Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 24 (2023), No. 3, pp. 1605-1613

APPLICATIONS OF HORADAM POLYNOMIALS ON A NEW FAMILY OF BI-PRESTARLIKE FUNCTIONS

ABBAS KAREEM WANAS AND PÁLL-SZABÓ ÁGNES ORSOLYA

Received 06 April, 2020

Abstract

In this article, we introduce and investigate a new family of analytic and bi-prestarlike functions by using the Horadam polynomials defined in the open unit disk U. We determine upper bounds for the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ and solve Fekete-Szegó problem of functions that belong to this family. Also, we point out several certain special cases for our results

2010 Mathematics Subject Classification: 30C45; 30C50
Keywords: bi-prestarlike functions, bi-univalent functions, Horadam polynomials, upper bounds, Fekete-Szegő problem, subordination

1. Introduction and preliminaries

Indicate by \mathcal{A} the collection of analytic functions in the open unit disk $U=$ $\{z \in \mathbb{C}:|z|<1\}$ that have the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Further, let S stand for the subclass of \mathcal{A} containing of functions in U satisfying (1.1) which are univalent in U.

A function $f \in \mathcal{A}$ is called starlike of order $\theta(0 \leq \theta<1)$, if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\theta, \quad(z \in U)
$$

For $f \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ defined by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

[^0]the Hadamard product of f and g is defined (as usual) by
$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, \quad(z \in U)
$$

Ruscheweyh [14] defined and considered the family of prestarlike functions of order θ, which are the functions f such that $f * I_{\theta}$ is a starlike function of order θ, where

$$
I_{\theta}(z)=\frac{z}{(1-z)^{2(1-\theta)}}, \quad(0 \leq \theta<1, z \in U)
$$

The function I_{θ} can be written in the form:

$$
I_{\theta}(z)=z+\sum_{n=2}^{\infty} \varphi_{n}(\theta) z^{n}
$$

where

$$
\varphi_{n}(\theta)=\frac{\prod_{i=2}^{n}(i-2 \theta)}{(n-1)!}, \quad n \geq 2
$$

We note that $\varphi_{n}(\theta)$ is a decreasing function in θ and satisfies

$$
\lim _{n \rightarrow \infty} \varphi_{n}(\theta)= \begin{cases}\infty, & \text { if } \theta<\frac{1}{2} \\ 1, & \text { if } \theta=\frac{1}{2} \\ 0, & \text { if } \theta>\frac{1}{2}\end{cases}
$$

According to the Koebe one-quarter theorem (see [6]) every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z, \quad(z \in U)$ and $f\left(f^{-1}(w)\right)=w$, $\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ stands for the class of bi-univalent functions in U given by (1.1). Srivastava et al. [19] revived the study of analytic and bi-univalent functions in recent years, was followed by such works as those by Bulut [4], Adegani and et al. [1], Caglar et al. [5] and others (see, for example [15, 17, 18, 20]). We notice that the class Σ is not empty. For example, the functions $z, \frac{z}{1-z},-\log (1-z)$ and $\frac{1}{2} \log \frac{1+z}{1-z}$ are members of Σ. However, the Koebe function is not a member of Σ. Until now, the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|,(n=3,4, \cdots)$ for functions $f \in \Sigma$ is still an open problem.

Let the functions f and g be analytic in U. We say that the function f is said to be subordinate to g, if there exists a Schwarz function w analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$ such that $f(z)=g(w(z))$. This subordination is denoted by $f \prec g$ or $f(z) \prec g(z)(z \in U)$. It is well known (see [13]) that if the function g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

The Horadam polynomials $h_{n}(r)$ are defined by the following repetition relation (see [8]):

$$
\begin{equation*}
h_{n}(r)=\operatorname{pr}_{n-1}(r)+q h_{n-2}(r) \quad(r \in \mathbb{R}, n \in \mathbb{N}=\{1,2,3, \cdots\}) \tag{1.3}
\end{equation*}
$$

with $h_{1}(r)=a \quad$ and $\quad h_{2}(r)=b r$, for some real constant a, b, p and q. The characteristic equation of repetition relation (1.3) is $t^{2}-p r t-q=0$. This equation has two real roots $x=\frac{p r+\sqrt{p^{2} r^{2}+4 q}}{2}$ and $y=\frac{p r-\sqrt{p^{2} r^{2}+4 q}}{2}$.

Remark 1. For particular values of a, b, p and q, the Horadam polynomial $h_{n}(r)$ reduces to several known polynomials listed below:
(1) the Fibonacci polynomials $F_{n}(r)(a=b=p=q=1)$.
(2) the Lucas polynomials $L_{n}(r)(a=2$ and $b=p=q=1)$.
(3) the Pell polynomials $P_{n}(r)(a=q=1$ and $b=p=2)$.
(4) the Pell-Lucas polynomials $Q_{n}(r)(a=b=p=2$ and $q=1)$.
(5) the Chebyshev polynomials $T_{n}(r)$ of the first kind $(a=b=1, p=2$ and $q=-1$).
(6) the Chebyshev polynomials $U_{n}(r)$ of the second kind $(a=1, b=p=2$ and $q=-1$).

These polynomials, the families of orthogonal polynomials and other special polynomials as well as their generalizations are potentially important in a variety of disciplines in many of sciences, specially in mathematics, statistics and physics. For more information associated with these polynomials see $[7,8,10,11,21]$.

The generating function of the Horadam polynomials $h_{n}(r)$ (see [9]) is given by

$$
\begin{equation*}
\Pi(r, z)=\sum_{n=1}^{\infty} h_{n}(r) z^{n-1}=\frac{a+(b-a p) r z}{1-p r z-q z^{2}} \tag{1.4}
\end{equation*}
$$

2. MAIN RESULTS

We begin this section by defining the subclass $\mathcal{N}_{\Sigma}(\delta, \lambda, \theta, r)$ as follows:
Definition 1. For $\delta \geq 0,0 \leq \lambda \leq 1,0 \leq \theta<1$ and $r \in \mathbb{R}$, a function $f \in \Sigma$ is said to be in the class $\mathcal{N}_{\Sigma}(\delta, \lambda, \theta, r)$ if it satisfies the subordinations

$$
\begin{aligned}
&(1-\delta)\left[(1-\lambda) \frac{z\left(f * I_{\theta}\right)^{\prime}(z)}{\left(f * I_{\theta}\right)(z)}+\lambda\left(1+\frac{z\left(f * I_{\theta}\right)^{\prime \prime}(z)}{\left(f * I_{\theta}\right)^{\prime}(z)}\right)\right] \\
&+\delta \frac{\lambda z^{2}\left(f * I_{\theta}\right)^{\prime \prime}(z)+z\left(f * I_{\theta}\right)^{\prime}(z)}{\lambda z\left(f * I_{\theta}\right)^{\prime}(z)+(1-\lambda)\left(f * I_{\theta}\right)(z)} \prec \Pi(r, z)+1-a
\end{aligned}
$$

and

$$
(1-\delta)\left[(1-\lambda) \frac{w\left(g * I_{\theta}\right)^{\prime}(w)}{\left(g * I_{\theta}\right)(w)}+\lambda\left(1+\frac{w\left(g * I_{\theta}\right)^{\prime \prime}(w)}{\left(g * I_{\theta}\right)^{\prime}(w)}\right)\right]
$$

$$
+\delta \frac{\lambda w^{2}\left(g * I_{\theta}\right)^{\prime \prime}(w)+w\left(g * I_{\theta}\right)^{\prime}(w)}{\lambda w\left(g * I_{\theta}\right)^{\prime}(w)+(1-\lambda)\left(g * I_{\theta}\right)(w)} \prec \Pi(r, w)+1-a,
$$

where a is a real constant and the function $g=f^{-1}$ is given by (1.2).
Theorem 1. For $\delta \geq 0,0 \leq \lambda \leq 1,0 \leq \theta<1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the class $\mathcal{N}_{\mathcal{E}}(\delta, \lambda, \theta, r)$. Then
$\left|a_{2}\right| \leq \frac{|b r| \sqrt{|b r|}}{\sqrt{2\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}}$
and

$$
\left|a_{3}\right| \leq \frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)}+\frac{b^{2} r^{2}}{4(1-\theta)^{2}(\lambda+1)^{2}} .
$$

Proof. Let $f \in \mathcal{N}(\Sigma(\delta, \lambda, \theta, r)$. Then there are two analytic functions $u, v: U \longrightarrow U$ given by

$$
\begin{equation*}
u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots \quad(z \in U) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=v_{1} w+v_{2} w^{2}+v_{3} w^{3}+\cdots \quad(w \in U), \tag{2.2}
\end{equation*}
$$

with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<1, z, w \in U$ such that

$$
\begin{aligned}
& (1-\delta)\left[(1-\lambda) \frac{z\left(f * I_{\theta}\right)^{\prime}(z)}{\left(f * I_{\theta}\right)(z)}+\lambda\left(1+\frac{z\left(f * I_{\theta}\right)^{\prime \prime}(z)}{\left(f * I_{\theta}\right)^{\prime}(z)}\right)\right] \\
& \quad+\delta \frac{\lambda z^{2}\left(f * I_{\theta}\right)^{\prime \prime}(z)+z\left(f * I_{\theta}\right)^{\prime}(z)}{\lambda z\left(f * I_{\theta}\right)^{\prime}(z)+(1-\lambda)\left(f * I_{\theta}\right)(z)}=\Pi(r, u(z))+1-a
\end{aligned}
$$

and

$$
\begin{aligned}
&(1-\delta)\left[(1-\lambda) \frac{w\left(g * I_{\theta}\right)^{\prime}(w)}{\left(g * I_{\theta}\right)(w)}+\lambda\left(1+\frac{w\left(g * I_{\theta}\right)^{\prime \prime}(w)}{\left(g * I_{\theta}\right)^{\prime}(w)}\right)\right] \\
&+\delta \frac{\lambda w^{2}\left(g * I_{\theta}\right)^{\prime \prime}(w)+w\left(g * I_{\theta}\right)^{\prime}(w)}{\lambda w\left(g * I_{\theta}\right)^{\prime}(w)+(1-\lambda)\left(g * I_{\theta}\right)(w)}=\Pi(r, v(w))+1-a .
\end{aligned}
$$

Or, equivalently

$$
\begin{align*}
& (1-\delta)\left[(1-\lambda) \frac{z\left(f * I_{\theta}\right)^{\prime}(z)}{\left(f * I_{\theta}\right)(z)}+\lambda\left(1+\frac{z\left(f * I_{\theta}\right)^{\prime \prime}(z)}{\left(f * I_{\theta}\right)^{\prime}(z)}\right)\right] \\
& +\delta \frac{\lambda z^{2}\left(f * I_{\theta}\right)^{\prime \prime}(z)+z\left(f * I_{\theta}\right)^{\prime}(z)}{\lambda z\left(f * I_{\theta}\right)^{\prime}(z)+(1-\lambda)\left(f * I_{\theta}\right)(z)}=1+h_{1}(r)+h_{2}(r) u(z)+h_{3}(r) u^{2}(z)+\cdots \tag{2.3}
\end{align*}
$$

and

$$
(1-\delta)\left[(1-\lambda) \frac{w\left(g * I_{\theta}\right)^{\prime}(w)}{\left(g * I_{\theta}\right)(w)}+\lambda\left(1+\frac{w\left(g * I_{\theta}\right)^{\prime \prime}(w)}{\left(g * I_{\theta}\right)^{\prime}(w)}\right)\right]
$$

$$
\begin{equation*}
+\delta \frac{\lambda w^{2}\left(g * I_{\theta}\right)^{\prime \prime}(w)+w\left(g * I_{\theta}\right)^{\prime}(w)}{\lambda w\left(g * I_{\theta}\right)^{\prime}(w)+(1-\lambda)\left(g * I_{\theta}\right)(w)}=1+h_{1}(r)+h_{2}(r) v(w)+h_{3}(r) v^{2}(w)+\cdots \tag{2.4}
\end{equation*}
$$

Combining (2.1), (2.2), (2.3) and (2.4) yields

$$
\begin{align*}
& (1-\delta)\left[(1-\lambda) \frac{z\left(f * I_{\theta}\right)^{\prime}(z)}{\left(f * I_{\theta}\right)(z)}+\lambda\left(1+\frac{z\left(f * I_{\theta}\right)^{\prime \prime}(z)}{\left(f * I_{\theta}\right)^{\prime}(z)}\right)\right] \\
& +\delta \frac{\lambda z^{2}\left(f * I_{\theta}\right)^{\prime \prime}(z)+z\left(f * I_{\theta}\right)^{\prime}(z)}{\lambda z\left(f * I_{\theta}\right)^{\prime}(z)+(1-\lambda)\left(f * I_{\theta}\right)(z)}=1+h_{2}(r) u_{1} z+\left[h_{2}(r) u_{2}+h_{3}(r) u_{1}^{2}\right] z^{2}+\cdots \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\delta)\left[(1-\lambda) \frac{w\left(g * I_{\theta}\right)^{\prime}(w)}{\left(g * I_{\theta}\right)(w)}+\lambda\left(1+\frac{w\left(g * I_{\theta}\right)^{\prime \prime}(w)}{\left(g * I_{\theta}\right)^{\prime}(w)}\right)\right] \\
& +\delta \frac{\lambda w^{2}\left(g * I_{\theta}\right)^{\prime \prime}(w)+w\left(g * I_{\theta}\right)^{\prime}(w)}{\lambda w\left(g * I_{\theta}\right)^{\prime}(w)+(1-\lambda)\left(g * I_{\theta}\right)(w)}=1+h_{2}(r) v_{1} w+\left[h_{2}(r) v_{2}+h_{3}(r) v_{1}^{2}\right] w^{2}+\cdots \tag{2.6}
\end{align*}
$$

It is quite well-known that if $|u(z)|<1$ and $|v(w)|<1, z, w \in U$, then

$$
\begin{equation*}
\left|u_{i}\right| \leq 1 \quad \text { and } \quad\left|v_{i}\right| \leq 1 \text { forall } i \in \mathbb{N} . \tag{2.7}
\end{equation*}
$$

Comparing the corresponding coefficients in (2.5) and (2.6), after simplifying, we have

$$
\begin{equation*}
2(1-\theta)(\lambda+1) a_{2}=h_{2}(r) u_{1} \tag{2.8}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
2(1-\theta)(3-2 \theta)(2 \lambda+1) a_{3}-4(1-\theta)^{2}(\lambda \delta(\lambda-1)+ & 3 \lambda
\end{array}+1\right) a_{2}^{2}, ~=h_{2}(r) u_{2}+h_{3}(r) u_{1}^{2}, ~ \$
$$

$$
\begin{equation*}
-2(1-\theta)(\lambda+1) a_{2}=h_{2}(r) v_{1} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
& 2(1-\theta)(3-2 \theta)(2 \lambda+1)\left(2 a_{2}^{2}-a_{3}\right)-4(1-\theta)^{2}(\lambda \delta(\lambda-1)+3 \lambda+1) a_{2}^{2} \\
&=h_{2}(r) v_{2}+h_{3}(r) v_{1}^{2} \tag{2.11}
\end{align*}
$$

It follows from (2.8) and (2.10) that

$$
\begin{equation*}
u_{1}=-v_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1-\theta)^{2}(\lambda+1)^{2} a_{2}^{2}=h_{2}^{2}(r)\left(u_{1}^{2}+v_{1}^{2}\right) \tag{2.13}
\end{equation*}
$$

If we add (2.9) to (2.11), we find that

$$
\begin{equation*}
4(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] a_{2}^{2}=h_{2}(r)\left(u_{2}+v_{2}\right)+h_{3}(r)\left(u_{1}^{2}+v_{1}^{2}\right) \tag{2.14}
\end{equation*}
$$

Substituting the value of $u_{1}^{2}+v_{1}^{2}$ from (2.13) in the right hand side of (2.14), we deduce that

$$
\begin{equation*}
a_{2}^{2}=\frac{h_{2}^{3}(r)\left(u_{2}+v_{2}\right)}{4\left[h_{2}^{2}(r)(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1]-2 h_{3}(r)(1-\theta)^{2}(\lambda+1)^{2}\right]} . \tag{2.15}
\end{equation*}
$$

If we make further computations using (1.3), (2.7) and (2.15), we obtain

$$
\left|a_{2}\right| \leq \frac{|b r| \sqrt{|b r|}}{\sqrt{2\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}} .
$$

Next, if we subtract (2.11) from (2.9), we can easily see that

$$
\begin{equation*}
4(1-\theta)(3-2 \theta)(2 \lambda+1)\left(a_{3}-a_{2}^{2}\right)=h_{2}(r)\left(u_{2}-v_{2}\right)+h_{3}(r)\left(u_{1}^{2}-v_{1}^{2}\right) . \tag{2.16}
\end{equation*}
$$

In view of (2.12) and (2.13), we get from (2.16)

$$
a_{3}=\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(1-\theta)(3-2 \theta)(2 \lambda+1)}+\frac{h_{2}^{2}(r)\left(u_{1}^{2}+v_{1}^{2}\right)}{8(1-\theta)^{2}(\lambda+1)^{2}} .
$$

Thus applying (1.3), we obtain

$$
\left|a_{3}\right| \leq \frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)}+\frac{b^{2} r^{2}}{4(1-\theta)^{2}(\lambda+1)^{2}} .
$$

This completes the proof of Theorem 1.
In the next theorem, we discuss the Fekete-Szegő problem for the subclass $\mathcal{N}_{\Sigma}(\delta, \lambda, \theta, r)$.

Theorem 2. For $\delta \geq 0,0 \leq \lambda \leq 1,0 \leq \theta<1$ and $r, \mu \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the class $\mathcal{N} \mathcal{E}(\delta, \lambda, \theta, r)$. Then $\left|a_{3}-\mu a_{2}^{2}\right| \leq$
$\leq\left\{\begin{array}{l}\frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)} ; \\ \text { for }|\mu-1| \leq \frac{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}{b^{2} r^{2}(1-\theta)(3-2 \theta)(2 \lambda+1)}, \\ \frac{|b r|^{3}|\mu-1|}{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|} ; \\ \text { for }|\mu-1| \geq \frac{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}{b^{2} r^{2}(1-\theta)(3-2 \theta)(2 \lambda+1)} .\end{array}\right.$
Proof. It follows from (2.15) and (2.16) that

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(1-\theta)(3-2 \theta)(2 \lambda+1)}+(1-\mu) a_{2}^{2} \\
& =\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(1-\theta)(3-2 \theta)(2 \lambda+1)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{h_{2}^{3}(r)\left(u_{2}+v_{2}\right)(1-\mu)}{4\left[h_{2}^{2}(r)(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1]-2 h_{3}(r)(1-\theta)^{2}(\lambda+1)^{2}\right]} \\
& =\frac{h_{2}(r)}{4}\left[\left(\psi(\mu, r)+\frac{1}{(1-\theta)(3-2 \theta)(2 \lambda+1)}\right) u_{2}\right. \\
& \\
& \left.+\left(\psi(\mu, r)-\frac{1}{(1-\theta)(3-2 \theta)(2 \lambda+1)}\right) v_{2}\right],
\end{aligned}
$$

where

$$
\psi(\mu, r)=\frac{h_{2}^{2}(r)(1-\mu)}{h_{2}^{2}(r)(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1]-2 h_{3}(r)(1-\theta)^{2}(\lambda+1)^{2}} .
$$

According to (1.3), we find that
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}\frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)}, \quad 0 \leq|\psi(\mu, r)| \leq \frac{1}{(1-\theta)(3-2 \theta)(2 \lambda+1)}, \\ \frac{1}{2}|b r||\psi(\mu, r)|, \quad|\psi(\mu, r)| \geq \frac{1}{(1-\theta)(3-2 \theta)(2 \lambda+1)},\end{array}\right.$
After some computations, we obtain $\left|a_{3}-\mu a_{2}^{2}\right| \leq$

$$
\leq\left\{\begin{array}{l}
\frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)} ; \text { for }|\mu-1| \leq \\
\leq \frac{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}{b^{2} r^{2}(1-\theta)(3-2 \theta)(2 \lambda+1)}, \\
\frac{|b r|^{3}|\mu-1|}{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|} ; \\
\text { for }|\mu-1| \geq \\
\geq \frac{\left|\left[(1-\theta)[2 \lambda \delta(1-\theta)(1-\lambda)+2 \theta \lambda+1] b-2 p(1-\theta)^{2}(\lambda+1)^{2}\right] b r^{2}-2 q a(1-\theta)^{2}(\lambda+1)^{2}\right|}{b^{2} r^{2}(1-\theta)(3-2 \theta)(2 \lambda+1)} .
\end{array}\right.
$$

Putting $\mu=1$ in Theorem 2, we obtain the following result:
Corollary 1. For $\delta \geq 0,0 \leq \lambda \leq 1,0 \leq \theta<1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the class $\mathcal{N}_{\Sigma}(\delta, \lambda, \theta, r)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|b r|}{2(1-\theta)(3-2 \theta)(2 \lambda+1)}
$$

Remark 2. Special cases are shown below:
(1) If we put $\lambda=0$ and $\theta=\frac{1}{2}$ in our Theorems, we have the results for wellknown class $S_{\Sigma}^{*}(r)$ of bi-starlike functions which was studied recently by Srivastava et al. [16].
(2) If we put $\lambda=1$ and $\theta=\frac{1}{2}$ in our Theorems, we have the results for the class $\mathcal{K}_{\Sigma}(r)$ which was considered recently by Magesh et al. [12].
(3) If we put $\delta=0$ and $\theta=\frac{1}{2}$ in our Theorems, we have the results for the class $M_{\Sigma}(\lambda, r)$ which was investigated recently by Magesh et al. [12].
(4) If we put $\lambda=0, \theta=\frac{1}{2}, a=1, b=p=2, q=-1$ and $r \longrightarrow t$ in our Theorems, we obtain the results for the class $S_{\Sigma}^{*}(t)$ of bi-starlike functions which was introduced recently by Altınkaya and Yalçin [3].
(5) If we put $\delta=0, \theta=\frac{1}{2}, a=1, b=p=2, q=-1$ and $r \longrightarrow t$ in our Theorems, we have the results for the class $\mathcal{M}_{\Sigma}^{*}(\alpha, t)$ which was considered recently by Altınkaya and Yalçin [2].

REFERENCES

[1] E. A. Adegani, S. Bulut, and A. A. Zireh, "Coefficient estimates for a subclass of analytic biunivalent functions," Bull. Korean Math. Soc., vol. 55, no. 2, pp. 405-413, 2018.
[2] S. Altinkaya and S. Yalcin, "Chebyshev polynomial coefficient bounds for a subclass of biunivalent functions," arXiv:1605.08224.
[3] S. Altinkaya and S. Yalcin, "On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions," Gulf J. Math., vol. 5, no. 3, pp. 34-40, 2017.
[4] S. Bulut, "Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions," Turk. J. Math., vol. 40, pp. 1386-1397, 2016.
[5] M. Caglar, H. Orhan, and N. Yagmur, "Coefficient bounds for new subclasses of bi-univalent functions," Filomat, vol. 27, pp. 1165-1171, 2013.
[6] P. Duren, Univalent Functions. New York, Berlin, Heidelberg and Tokyo: Springer Verlag, 1983.
[7] A. F. Horadam, "Jacobsthal representation polynomials," The Fibonacci Quarterly, vol. 35, no. 2, pp. 137-148, 1997.
[8] A. F. Horadam and J. M. Mahon, "Pell and Pell-Lucas polynomials," The Fibonacci Quarterly, vol. 23, no. 1, pp. 7-20, 1985.
[9] T. Horzum and E. Kocer, "On some properties of Horadam polynomials," Int. Math. Forum, vol. 4, pp. 1243-1252, 2009.
[10] T. Koshy, Fibonacci and Lucas Numbers with Applications. John Wiley \& Sons, Inc., sep 2001. doi: 10.1002/9781118033067.
[11] A. Lupas, "A guide of Fibonacci and Lucas polynomials," Octagon Mathematics Magazine, vol. 7, no. 1, pp. 2-12, 1999.
[12] N. Magesh, J. Yamini, and C. Abirami, "Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials," Abstract and Applied Analysis, 2020, doi: 10.1155/2020/7391058.
[13] S. Miller and P. Mocanu, Differential Subordinations: Theory and Applications. New York and Basel: Marcel Dekker Inc, 2000, vol. 225.
[14] S. Ruscheweyh, "Linear operators between classes of prestarlike functions," Comment. Math. Helv., vol. 52, no. 4, pp. 497-509, 1977.
[15] H. Srivastava and A. Wanas, "Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination," Kyungpook Math. J., vol. 59, no. 3, pp. 493-503, 2019, doi: 10.5666/KMJ.2019.59.3.493.
[16] H. M. Srivastava, Ş. Altınkaya, and S. Yalçın, "Certain subclasses of bi-univalent functions associated with the Horadam polynomials," Iranian Journal of Science and Technology, Transactions A: Science, vol. 43, no. 4, pp. 1873-1879, nov 2018, doi: 10.1007/s40995-018-0647-0.
[17] H. M. Srivastava, S. S. Eker, S. G. Hamidi, and J. M. Jahangiri, "Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator," Bulletin of the Iranian Mathematical Society, vol. 44, no. 1, pp. 149-157, feb 2018, doi: 10.1007/s41980-018-0011-3.
[18] H. M. Srivastava, S. Gaboury, and F. Ghanim, "Coefficient estimates for some general subclasses of analytic and bi-univalent functions," Afrika Matematika, vol. 28, no. 5-6, pp. 693-706, dec 2016, doi: 10.1007/s13370-016-0478-0.
[19] H. Srivastava, A. Mishra, and P. Gochhayat, "Certain subclasses of analytic and bi-univalent functions," Applied Mathematics Letters, vol. 23, no. 10, pp. 1188-1192, oct 2010, doi: 10.1016/j.am1.2010.05.009.
[20] A. K. Wanas and A. A. Lupas, "Applications of Horadam Polynomials on Bazilevic Bi-Univalent Function Satisfying Subordinate Conditions," Journal of Physics: Conference Series, vol. 1294, p. 032003, sep 2019, doi: 10.1088/1742-6596/1294/3/032003.
[21] H. Özlem Güney, G. Murugusundaramoorthy, and J. Sokół, "Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers," Acta Universitatis Sapientiae, Mathematica, vol. 10, no. 1, pp. 70-84, aug 2018, doi: 10.2478/ausm-2018-0006.

Authors' addresses

Abbas Kareem Wanas

Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
E-mail address: abbas.kareem.w@qu.edu.iq
Páll-Szabó Ágnes Orsolya
(Corresponding author) Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania

E-mail address: agnes.pallszabo@econ.ubbcluj.ro

[^0]: The present work has received financial support through the project: Entrepreneurship for innovation through doctoral and postdoctoral research, POCU/360/6/13/ 123886 co-financed by the European Social Fund, through the Operational Program for Human Capital 2014-2020 (for the author Páll-Szabó Ágnes Orsolya).

