))

)
≤ 0. (2.12)

Now, if we set φ(t) := w′ (t) and using (2.9), then we conclude that φ is a positive
solution of the differential inequality

φ
′(t)+ τ

−1 (ζ(t))Rκ−3 (t)φ
(
τ
−1 (ζ(t))

)
≤ 0. (2.13)

It is well known (see [22, Theorem 1]) that corresponding Eq. (2.3) also has a positive
solution, which is a contradiction. The proof is complete. �

Corollary 1. Assume that (2.1) holds and there exist positive functions ϑ, ζ satis-
fying the conditions given in Theorem 1. If

liminf
t→∞

∫ t

τ−1(ϑ(t))

( [
τ−1 (ϑ(s))

]κ−1

[b(τ−1 (ϑ(s)))]1/(p−1)

)p−1

q(s) [aκ (δ(s))]
p−1 ds

>
1
e
[(κ−1)!]p−1 (2.14)

and
liminf

t→∞

∫ t

τ−1(ζ(t))
τ
−1 (ζ(s))Rκ−3 (s)ds >

1
e
, (2.15)

then Eq. (1.1) is oscillatory.

Proof. It is well-known (see, e.g., [15, Theorem 2]) that Conditions (2.14) and
(2.15) imply the oscillation of (2.2) and (2.3), respectively. �

3. EXAMPLES AND DISCUSSION

We present two particular examples.

Example 1. Consider the equation

[y(t)+a0y(τt)](κ)+q0t−κy(λt) = 0; t ≥ 1, (3.1)

where q0 > 0, τ ∈ (a−1/(κ−1)
0 ,1) and λ ∈ (0,τ). We note that b(t) = 1, a(t) = a0,

τ(t) = τt, δ(t) = λt and q(t) = q0t−κ. Thus, if we choose ϑ(t) = ζ(t) = λt, then
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it is straightforward to see that (2.1) and all the conditions given in Theorem 1 are
satisfied. Moreover, we have

ak (t) =
1
a0

(
1− τ1−k

a0

)
; k = 2, . . . ,κ,

R0 (t) =
q0

(κ−1)a0

(
1− 1

τa0

)
t1−κ,

and

Rκ−3 (t) =
q0

(κ−1)(κ−2)(κ−3)!a0

(
1− 1

τa0

)
t−2.

Hence, condition (2.14) and (2.15) become

q0

a0

(
λ

τ

)κ−1(
1− τ1−κ

a0

)
ln
(

τ

λ

)
>

1
e
(κ−1)! (3.2)

and
λq0

τa0

(
1− 1

τa0

)
ln
(

τ

λ

)
>

1
e
(κ−1)!, (3.3)

respectively. It is clear to see that (3.2) implies (3.3). We end up with the resullt that
(3.1) is oscillatory if (3.2) holds by Corollary 1.

Remark 1. When κ = 4, a0 = 16, τ = 1/2 and λ = 1/3 in Eq. (3.1), condition (3.2)
yields q0 > 587.93 which is better than that is obtained in [24], i.e., q0 > 4850.4.
Hence, our results improve those obtained in [24].

Example 2. Consider the particular equation[
y(t)+(7/8)y(t/e)

](4)
+q0t−4y

(
t/e2)= 0; t ≥ 1, (3.4)

where q0 > 0 is a constant, and

p = 2, κ = 4, b(t) = 1, a(t) = 7/8, τ(t) = t/e, q(t) = q0t−4

and δ(t) = t/e2. If we apply the previous results to Eq. (3.4), then we get

(i) q0 > 113981.3 by applying condition (1.4) in [25];
(ii) q0 > 3561.9 by applying condition (1.5) in [27];

(iii) q0 > 3008.5 by applying conditions (1.6)-(1.7) in [24].

Hence, the results of [24] improved those obtained in [25, 27]. Furthermore, one can
easily see that the criteria obtained in [24, 25, 27] cannot be applied to (2.14) and
(2.15) which demonstrates that our results are essentially new.
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