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ON THE STABILITY OF SOLUTIONS TO CONFORMABLE
STOCHASTIC DIFFERENTIAL EQUATIONS

GUANLI XIAO AND JINRONG WANG

Received 29 February, 2020

Abstract. In this paper, we study the stability of solutions to conformable stochastic differential
equations. Firstly, we show the trivial solution are stochastially stable, stochastically asymptotic-
ally stable and almost surely exponentially stable, respectively. Secondly, we show the nontrivial
solution are Ulam’s type stable in the sense of probabilities. Finally, two examples are given to
present the theoretically results.
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1. INTRODUCTION

Conformable derivative, an extension of the classical limit definitions of the deriv-
atives of a function, has been proposed in Khalil et al. [1]. The details of the basic
theory are reported in [2, 4] and the application are reported in [3, 9]. The theory
of stochastic differential equations (SDE) and Itô integrals have been studied extens-
ively, one can refer to the classical results in [5, 6].

Consider the stability of solutions to the following conformable stochastic differ-
ential equationsDα

ρX(t) = b(X(t), t)+σ(X(t), t)
dW (t)

dt
, ρ ∈ (0,1], t ∈ [α,∞),

X(α) = Xα,
(1.1)

where Dα
ρ is conformable derivative, b : Rn× [α,α+ h]→ Rn,h > 0, and σ : Rn×

[α,α+h]→ Rn×m are continuous and W (·) is a standard scalar Brownian motion on
an underlying complete filtered probability space (Ω,F ,F := {Ft}t∈[α,∞),P). F is a
σ-algebra and P is a probability measure. For each t ∈ [α,∞), L2(Ω,Ft ,P) denotes
the space of all Ft-measurable, mean square integrable functions endowed with the
standard norm.
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Existence and uniqueness of solution to (1.1) is given in [7] by using Picard’s iter-
ative technique and the Itô formula of the conformable version is also established. In
the present paper, we study the stability of solutions to (1.1). In Section 3, we prove
the trivial solutions are stochastically stable, stochastically asymptotically stable, al-
most surely exponentially stable by setting suitable conditions on the constructed
Lyapunov function. In Section 4, we propose the concepts of Ulam’s type stability
for (1.1) in the sense of probabilities and show the nontrivial solutions are almost
surely Ulam’s type stable. Two numerical simulation examples are presented in final
section.

2. PRELIMINARIES

Definition 1 ( [2, Definition 2.1]). The conformable derivative with low index ρ

of a function f : [α,∞)→ R is defined as

Dα
ρ f (x) = lim

ε→0

f (x+ ε(x−α)1−ρ)− f (x)
ε

, x > α, 0 < ρ≤ 1.

Remark 1 ( [2, Theorem 2]). Fix 0 < ρ ≤ 1 and x > α. A function f : [α,∞)→
R has a conformable derivative Dα

ρ f (x) if and only if it is differentiable at x and
Dα

ρ f (x) = (x−α)1−ρ f ′(x) holds.

Definition 2 ( [7, Definition 4.1]). We say that an Rn-valued stochastic process
X(·) is a solution of (1.1), if X(·) is continuous and Ft-adapted and

X(t) = Xα +
∫ t

α

b(X(τ),τ)(τ−α)ρ−1dτ

+
∫ t

α

σ(X(τ),τ)(τ−α)ρ−1dW (τ), t ∈ [α,α+h]. (2.1)

Lemma 1 ( [5, Theorem 3.8] ). (Doob’s martingale inequalities) Let {Mt}t≥a be
an Rn-valued martingale and [a,b] an interval in R+. If p≥ 1 and Mt ∈ Lp(Ω,Rn),
then

P{ω : sup
a≤t≤b

|Mt(ω)| ≥ c} ≤ 1
cp E|Mb|p, c > 0.

Lemma 2 ([5, Lemma 5.4]). Denote M 2([a,b];R) the space of all real-valued
measurable {Ft}-adapted processes g = {g(t)a≤t≤b} such that

E(
∫ b

a
|g(t)|2dt)< ∞.

If g ∈M0([a,b];R)⊂M 2([a,b];R), then, for a≤ t ≤ b, we have

E
(∫ b

a
g(t)dW (t)

)
= 0,
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E

(∣∣∣∣∫ b

a
g(t)dW (t)

∣∣∣∣2
)

= E
(∫ b

a
|g(t)|2dt

)
.

Theorem 1 ( [7, Theorem 2.8]). Let 0< h<∞,X(t), t ∈ [α,α+h] be an Itô process
for

Dα
ρX(t) = f (t)+g(t)

dW (t)
dt

, ρ ∈ (0,1],

Y (·) := Y (X(·), ·) ∈ C2,1(Rn × [α,α + h],Rn). Then, Y (t), t ∈ [α,α + h] is an Itô
process given by

dY (t) =
∂Y (X(t), t)

∂t
dt +

∂Y (X(t), t)
∂X

f (t)(t−α)ρ−1dt

+
∂Y (X(t), t)

∂X
g(t)(t−α)ρ−1dW (t)+

1
2

∂Y 2(X(t), t)
∂X2 g2(t)(t−α)2ρ−2dt.

Definition 3 ( [5, Definition 2.1]). (i) The trivial solution of (1.1) is said to be
stochastically stable or stable in probability if for every pair of ε ∈ (0,1) and r > 0,
there exists a δ= δ(ε,r, t0)> 0, for all t ≥ t0 such that P{|X(t)|< r}≥ 1−ε, whenever
|X0|< δ. Otherwise it is said to be stochastically unstable.

(ii) The trivial solution of (1.1) is said to be stochastically asymptotically stable
if it is stochastically stable and, moreover, for every ε ∈ (0,1), there exists a δ0 =
δ0(ε, t0)> 0 such that P{limt→∞ X(t) = 0}≥ 1−ε, whenever |X0|< δ0 and 0 denotes
n-dimensional zero vector.

Definition 4 ([5, Definition 3.1]). The trivial solution of (1.1) is said to be almost
surely exponentially stable, if limt→∞ sup 1

t ln |X(t)| < 0, a.s. for all X0 ∈ Rn, where
a.s. means almost surely.

Lemma 3 ([5, Lemma 2.4])). (Borel-Cantelli’s lemma) If {Ak} ⊂ F and
∑

∞
k=1 P(Ak)< ∞. Then P{limk→∞ supAk i.o.}= 0, where i.o. means infinitely often.

Lemma 4 ( [8, Theorem 1]). Set x(·),g(·) is real continue function on [t0, t1],
f (·)≥ 0 is the integrable function over interval [t0, t1], g(·)≥ 0 is nondecreasing. If

x(t)≤ g(t)+
∫ t

t0
f (τ)x(τ)dτ, t ∈ [t0, t1].

Then

x(t)≤ g(t)exp(
∫ t

t0
f (τ)dτ), t ∈ [t0, t1].

3. STABILITY OF TRIVIAL SOLUTIONS

We first introduce the following assumptions and denote | · | by the norm of Rn.
[H1] There exists a constant L > 0 such that b and σ satisfying |b(X , t)−b(X̂ , t)| ≤

L|X− X̂ |, |σ(X , t)−σ(X̂ , t)| ≤ L|X− X̂ |, t ∈ [α,α+h], X , X̂ ∈ Rn.



512 GUANLI XIAO AND JINRONG WANG

[H2] There exists a constant L > 0 such that b and σ satisfying |b(X , t)| ≤ L|1+
X |, |σ(X , t)| ≤ L|1+X |, t ∈ [α,α+h], X ∈ Rn.

[H3] E(|Xα|2)< ∞ where Xα is independent of W+(α).

Lemma 5 ( [7, Theorem 4.3]). Suppose that [H1], [H2] and [H3] hold. Then,
(1.1) has a unique solution X(·) ∈ L2

n[α,α+h] give by (2.1) provided that ρ ∈ (1
2 ,1].

Next, we discuss the stability of solutions to (1.1) under [H1], [H2] and [H3],
which includes stability, asymptotical stability and almost surely exponentially sta-
bility.

For any t ≥ α, denote

DρV (X(t), t) =Vt(X(t), t)(t−α)ρ−1 +VX(X(t), t)b(X(t), t)(t−α)ρ−1

+
1
2

trace[σT (X(t), t)VXX(X(t), t)σ(X(t), t)(t−α)2ρ−2].

Set k> 0 be arbitrary, denotes Sk := {X(·)∈Rn | |X(·)|< k}. V (X(·), ·)∈C2,1(Sk×
[α,∞);R+) denote the family of all real-valued function V (X(·), ·) defined on Sk×
[α,∞) such that they are continuously twice differentiable in X and once in t. a∧b :
the minimum of a and b, a∨b : the maximum of a and b. I{·} is indicative function.
Let K be the family of all continuous nondecreasing functions. L2

n[α,α+ h] is the
space of n dimensional 2th integrable functions defined on [α,α+h].

We introduce assumptions for positive-definite function V (X(·), ·) ∈ C2,1(Sk ×
[α,∞);R+).

[H4] DρV (X(·), ·) is negative-definite, i.e. DρV (X(·), ·)≤ 0.
[H5] V (X(·), ·)≥ c1|X(·)|p, c1 > 1, p≥ 1.
[H6] DρV (X(·), ·)≤ c2V (X(·), ·), c2 ∈ R.
[H7] |VX(X(·), ·)σ(X(·), ·)(·−α)ρ−1|2 ≥ c3V 2(X(·), ·), c3 > 0.

Theorem 2. If [H1], [H2], [H3], [H4] hold and ρ∈ (1
2 ,1], then the trivial solution

of (1.1) is stochastically stable.

Proof. From Lemma 5, (1.1) has a unique solution X(·) ∈ L2
n[α,α+h]. Following

the same procedure as the proof of [5, p.111, Theorem 2.2], one can check the result.
Here we present more details for the reader’s convenience. Note that V (X(t), t) is
positive-definite and V (0, t) ≡ 0, Then, there exists a function µ(·) ∈ K, such that
V (X(t), t)≥ µ(|X(t)|), for all (X(t), t) ∈ (Sk× [α,∞)).

Let ε ∈ (0,1) and r > 0 be arbitrary. Assume that r < k, since V (X(·), ·) is con-
tinuity and V (0,α) = 0, we can find a δ = δ(ε,r,α)> 0 such that

1
ε

sup
X∈Sδ

V (X(t),α)≤ µ(r). (3.1)

Obviously, δ < r, we fix initial value Xα ∈ Sδ arbitrary, let τ be the first exit time
of X(t) from Sr, i.e. τ = inf{t > α : X(t) 6∈ Sr}.
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By Theorem 1, for any t > α, we obtain

V (X(τ∧ t),τ∧ t)

=V (Xα,α)+
∫

τ∧t

α

Vs(X(s),s)(s−α)ρ−1ds

+
∫

τ∧t

α

VX(X(s),s)b(X(s),s)(s−α)ρ−1ds

+
∫

τ∧t

α

VX(X(s),s)σ(X(s),s)(s−α)ρ−1dW (s)

+
1
2

trace
∫

τ∧t

α

[σT (X(s),s)VXX(X(s),s)σ(X(s),s)(s−α)2ρ−2]ds

=V (Xα,α)+
∫

τ∧t

α

DρV (X(s),s)ds

+
∫

τ∧t

α

VX(X(s),s)σ(X(s),s)(s−α)ρ−1dW (s).

By [H4], DρV (X(·), ·)≤ 0. Following the same procedure in the proof of [5, p.111,
Theorem 2.2], taking the expectation on both sides, we have

EV (X(τ∧ t),τ∧ t)≤V (Xα,α).

Clearly |X(τ∧ t)|= |X(τ)|= r if τ < t. Hence, we obtain

EV (X(τ∧ t),τ∧ t)≥ E
[
I{τ≤t}V (X(τ),τ)

]
≥ µ(r)P{τ≤ t}.

Then, from (3.1), we get P{τ≤ t}≤ ε. Letting t→∞, which implies P{τ<∞}≤ ε,
i.e.

P{|X(t)| ≤ r} ≥ 1− ε, t ≥ α.

By Definition 3 (i), the trivial solution is stochastically stable. The proof is com-
pleted. �

Theorem 3. If [H1], [H2], [H3] and [H4] hold, V (X(·), ·) is a decreasing function
and ρ∈ (1

2 ,1], then the trivial solution of (1.1) is stochastically asymptotically stable.

Proof. From Theorem 2, the trivial solution of (1.1) is stochastic stable. Similarly,
following the procedure of proof in [5, p.112, Theorem 2.3] and using Lemma 1, one
can derive for any ε∈ (0,1), there exist a δ0 = δ0(ε,α)> 0 such that P{limt→∞ X(t)=
0} ≥ 1− ε, whenever |Xα|< δ0.

By Definition 3 (ii), the trivial solution is stochastically asymptotically stable. �

Remark 2. For ρ = 1,α = t0, Theorems 2 and 3 are the same as [5, p.111, Theorem
2.2] and [5, p.112, Theorem 2.3].
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Theorem 4. If [H1], [H2], [H3], [H5], [H6] and [H7] hold and ρ ∈ (1
2 ,1], then,

for all X(t) 6= 0 and Xα 6= 0,

lim
t→∞

sup
1
t

ln |X(t)| ≤ c3 +2c2

2p
, a.s.

holds for all Xα ∈ Rn. In particular, if c3 + 2c2 < 0, the trivial solution of equation
(1.1) is almost surely exponentially stable.

Proof. By Theorem 1, we can deduce that for ρ ∈ (0,1], t ≥ α

lnV (X(t), t)

≤ lnV (Xα,α)+
∫ t

α

(Vs(X(s),s)+VX(X(s),s)b(X(s),s))
V (X(s),s)

(s−α)ρ−1ds

+
∫ t

α

VX(X(s),s)σ(X(s),s)
V (X(s),s)

(s−α)ρ−1dW (s)

+
1
2

∫ t

α

|VXX(X(s),s)V (X(s),s)−VX(X(s),s)VX(X(s),s)|
V 2(X(s),s)

(dX(t))2

≤ lnV (Xα,α)+
∫ t

α

DρV (X(s),s)
V (X(s),s)

ds

+
∫ t

α

VX(X(s),s)σ(X(s),s)
V (X(s),s)

(s−α)ρ−1dW (s)

− 1
2

∫ t

α

|VX(X(s),s)σ(X(s),s)(s−α)ρ−1|2

V 2(X(s),s)
ds.

Set M(t) :=
∫ t

α

VX (X(s),s)σ(X(s),s)
V (X(s),s) (s−α)ρ−1dW (s). Then, for any ε ∈ (0,1) is arbit-

rarily, let n = 1,2..., by [H7] and Lemma 1, we can get

P
{

sup
α≤t≤α+n

[
M(t)+

ε

2

∫ t

α

|VX(X(s),s)σ(X(s),s)(s−α)ρ−1|2

V 2(X(s),s)
ds
]
> c3(t−α)

}
≤ ε

2c3(t−α)
. (3.2)

Using Lemma 3, we have

P
{

sup
α≤t≤α+n

[
M(t)+

ε

2

∫ t

α

|VX(X(s),s)σ(X(s),s)(s−α)ρ−1|2

V 2(X(s),s)
ds
]
> c3(t−α) i.o.

}
= 0,

which implies

M(t)≤ c3(t−α)− ε

2

∫ t

α

|VX(X(s),s)σ(X(s),s)|2

V 2(X(s),s)
(s−α)2(ρ−1)ds. a.s.
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From [H6] and [H7], for t ≥ α, we have

lnV (X(t), t)≤ lnV (Xα,α)+ c2(t−α)+
1
2
[(1− ε)c3(t−α)] .

Then, for t ≥ α

1
t

lnV (X(t), t)≤ (t−α)

2t
[(1− ε)c3 +2c2]+

lnV (Xα,α)

t
.

Thus, letting t→ ∞, we can get

lim
t→∞

sup
1
t

lnV (X(t), t)≤ 1
2
[(1− ε)c3 +2c2] .

Using [H5], we have

lim
t→∞

sup
1
t

ln(c1|X(t)|p)≤ lim
t→∞

1
t

lnV (X(t), t)≤ 1
2
[(1− ε)c3 +2c2] .

Note that c1 > 1, p≥ 1, then

lim
t→∞

sup
1
t

ln |X(t)|p = p lim
t→∞

1
t

ln |X(t)| ≤ 1
2
[(1− ε)c3 +2c2] .

Finally, we obtain

lim
t→∞

sup
1
t

ln |X(t)| ≤ (1− ε)c3 +2c2

2p
.

Since ε is arbitrarily, we have

lim
t→∞

sup
1
t

ln |X(t)| ≤ c3 +2c2

2p
a.s.

Then, if c3 +2c2 < 0, by Definition 4, the trivial solution of (1.1) is almost surely
exponentially stable. The proof is completed. �

Remark 3. Concerning on Theorem 4 for ρ = 1,α = t0, [5, p.121, Theorem 3.3]
uses different technique (exponential martingale inequality) in (3.2), i.e.

P
{

sup
t0≤t≤t0+n

[
M(t)− ε

2

∫ t

t0

|VX(X(s),s)σ(X(s),s)|2

V 2(X(s),s)
ds
]
>

2
ε

lnn
}
≤ 1

n2 ,

then derives the following different inequality

lim
t→∞

sup
1
t

ln |X(t)| ≤ −c3−2c2

2p
. a.s.
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4. ULAM’S TYPE STABILITY

Denote C([α,α+h],R+) by the family of all continuous functions from [α,α+h]
to R+. For ∀ε > 0, ϕ(·) ∈C([α,α+h],R+), t ∈ [α,α+h], consider∣∣∣∣Dα

ρY (t)−b(Y (t), t)−σ(Y (t), t)
dW (t)

dt

∣∣∣∣≤ ε,
1
2
< ρ≤ 1, (4.1)

and ∣∣∣∣Dα
ρY (t)−b(Y (t), t)−σ(Y (t), t)

dW (t)
dt

∣∣∣∣≤ εϕ(t),
1
2
< ρ≤ 1. (4.2)

Definition 5. (1.1) is called almost surely Ulam-Hyers stable in the sense of prob-
ability, if there exists a constant N > 0 such that for ∀ε > 0,r ∈ (0,1) and for each
process Y (·) ∈ L2

n[α,α+h] satisfy

P{|Y (t)−X(t)| ≤ Nε} ≥ 1− r, t ∈ [α,α+h].

Remark 4. A process Y (·) ∈ L2
n[α,α+ h] is a solution of (4.1), iff for ∀ε > 0,

there exists a function G(·) ∈ L2
n[α,α+ h] such that (i) |G(·)| < ε2; (ii) Dα

ρY (t) =

b(Y (t), t)+σ(Y (t), t)dW (t)
dt +G(t), t ∈ [α,α+h].

Definition 6. (1.1) is called almost surely Ulam-Hyers-Rassias stable in the sense
of probability, if there exists a constant Ñ > 0 such that for ∀ε > 0, r ∈ (0,1), and
ϕ(·) ∈C([α,α+h],R+). for each process Y (·) ∈ L2

n[α,α+h] satisfy

P
{
|Y (t)−X(t)| ≤ Ñεϕ(t)

}
≥ 1− r, t ∈ [α,α+h].

Remark 5. A process Y (·) ∈ L2
n[α,α+ h] is a solution of (4.2), iff there exists a

constant M and function Ḡ(·) ∈ L2
n[α,α+h] such that (i) |Ḡ(t)| ≤ ε2M ≤ ε2ϕ(t), t ∈

[α,α+h]; (ii) Dα
ρY (t) = b(Y (t), t)+σ(Y (t), t)dW (t)

dt + Ḡ(t), t ∈ [α,α+h].

Lemma 6. Let process Y (·) be a solution of equation (4.1) provided ρ ∈ (1
2 ,1].

Then

E
(∣∣∣∣Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)

∣∣∣∣2)≤ ε4h2ρ

2ρ−1

hold for t ∈ [α,α+h].

Proof. We know that Dα
ρY (t) = b(Y (t), t)+σ(Y (t), t)dW (t)

dt +G(t), t ∈ [α,α+h],
with initial value Y (α) = Yα, for t ∈ [α,α+h], the solution can express as

Y (t) = Yα +
∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ
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+
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)+
∫ t

α

G(τ)(τ−α)ρ−1dτ.

Then, by Hölder inequality, for t ∈ [α,α+h], we can get

E
(
|Y (t)−Yα−

∫ t

α

b(τ,Y (τ))(τ−α)ρ−1dτ

−
∫ t

α

σ(τ,Y (τ))(τ−α)ρ−1dW (τ)|2
)

= E
∣∣∣∣∫ t

α

G(τ)(τ−α)ρ−1dτ

∣∣∣∣2
≤ E

∣∣∣∣∫ t

α

|G(τ)|2dτ

∫ t

α

(τ−α)2(ρ−1)dτ

∣∣∣∣
≤ E

∣∣∣∣ε4(t−α)
(t−α)2ρ−1

2ρ−1

∣∣∣∣
≤ E

∣∣∣∣ ε4h2ρ

2ρ−1

∣∣∣∣= ε4h2ρ

2ρ−1
, ρ ∈ (

1
2
,1].

The proof is completed. �

Lemma 7. Let the process Y (·) be a solution of equation (4.2) provided ρ∈ (1
2 ,1].

Then

E
(∣∣∣∣Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)

∣∣∣∣2)
≤ ε4h2ρ

2ρ−1
ϕ

2(t)

hold for t ∈ [α,α+h].

Proof. We know that Dα
ρY (t) = b(t,Y (t))+σ(t,Y (t))dW (t)

dt + Ḡ(t), t ∈ [α,α+h],
with initial value Y (α) = Yα, for t ∈ [α,α+h], the solution can expressed as

Y (t) = Yα +
∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

+
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)+
∫ t

α

Ḡ(τ)(τ−α)ρ−1dτ.

Then, by Hölder inequality, for t ∈ [α,α+h], we can get

E
(
|Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ
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−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)|2
)

= E
(∣∣∣∣∫ t

α

Ḡ(τ)(τ−α)ρ−1dτ

∣∣∣∣2)
≤ E

∣∣∣∣∫ t

α

|G(τ)|2dτ ·
∫ t

α

(τ−α)2(ρ−1)dτ

∣∣∣∣
≤ E

∣∣∣∣ε4M2(t−α)
(t−α)2ρ−1

2ρ−1

∣∣∣∣
≤ E

∣∣∣∣ ε4h2ρ

2ρ−1
M2
∣∣∣∣= ε4h2ρ

2ρ−1
M2.

Noting M ≤ ϕ(·), then M2 ≤ ϕ2(·). For α≤ t ≤ α+h, we obtain

E
(∣∣∣∣Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)

∣∣∣∣2)≤ ε4h2ρ

2ρ−1
ϕ

2(t).

The proof is completed. �

Theorem 5. Assume [H1], [H2] and [H3] hold and ρ ∈ (1
2 ,1]. Then, (1.1) is

almost surely Ulam-Hyers stable on [α,α+h].

Proof. Let Y (·) ∈ L2
n[α,α+h] is a solution of (4.1), and X(·) is a solution of (1.1)

give by (2.1). By Lemma 2, Lemma 6 and [H1], for t ∈ [α,α+h], we can get

E(|Y (t)−X(t)|2)

= E
(∣∣∣∣Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)

+
∫ t

α

(b(Y (τ),τ)−b(Y (τ),τ))(τ−α)ρ−1dτ

+
∫ t

α

(σ(Y (τ),τ)−σ(Y (τ),τ))(τ−α)ρ−1dW (τ)

∣∣∣∣2)
≤ 3ε

4 h2ρ

2ρ−1
+3L2(t−α)E

(∫ t

α

|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ

)
+3L2E

(∫ t

α

|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ

)
≤ 3ε

4 h2ρ

2ρ−1
+3L2(1+ t−α)

∫ t

α

E
(
|Y (τ)−X(τ)|2

)
(τ−α)2(ρ−1)dτ
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≤ 3ε
4 h2ρ

2ρ−1
+3L2(1+h)

∫ t

α

E
(
|Y (τ)−X(τ)|2

)
(τ−α)2(ρ−1)dτ.

Next, using Lemma 4, for t ∈ [α,α+h], we have

E(|Y (t)−X(t)|2)≤ 3ε
4 h2ρ

2ρ−1
exp
(

3L2(1+h)
(t−α)2ρ−1

2ρ−1

)
≤ 3ε

4 h2ρ

2ρ−1
exp
(

3L2(1+h)
h2ρ−1

2ρ−1

)
≤ Nε

4,

where N = 3 h2ρ

2ρ−1 exp
(

3L2(1+h) h2ρ−1

2ρ−1

)
.

Therefore, from Lemma 1, we can get

P
{

sup
α≤t≤α+h

|Y (t)−X(t)| ≥ Nε
}
≤ Nε4

(Nε)2 =
ε2

N
.

By Lemma 3, we can get

P{ sup
α≤t≤α+h

|Y (t)−X(t)| ≥ Nε i.o.}= 0. a.s.

Then, for ∀r ∈ (0,1), we have

P{ sup
α≤t≤α+h

|Y (t)−X(t)| ≤ Nε} ≥ 1− r.

From Definition 5, (1.1) is almost surely Ulam-Hyers stable. The proof is com-
pleted. �

Theorem 6. Assume [H1], [H2], [H3] hold, ϕ(·) is nondecreasing and ρ ∈ (1
2 ,1].

Then (1.1) is almost surely Ulam-Hyers-Rassias stable on [α,α+h].

Proof. Let Y (·) ∈ L2
n[α,α+ h] is a solution of (4.2), X(·) is a solution of (1.1)

given by (2.1). By Lemma 2, Lemma 7 and [H1], for t ∈ [α,α+h], we have

E(|Y (t)−X(t)|2)

= E(
∣∣∣∣Y (t)−Yα−

∫ t

α

b(Y (τ),τ)(τ−α)ρ−1dτ

−
∫ t

α

σ(Y (τ),τ)(τ−α)ρ−1dW (τ)

+
∫ t

α

(b(Y (τ),τ)−b(Y (τ),τ))(τ−α)ρ−1dτ

+
∫ t

α

(σ(Y (τ),τ)−σ(Y (τ),τ))(τ−α)ρ−1dW (τ)

∣∣∣∣2)
≤ 3

ε4h2ρ

2ρ−1
ϕ

2(t)+3L2(t−α)
∫ t

α

E|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ)
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+3L2
∫ t

α

E|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ

≤ 3
ε4h2ρ

2ρ−1
ϕ

2(t)+3L2(1+ t−α)
∫ t

α

E|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ

≤ 3
ε4h2ρ

2ρ−1
ϕ

2(t)+3L2(1+h)
∫ t

α

E|Y (τ)−X(τ)|2(τ−α)2(ρ−1)dτ.

Note ϕ(·) is nondecreasing and (ϕ2)′ = 2ϕϕ′ ≥ 0. From Lemma 4, for t ∈ [α,α+
h], we have

E(|Y (t)−X(t)|2)≤ 3
ε4h2ρ

2ρ−1
ϕ

2(t)exp
(

3L2(1+h)
∫ t

α

(τ−α)2(ρ−1)dτ

)
≤ 3

ε4h2ρ

2ρ−1
ϕ

2(t)exp
(

3L2(1+h)
(t−α)2ρ−1

2ρ−1

)
≤ Ñε

4
ϕ

2(t),

where Ñ = 3 h2ρ

2ρ−1 exp
(

3L2(1+h) h2ρ−1

2ρ−1

)
. Therefore, by Lemma 1, we have

P{ sup
α≤t≤α+h

|Y (t)−X(t)| ≥ Ñεϕ(t)} ≤ Ñε4ϕ2(t)
Ñ2ε2ϕ2(t)

=
ε2

Ñ
.

By Lemma 3, we get

P{ sup
α≤t≤α+h

|Y (t)−X(t)| ≥ Ñεϕ(t) i.o.}= 0. a.s.

Then, for ∀r ∈ (0,1), we have

P{ sup
α≤t≤α+h

|Y (t)−X(t)| ≤ Ñεϕ(t)} ≥ 1− r.

From Definition 6, (1.1) is almost surely Ulam-Hyers stable. The proof is com-
pleted. �

5. EXAMPLES

Example 1. Consider an one-dimensional stochastic differential equationDα
ρX(t) = b(X(t), t)+σ(X(t), t)

dW (t)
dt

, t ≥ α, ρ ∈ (
1
2
,1],

X(α) = Xα,
(5.1)

where Xα ∈ R and Xα 6=±∞, b : R× [α,∞)→ R,σ : R× [α,∞)→ R.
Let b,σ satisfying [H1], [H2] and

b(X , ·) = a(·)X(·), σ(X , ·) = b(·)X(·), (5.2)
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in a neighbourhood of X(·) = 0, where a(·),b(·) are bounded Borel-measurable func-
tions. Assume there is a pair of positive constants λ and K such that

−K ≤
∫ t

α

(
a(τ)+

ε−1
2

b2(τ)(τ−α)ρ−1 +λ

)
dτ≤ K, t ≥ α. (5.3)

We define the stochastic Lyapunov function

V (X , t) = |X(t)|ε exp
[
−ε

∫ t

α

(a(τ)+
ε−1

2
b2(τ)(τ−α)ρ−1 +λ)dτ

]
, t ≥ α. (5.4)

From (5.3), for t ≥ α, we have

|X(t)|εe−εK ≤V (X , t)≤ |X(t)|εeεK .

Hence, V is positive-define. Combing (5.2) and (5.4), for t ≥ α, we have

DρV (X(t), t) = |X(t)|ε exp
[
−ε

∫ t

α

(a(τ)− ε−1
2

b2(τ)(τ−α)ρ−1 +λ)dτ

]
·−ε

(
a(t)+

ε−1
2

b2(t)(t−α)ρ−1 +λ

)
(t−α)ρ−1

+ ε|X(t)|ε−1 exp
[
−ε

∫ t

α

(a(τ)+
ε−1

2
b2(τ)(τ−α)ρ−1 +λ)dτ

]
·
[

a(t)X(t)
]
(t−α)ρ−1

+
1
2
(
bT (t)X(t)ε(ε−1)|X(t)|ε−2X(t)b(t)

)
· exp

[
−ε

∫ t

α

(a(τ)+
ε−1

2
b2(τ)(τ−α)ρ−1 +λ)dτ

]
(t−α)2(ρ−1)

≤−ελe−εK |X(t)|ε(t−α)ρ−1

< 0.

From above [H4] holds. By Theorem 2, the trivial solution of (5.1) is stochastically
stable under (5.2) and (5.3).

Example 2. Consider the following conformable stochastic differential equations
and give the simulation results of the Ulam’s type stable of the solution.Dα

ρX(t) = rX(t)+β(t−α)1−ρX(t)
dW (t)

dt
, t ∈ [α,α+h],

X(α) = Xα 6=±∞.
(5.5)

The solution of (5.5) can express as

X(t) = Xαe(r
(t−α)ρ

ρ
+βW (t)− 1

2 β2(t−α)), t ∈ [α,α+h]. (5.6)
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Set X0 = 10,r = 0.12,β = 0.18,α = 0,h = 500, Brownian motion W (t) and its
white noise dW (t)

dt when t ∈ [0,500]. Then (5.6) reduces to

X(t) = 10e(0.12 tρ
ρ
+0.18W (t)−0.0072t), t ∈ [0,500].

Let ϕ(t) = exp(0.5 tρ

ρ
), t ∈ [0,500], we consider∣∣∣∣Dα

ρX(t)− rX(t)−βt1−ρX(t)
dW (t)

dt

∣∣∣∣≤ ε,
1
2
< ρ≤ 1, t ∈ [0,500],

and ∣∣∣∣Dα
ρX(t)− rX(t)−βt1−ρX(t)

dW (t)
dt

∣∣∣∣≤ εϕ(t),
1
2
< ρ≤ 1, t ∈ [0,500].

Clearly, (5.5) is Ulam-Hyers stable and Ulam-Hyers-Rassias stable from Theorems 5
and 6, respectively.
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